Add Stage-2 mmu data structures for virtual EL2 and for nested guests. We don't yet populate shadow Stage-2 page tables, but we now have a framework for getting to a shadow Stage-2 pgd. We allocate twice the number of vcpus as Stage-2 mmu structures because that's sufficient for each vcpu running two translation regimes without having to flush the Stage-2 page tables. Co-developed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20240614144552.2773592-2-maz@kernel.org Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
1453 lines
45 KiB
C
1453 lines
45 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
* Copyright (C) 2012,2013 - ARM Ltd
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
*
|
|
* Derived from arch/arm/include/asm/kvm_host.h:
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*/
|
|
|
|
#ifndef __ARM64_KVM_HOST_H__
|
|
#define __ARM64_KVM_HOST_H__
|
|
|
|
#include <linux/arm-smccc.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/types.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/kvm_types.h>
|
|
#include <linux/maple_tree.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/psci.h>
|
|
#include <asm/arch_gicv3.h>
|
|
#include <asm/barrier.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/daifflags.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/kvm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/vncr_mapping.h>
|
|
|
|
#define __KVM_HAVE_ARCH_INTC_INITIALIZED
|
|
|
|
#define KVM_HALT_POLL_NS_DEFAULT 500000
|
|
|
|
#include <kvm/arm_vgic.h>
|
|
#include <kvm/arm_arch_timer.h>
|
|
#include <kvm/arm_pmu.h>
|
|
|
|
#define KVM_MAX_VCPUS VGIC_V3_MAX_CPUS
|
|
|
|
#define KVM_VCPU_MAX_FEATURES 7
|
|
#define KVM_VCPU_VALID_FEATURES (BIT(KVM_VCPU_MAX_FEATURES) - 1)
|
|
|
|
#define KVM_REQ_SLEEP \
|
|
KVM_ARCH_REQ_FLAGS(0, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
|
|
#define KVM_REQ_IRQ_PENDING KVM_ARCH_REQ(1)
|
|
#define KVM_REQ_VCPU_RESET KVM_ARCH_REQ(2)
|
|
#define KVM_REQ_RECORD_STEAL KVM_ARCH_REQ(3)
|
|
#define KVM_REQ_RELOAD_GICv4 KVM_ARCH_REQ(4)
|
|
#define KVM_REQ_RELOAD_PMU KVM_ARCH_REQ(5)
|
|
#define KVM_REQ_SUSPEND KVM_ARCH_REQ(6)
|
|
#define KVM_REQ_RESYNC_PMU_EL0 KVM_ARCH_REQ(7)
|
|
|
|
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
|
|
KVM_DIRTY_LOG_INITIALLY_SET)
|
|
|
|
#define KVM_HAVE_MMU_RWLOCK
|
|
|
|
/*
|
|
* Mode of operation configurable with kvm-arm.mode early param.
|
|
* See Documentation/admin-guide/kernel-parameters.txt for more information.
|
|
*/
|
|
enum kvm_mode {
|
|
KVM_MODE_DEFAULT,
|
|
KVM_MODE_PROTECTED,
|
|
KVM_MODE_NV,
|
|
KVM_MODE_NONE,
|
|
};
|
|
#ifdef CONFIG_KVM
|
|
enum kvm_mode kvm_get_mode(void);
|
|
#else
|
|
static inline enum kvm_mode kvm_get_mode(void) { return KVM_MODE_NONE; };
|
|
#endif
|
|
|
|
DECLARE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
|
|
|
|
extern unsigned int __ro_after_init kvm_sve_max_vl;
|
|
extern unsigned int __ro_after_init kvm_host_sve_max_vl;
|
|
int __init kvm_arm_init_sve(void);
|
|
|
|
u32 __attribute_const__ kvm_target_cpu(void);
|
|
void kvm_reset_vcpu(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu);
|
|
|
|
struct kvm_hyp_memcache {
|
|
phys_addr_t head;
|
|
unsigned long nr_pages;
|
|
};
|
|
|
|
static inline void push_hyp_memcache(struct kvm_hyp_memcache *mc,
|
|
phys_addr_t *p,
|
|
phys_addr_t (*to_pa)(void *virt))
|
|
{
|
|
*p = mc->head;
|
|
mc->head = to_pa(p);
|
|
mc->nr_pages++;
|
|
}
|
|
|
|
static inline void *pop_hyp_memcache(struct kvm_hyp_memcache *mc,
|
|
void *(*to_va)(phys_addr_t phys))
|
|
{
|
|
phys_addr_t *p = to_va(mc->head);
|
|
|
|
if (!mc->nr_pages)
|
|
return NULL;
|
|
|
|
mc->head = *p;
|
|
mc->nr_pages--;
|
|
|
|
return p;
|
|
}
|
|
|
|
static inline int __topup_hyp_memcache(struct kvm_hyp_memcache *mc,
|
|
unsigned long min_pages,
|
|
void *(*alloc_fn)(void *arg),
|
|
phys_addr_t (*to_pa)(void *virt),
|
|
void *arg)
|
|
{
|
|
while (mc->nr_pages < min_pages) {
|
|
phys_addr_t *p = alloc_fn(arg);
|
|
|
|
if (!p)
|
|
return -ENOMEM;
|
|
push_hyp_memcache(mc, p, to_pa);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void __free_hyp_memcache(struct kvm_hyp_memcache *mc,
|
|
void (*free_fn)(void *virt, void *arg),
|
|
void *(*to_va)(phys_addr_t phys),
|
|
void *arg)
|
|
{
|
|
while (mc->nr_pages)
|
|
free_fn(pop_hyp_memcache(mc, to_va), arg);
|
|
}
|
|
|
|
void free_hyp_memcache(struct kvm_hyp_memcache *mc);
|
|
int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages);
|
|
|
|
struct kvm_vmid {
|
|
atomic64_t id;
|
|
};
|
|
|
|
struct kvm_s2_mmu {
|
|
struct kvm_vmid vmid;
|
|
|
|
/*
|
|
* stage2 entry level table
|
|
*
|
|
* Two kvm_s2_mmu structures in the same VM can point to the same
|
|
* pgd here. This happens when running a guest using a
|
|
* translation regime that isn't affected by its own stage-2
|
|
* translation, such as a non-VHE hypervisor running at vEL2, or
|
|
* for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
|
|
* canonical stage-2 page tables.
|
|
*/
|
|
phys_addr_t pgd_phys;
|
|
struct kvm_pgtable *pgt;
|
|
|
|
/*
|
|
* VTCR value used on the host. For a non-NV guest (or a NV
|
|
* guest that runs in a context where its own S2 doesn't
|
|
* apply), its T0SZ value reflects that of the IPA size.
|
|
*
|
|
* For a shadow S2 MMU, T0SZ reflects the PARange exposed to
|
|
* the guest.
|
|
*/
|
|
u64 vtcr;
|
|
|
|
/* The last vcpu id that ran on each physical CPU */
|
|
int __percpu *last_vcpu_ran;
|
|
|
|
#define KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT 0
|
|
/*
|
|
* Memory cache used to split
|
|
* KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE worth of huge pages. It
|
|
* is used to allocate stage2 page tables while splitting huge
|
|
* pages. The choice of KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE
|
|
* influences both the capacity of the split page cache, and
|
|
* how often KVM reschedules. Be wary of raising CHUNK_SIZE
|
|
* too high.
|
|
*
|
|
* Protected by kvm->slots_lock.
|
|
*/
|
|
struct kvm_mmu_memory_cache split_page_cache;
|
|
uint64_t split_page_chunk_size;
|
|
|
|
struct kvm_arch *arch;
|
|
|
|
/*
|
|
* For a shadow stage-2 MMU, the virtual vttbr used by the
|
|
* host to parse the guest S2.
|
|
* This either contains:
|
|
* - the virtual VTTBR programmed by the guest hypervisor with
|
|
* CnP cleared
|
|
* - The value 1 (VMID=0, BADDR=0, CnP=1) if invalid
|
|
*
|
|
* We also cache the full VTCR which gets used for TLB invalidation,
|
|
* taking the ARM ARM's "Any of the bits in VTCR_EL2 are permitted
|
|
* to be cached in a TLB" to the letter.
|
|
*/
|
|
u64 tlb_vttbr;
|
|
u64 tlb_vtcr;
|
|
|
|
/*
|
|
* true when this represents a nested context where virtual
|
|
* HCR_EL2.VM == 1
|
|
*/
|
|
bool nested_stage2_enabled;
|
|
|
|
/*
|
|
* 0: Nobody is currently using this, check vttbr for validity
|
|
* >0: Somebody is actively using this.
|
|
*/
|
|
atomic_t refcnt;
|
|
};
|
|
|
|
struct kvm_arch_memory_slot {
|
|
};
|
|
|
|
/**
|
|
* struct kvm_smccc_features: Descriptor of the hypercall services exposed to the guests
|
|
*
|
|
* @std_bmap: Bitmap of standard secure service calls
|
|
* @std_hyp_bmap: Bitmap of standard hypervisor service calls
|
|
* @vendor_hyp_bmap: Bitmap of vendor specific hypervisor service calls
|
|
*/
|
|
struct kvm_smccc_features {
|
|
unsigned long std_bmap;
|
|
unsigned long std_hyp_bmap;
|
|
unsigned long vendor_hyp_bmap;
|
|
};
|
|
|
|
typedef unsigned int pkvm_handle_t;
|
|
|
|
struct kvm_protected_vm {
|
|
pkvm_handle_t handle;
|
|
struct kvm_hyp_memcache teardown_mc;
|
|
bool enabled;
|
|
};
|
|
|
|
struct kvm_mpidr_data {
|
|
u64 mpidr_mask;
|
|
DECLARE_FLEX_ARRAY(u16, cmpidr_to_idx);
|
|
};
|
|
|
|
static inline u16 kvm_mpidr_index(struct kvm_mpidr_data *data, u64 mpidr)
|
|
{
|
|
unsigned long index = 0, mask = data->mpidr_mask;
|
|
unsigned long aff = mpidr & MPIDR_HWID_BITMASK;
|
|
|
|
bitmap_gather(&index, &aff, &mask, fls(mask));
|
|
|
|
return index;
|
|
}
|
|
|
|
struct kvm_sysreg_masks;
|
|
|
|
enum fgt_group_id {
|
|
__NO_FGT_GROUP__,
|
|
HFGxTR_GROUP,
|
|
HDFGRTR_GROUP,
|
|
HDFGWTR_GROUP = HDFGRTR_GROUP,
|
|
HFGITR_GROUP,
|
|
HAFGRTR_GROUP,
|
|
|
|
/* Must be last */
|
|
__NR_FGT_GROUP_IDS__
|
|
};
|
|
|
|
struct kvm_arch {
|
|
struct kvm_s2_mmu mmu;
|
|
|
|
/*
|
|
* Fine-Grained UNDEF, mimicking the FGT layout defined by the
|
|
* architecture. We track them globally, as we present the
|
|
* same feature-set to all vcpus.
|
|
*
|
|
* Index 0 is currently spare.
|
|
*/
|
|
u64 fgu[__NR_FGT_GROUP_IDS__];
|
|
|
|
/*
|
|
* Stage 2 paging state for VMs with nested S2 using a virtual
|
|
* VMID.
|
|
*/
|
|
struct kvm_s2_mmu *nested_mmus;
|
|
size_t nested_mmus_size;
|
|
int nested_mmus_next;
|
|
|
|
/* Interrupt controller */
|
|
struct vgic_dist vgic;
|
|
|
|
/* Timers */
|
|
struct arch_timer_vm_data timer_data;
|
|
|
|
/* Mandated version of PSCI */
|
|
u32 psci_version;
|
|
|
|
/* Protects VM-scoped configuration data */
|
|
struct mutex config_lock;
|
|
|
|
/*
|
|
* If we encounter a data abort without valid instruction syndrome
|
|
* information, report this to user space. User space can (and
|
|
* should) opt in to this feature if KVM_CAP_ARM_NISV_TO_USER is
|
|
* supported.
|
|
*/
|
|
#define KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER 0
|
|
/* Memory Tagging Extension enabled for the guest */
|
|
#define KVM_ARCH_FLAG_MTE_ENABLED 1
|
|
/* At least one vCPU has ran in the VM */
|
|
#define KVM_ARCH_FLAG_HAS_RAN_ONCE 2
|
|
/* The vCPU feature set for the VM is configured */
|
|
#define KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED 3
|
|
/* PSCI SYSTEM_SUSPEND enabled for the guest */
|
|
#define KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED 4
|
|
/* VM counter offset */
|
|
#define KVM_ARCH_FLAG_VM_COUNTER_OFFSET 5
|
|
/* Timer PPIs made immutable */
|
|
#define KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE 6
|
|
/* Initial ID reg values loaded */
|
|
#define KVM_ARCH_FLAG_ID_REGS_INITIALIZED 7
|
|
/* Fine-Grained UNDEF initialised */
|
|
#define KVM_ARCH_FLAG_FGU_INITIALIZED 8
|
|
unsigned long flags;
|
|
|
|
/* VM-wide vCPU feature set */
|
|
DECLARE_BITMAP(vcpu_features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
/* MPIDR to vcpu index mapping, optional */
|
|
struct kvm_mpidr_data *mpidr_data;
|
|
|
|
/*
|
|
* VM-wide PMU filter, implemented as a bitmap and big enough for
|
|
* up to 2^10 events (ARMv8.0) or 2^16 events (ARMv8.1+).
|
|
*/
|
|
unsigned long *pmu_filter;
|
|
struct arm_pmu *arm_pmu;
|
|
|
|
cpumask_var_t supported_cpus;
|
|
|
|
/* PMCR_EL0.N value for the guest */
|
|
u8 pmcr_n;
|
|
|
|
/* Iterator for idreg debugfs */
|
|
u8 idreg_debugfs_iter;
|
|
|
|
/* Hypercall features firmware registers' descriptor */
|
|
struct kvm_smccc_features smccc_feat;
|
|
struct maple_tree smccc_filter;
|
|
|
|
/*
|
|
* Emulated CPU ID registers per VM
|
|
* (Op0, Op1, CRn, CRm, Op2) of the ID registers to be saved in it
|
|
* is (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
|
|
*
|
|
* These emulated idregs are VM-wide, but accessed from the context of a vCPU.
|
|
* Atomic access to multiple idregs are guarded by kvm_arch.config_lock.
|
|
*/
|
|
#define IDREG_IDX(id) (((sys_reg_CRm(id) - 1) << 3) | sys_reg_Op2(id))
|
|
#define IDX_IDREG(idx) sys_reg(3, 0, 0, ((idx) >> 3) + 1, (idx) & Op2_mask)
|
|
#define IDREG(kvm, id) ((kvm)->arch.id_regs[IDREG_IDX(id)])
|
|
#define KVM_ARM_ID_REG_NUM (IDREG_IDX(sys_reg(3, 0, 0, 7, 7)) + 1)
|
|
u64 id_regs[KVM_ARM_ID_REG_NUM];
|
|
|
|
/* Masks for VNCR-baked sysregs */
|
|
struct kvm_sysreg_masks *sysreg_masks;
|
|
|
|
/*
|
|
* For an untrusted host VM, 'pkvm.handle' is used to lookup
|
|
* the associated pKVM instance in the hypervisor.
|
|
*/
|
|
struct kvm_protected_vm pkvm;
|
|
};
|
|
|
|
struct kvm_vcpu_fault_info {
|
|
u64 esr_el2; /* Hyp Syndrom Register */
|
|
u64 far_el2; /* Hyp Fault Address Register */
|
|
u64 hpfar_el2; /* Hyp IPA Fault Address Register */
|
|
u64 disr_el1; /* Deferred [SError] Status Register */
|
|
};
|
|
|
|
/*
|
|
* VNCR() just places the VNCR_capable registers in the enum after
|
|
* __VNCR_START__, and the value (after correction) to be an 8-byte offset
|
|
* from the VNCR base. As we don't require the enum to be otherwise ordered,
|
|
* we need the terrible hack below to ensure that we correctly size the
|
|
* sys_regs array, no matter what.
|
|
*
|
|
* The __MAX__ macro has been lifted from Sean Eron Anderson's wonderful
|
|
* treasure trove of bit hacks:
|
|
* https://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax
|
|
*/
|
|
#define __MAX__(x,y) ((x) ^ (((x) ^ (y)) & -((x) < (y))))
|
|
#define VNCR(r) \
|
|
__before_##r, \
|
|
r = __VNCR_START__ + ((VNCR_ ## r) / 8), \
|
|
__after_##r = __MAX__(__before_##r - 1, r)
|
|
|
|
enum vcpu_sysreg {
|
|
__INVALID_SYSREG__, /* 0 is reserved as an invalid value */
|
|
MPIDR_EL1, /* MultiProcessor Affinity Register */
|
|
CLIDR_EL1, /* Cache Level ID Register */
|
|
CSSELR_EL1, /* Cache Size Selection Register */
|
|
TPIDR_EL0, /* Thread ID, User R/W */
|
|
TPIDRRO_EL0, /* Thread ID, User R/O */
|
|
TPIDR_EL1, /* Thread ID, Privileged */
|
|
CNTKCTL_EL1, /* Timer Control Register (EL1) */
|
|
PAR_EL1, /* Physical Address Register */
|
|
MDCCINT_EL1, /* Monitor Debug Comms Channel Interrupt Enable Reg */
|
|
OSLSR_EL1, /* OS Lock Status Register */
|
|
DISR_EL1, /* Deferred Interrupt Status Register */
|
|
|
|
/* Performance Monitors Registers */
|
|
PMCR_EL0, /* Control Register */
|
|
PMSELR_EL0, /* Event Counter Selection Register */
|
|
PMEVCNTR0_EL0, /* Event Counter Register (0-30) */
|
|
PMEVCNTR30_EL0 = PMEVCNTR0_EL0 + 30,
|
|
PMCCNTR_EL0, /* Cycle Counter Register */
|
|
PMEVTYPER0_EL0, /* Event Type Register (0-30) */
|
|
PMEVTYPER30_EL0 = PMEVTYPER0_EL0 + 30,
|
|
PMCCFILTR_EL0, /* Cycle Count Filter Register */
|
|
PMCNTENSET_EL0, /* Count Enable Set Register */
|
|
PMINTENSET_EL1, /* Interrupt Enable Set Register */
|
|
PMOVSSET_EL0, /* Overflow Flag Status Set Register */
|
|
PMUSERENR_EL0, /* User Enable Register */
|
|
|
|
/* Pointer Authentication Registers in a strict increasing order. */
|
|
APIAKEYLO_EL1,
|
|
APIAKEYHI_EL1,
|
|
APIBKEYLO_EL1,
|
|
APIBKEYHI_EL1,
|
|
APDAKEYLO_EL1,
|
|
APDAKEYHI_EL1,
|
|
APDBKEYLO_EL1,
|
|
APDBKEYHI_EL1,
|
|
APGAKEYLO_EL1,
|
|
APGAKEYHI_EL1,
|
|
|
|
/* Memory Tagging Extension registers */
|
|
RGSR_EL1, /* Random Allocation Tag Seed Register */
|
|
GCR_EL1, /* Tag Control Register */
|
|
TFSRE0_EL1, /* Tag Fault Status Register (EL0) */
|
|
|
|
/* 32bit specific registers. */
|
|
DACR32_EL2, /* Domain Access Control Register */
|
|
IFSR32_EL2, /* Instruction Fault Status Register */
|
|
FPEXC32_EL2, /* Floating-Point Exception Control Register */
|
|
DBGVCR32_EL2, /* Debug Vector Catch Register */
|
|
|
|
/* EL2 registers */
|
|
SCTLR_EL2, /* System Control Register (EL2) */
|
|
ACTLR_EL2, /* Auxiliary Control Register (EL2) */
|
|
MDCR_EL2, /* Monitor Debug Configuration Register (EL2) */
|
|
CPTR_EL2, /* Architectural Feature Trap Register (EL2) */
|
|
HACR_EL2, /* Hypervisor Auxiliary Control Register */
|
|
TTBR0_EL2, /* Translation Table Base Register 0 (EL2) */
|
|
TTBR1_EL2, /* Translation Table Base Register 1 (EL2) */
|
|
TCR_EL2, /* Translation Control Register (EL2) */
|
|
SPSR_EL2, /* EL2 saved program status register */
|
|
ELR_EL2, /* EL2 exception link register */
|
|
AFSR0_EL2, /* Auxiliary Fault Status Register 0 (EL2) */
|
|
AFSR1_EL2, /* Auxiliary Fault Status Register 1 (EL2) */
|
|
ESR_EL2, /* Exception Syndrome Register (EL2) */
|
|
FAR_EL2, /* Fault Address Register (EL2) */
|
|
HPFAR_EL2, /* Hypervisor IPA Fault Address Register */
|
|
MAIR_EL2, /* Memory Attribute Indirection Register (EL2) */
|
|
AMAIR_EL2, /* Auxiliary Memory Attribute Indirection Register (EL2) */
|
|
VBAR_EL2, /* Vector Base Address Register (EL2) */
|
|
RVBAR_EL2, /* Reset Vector Base Address Register */
|
|
CONTEXTIDR_EL2, /* Context ID Register (EL2) */
|
|
CNTHCTL_EL2, /* Counter-timer Hypervisor Control register */
|
|
SP_EL2, /* EL2 Stack Pointer */
|
|
CNTHP_CTL_EL2,
|
|
CNTHP_CVAL_EL2,
|
|
CNTHV_CTL_EL2,
|
|
CNTHV_CVAL_EL2,
|
|
|
|
__VNCR_START__, /* Any VNCR-capable reg goes after this point */
|
|
|
|
VNCR(SCTLR_EL1),/* System Control Register */
|
|
VNCR(ACTLR_EL1),/* Auxiliary Control Register */
|
|
VNCR(CPACR_EL1),/* Coprocessor Access Control */
|
|
VNCR(ZCR_EL1), /* SVE Control */
|
|
VNCR(TTBR0_EL1),/* Translation Table Base Register 0 */
|
|
VNCR(TTBR1_EL1),/* Translation Table Base Register 1 */
|
|
VNCR(TCR_EL1), /* Translation Control Register */
|
|
VNCR(TCR2_EL1), /* Extended Translation Control Register */
|
|
VNCR(ESR_EL1), /* Exception Syndrome Register */
|
|
VNCR(AFSR0_EL1),/* Auxiliary Fault Status Register 0 */
|
|
VNCR(AFSR1_EL1),/* Auxiliary Fault Status Register 1 */
|
|
VNCR(FAR_EL1), /* Fault Address Register */
|
|
VNCR(MAIR_EL1), /* Memory Attribute Indirection Register */
|
|
VNCR(VBAR_EL1), /* Vector Base Address Register */
|
|
VNCR(CONTEXTIDR_EL1), /* Context ID Register */
|
|
VNCR(AMAIR_EL1),/* Aux Memory Attribute Indirection Register */
|
|
VNCR(MDSCR_EL1),/* Monitor Debug System Control Register */
|
|
VNCR(ELR_EL1),
|
|
VNCR(SP_EL1),
|
|
VNCR(SPSR_EL1),
|
|
VNCR(TFSR_EL1), /* Tag Fault Status Register (EL1) */
|
|
VNCR(VPIDR_EL2),/* Virtualization Processor ID Register */
|
|
VNCR(VMPIDR_EL2),/* Virtualization Multiprocessor ID Register */
|
|
VNCR(HCR_EL2), /* Hypervisor Configuration Register */
|
|
VNCR(HSTR_EL2), /* Hypervisor System Trap Register */
|
|
VNCR(VTTBR_EL2),/* Virtualization Translation Table Base Register */
|
|
VNCR(VTCR_EL2), /* Virtualization Translation Control Register */
|
|
VNCR(TPIDR_EL2),/* EL2 Software Thread ID Register */
|
|
VNCR(HCRX_EL2), /* Extended Hypervisor Configuration Register */
|
|
|
|
/* Permission Indirection Extension registers */
|
|
VNCR(PIR_EL1), /* Permission Indirection Register 1 (EL1) */
|
|
VNCR(PIRE0_EL1), /* Permission Indirection Register 0 (EL1) */
|
|
|
|
VNCR(HFGRTR_EL2),
|
|
VNCR(HFGWTR_EL2),
|
|
VNCR(HFGITR_EL2),
|
|
VNCR(HDFGRTR_EL2),
|
|
VNCR(HDFGWTR_EL2),
|
|
VNCR(HAFGRTR_EL2),
|
|
|
|
VNCR(CNTVOFF_EL2),
|
|
VNCR(CNTV_CVAL_EL0),
|
|
VNCR(CNTV_CTL_EL0),
|
|
VNCR(CNTP_CVAL_EL0),
|
|
VNCR(CNTP_CTL_EL0),
|
|
|
|
NR_SYS_REGS /* Nothing after this line! */
|
|
};
|
|
|
|
struct kvm_sysreg_masks {
|
|
struct {
|
|
u64 res0;
|
|
u64 res1;
|
|
} mask[NR_SYS_REGS - __VNCR_START__];
|
|
};
|
|
|
|
struct kvm_cpu_context {
|
|
struct user_pt_regs regs; /* sp = sp_el0 */
|
|
|
|
u64 spsr_abt;
|
|
u64 spsr_und;
|
|
u64 spsr_irq;
|
|
u64 spsr_fiq;
|
|
|
|
struct user_fpsimd_state fp_regs;
|
|
|
|
u64 sys_regs[NR_SYS_REGS];
|
|
|
|
struct kvm_vcpu *__hyp_running_vcpu;
|
|
|
|
/* This pointer has to be 4kB aligned. */
|
|
u64 *vncr_array;
|
|
};
|
|
|
|
struct cpu_sve_state {
|
|
__u64 zcr_el1;
|
|
|
|
/*
|
|
* Ordering is important since __sve_save_state/__sve_restore_state
|
|
* relies on it.
|
|
*/
|
|
__u32 fpsr;
|
|
__u32 fpcr;
|
|
|
|
/* Must be SVE_VQ_BYTES (128 bit) aligned. */
|
|
__u8 sve_regs[];
|
|
};
|
|
|
|
/*
|
|
* This structure is instantiated on a per-CPU basis, and contains
|
|
* data that is:
|
|
*
|
|
* - tied to a single physical CPU, and
|
|
* - either have a lifetime that does not extend past vcpu_put()
|
|
* - or is an invariant for the lifetime of the system
|
|
*
|
|
* Use host_data_ptr(field) as a way to access a pointer to such a
|
|
* field.
|
|
*/
|
|
struct kvm_host_data {
|
|
struct kvm_cpu_context host_ctxt;
|
|
|
|
/*
|
|
* All pointers in this union are hyp VA.
|
|
* sve_state is only used in pKVM and if system_supports_sve().
|
|
*/
|
|
union {
|
|
struct user_fpsimd_state *fpsimd_state;
|
|
struct cpu_sve_state *sve_state;
|
|
};
|
|
|
|
/* Ownership of the FP regs */
|
|
enum {
|
|
FP_STATE_FREE,
|
|
FP_STATE_HOST_OWNED,
|
|
FP_STATE_GUEST_OWNED,
|
|
} fp_owner;
|
|
|
|
/*
|
|
* host_debug_state contains the host registers which are
|
|
* saved and restored during world switches.
|
|
*/
|
|
struct {
|
|
/* {Break,watch}point registers */
|
|
struct kvm_guest_debug_arch regs;
|
|
/* Statistical profiling extension */
|
|
u64 pmscr_el1;
|
|
/* Self-hosted trace */
|
|
u64 trfcr_el1;
|
|
/* Values of trap registers for the host before guest entry. */
|
|
u64 mdcr_el2;
|
|
} host_debug_state;
|
|
};
|
|
|
|
struct kvm_host_psci_config {
|
|
/* PSCI version used by host. */
|
|
u32 version;
|
|
u32 smccc_version;
|
|
|
|
/* Function IDs used by host if version is v0.1. */
|
|
struct psci_0_1_function_ids function_ids_0_1;
|
|
|
|
bool psci_0_1_cpu_suspend_implemented;
|
|
bool psci_0_1_cpu_on_implemented;
|
|
bool psci_0_1_cpu_off_implemented;
|
|
bool psci_0_1_migrate_implemented;
|
|
};
|
|
|
|
extern struct kvm_host_psci_config kvm_nvhe_sym(kvm_host_psci_config);
|
|
#define kvm_host_psci_config CHOOSE_NVHE_SYM(kvm_host_psci_config)
|
|
|
|
extern s64 kvm_nvhe_sym(hyp_physvirt_offset);
|
|
#define hyp_physvirt_offset CHOOSE_NVHE_SYM(hyp_physvirt_offset)
|
|
|
|
extern u64 kvm_nvhe_sym(hyp_cpu_logical_map)[NR_CPUS];
|
|
#define hyp_cpu_logical_map CHOOSE_NVHE_SYM(hyp_cpu_logical_map)
|
|
|
|
struct vcpu_reset_state {
|
|
unsigned long pc;
|
|
unsigned long r0;
|
|
bool be;
|
|
bool reset;
|
|
};
|
|
|
|
struct kvm_vcpu_arch {
|
|
struct kvm_cpu_context ctxt;
|
|
|
|
/*
|
|
* Guest floating point state
|
|
*
|
|
* The architecture has two main floating point extensions,
|
|
* the original FPSIMD and SVE. These have overlapping
|
|
* register views, with the FPSIMD V registers occupying the
|
|
* low 128 bits of the SVE Z registers. When the core
|
|
* floating point code saves the register state of a task it
|
|
* records which view it saved in fp_type.
|
|
*/
|
|
void *sve_state;
|
|
enum fp_type fp_type;
|
|
unsigned int sve_max_vl;
|
|
u64 svcr;
|
|
u64 fpmr;
|
|
|
|
/* Stage 2 paging state used by the hardware on next switch */
|
|
struct kvm_s2_mmu *hw_mmu;
|
|
|
|
/* Values of trap registers for the guest. */
|
|
u64 hcr_el2;
|
|
u64 hcrx_el2;
|
|
u64 mdcr_el2;
|
|
u64 cptr_el2;
|
|
|
|
/* Exception Information */
|
|
struct kvm_vcpu_fault_info fault;
|
|
|
|
/* Configuration flags, set once and for all before the vcpu can run */
|
|
u8 cflags;
|
|
|
|
/* Input flags to the hypervisor code, potentially cleared after use */
|
|
u8 iflags;
|
|
|
|
/* State flags for kernel bookkeeping, unused by the hypervisor code */
|
|
u8 sflags;
|
|
|
|
/*
|
|
* Don't run the guest (internal implementation need).
|
|
*
|
|
* Contrary to the flags above, this is set/cleared outside of
|
|
* a vcpu context, and thus cannot be mixed with the flags
|
|
* themselves (or the flag accesses need to be made atomic).
|
|
*/
|
|
bool pause;
|
|
|
|
/*
|
|
* We maintain more than a single set of debug registers to support
|
|
* debugging the guest from the host and to maintain separate host and
|
|
* guest state during world switches. vcpu_debug_state are the debug
|
|
* registers of the vcpu as the guest sees them.
|
|
*
|
|
* external_debug_state contains the debug values we want to debug the
|
|
* guest. This is set via the KVM_SET_GUEST_DEBUG ioctl.
|
|
*
|
|
* debug_ptr points to the set of debug registers that should be loaded
|
|
* onto the hardware when running the guest.
|
|
*/
|
|
struct kvm_guest_debug_arch *debug_ptr;
|
|
struct kvm_guest_debug_arch vcpu_debug_state;
|
|
struct kvm_guest_debug_arch external_debug_state;
|
|
|
|
/* VGIC state */
|
|
struct vgic_cpu vgic_cpu;
|
|
struct arch_timer_cpu timer_cpu;
|
|
struct kvm_pmu pmu;
|
|
|
|
/*
|
|
* Guest registers we preserve during guest debugging.
|
|
*
|
|
* These shadow registers are updated by the kvm_handle_sys_reg
|
|
* trap handler if the guest accesses or updates them while we
|
|
* are using guest debug.
|
|
*/
|
|
struct {
|
|
u32 mdscr_el1;
|
|
bool pstate_ss;
|
|
} guest_debug_preserved;
|
|
|
|
/* vcpu power state */
|
|
struct kvm_mp_state mp_state;
|
|
spinlock_t mp_state_lock;
|
|
|
|
/* Cache some mmu pages needed inside spinlock regions */
|
|
struct kvm_mmu_memory_cache mmu_page_cache;
|
|
|
|
/* Virtual SError ESR to restore when HCR_EL2.VSE is set */
|
|
u64 vsesr_el2;
|
|
|
|
/* Additional reset state */
|
|
struct vcpu_reset_state reset_state;
|
|
|
|
/* Guest PV state */
|
|
struct {
|
|
u64 last_steal;
|
|
gpa_t base;
|
|
} steal;
|
|
|
|
/* Per-vcpu CCSIDR override or NULL */
|
|
u32 *ccsidr;
|
|
};
|
|
|
|
/*
|
|
* Each 'flag' is composed of a comma-separated triplet:
|
|
*
|
|
* - the flag-set it belongs to in the vcpu->arch structure
|
|
* - the value for that flag
|
|
* - the mask for that flag
|
|
*
|
|
* __vcpu_single_flag() builds such a triplet for a single-bit flag.
|
|
* unpack_vcpu_flag() extract the flag value from the triplet for
|
|
* direct use outside of the flag accessors.
|
|
*/
|
|
#define __vcpu_single_flag(_set, _f) _set, (_f), (_f)
|
|
|
|
#define __unpack_flag(_set, _f, _m) _f
|
|
#define unpack_vcpu_flag(...) __unpack_flag(__VA_ARGS__)
|
|
|
|
#define __build_check_flag(v, flagset, f, m) \
|
|
do { \
|
|
typeof(v->arch.flagset) *_fset; \
|
|
\
|
|
/* Check that the flags fit in the mask */ \
|
|
BUILD_BUG_ON(HWEIGHT(m) != HWEIGHT((f) | (m))); \
|
|
/* Check that the flags fit in the type */ \
|
|
BUILD_BUG_ON((sizeof(*_fset) * 8) <= __fls(m)); \
|
|
} while (0)
|
|
|
|
#define __vcpu_get_flag(v, flagset, f, m) \
|
|
({ \
|
|
__build_check_flag(v, flagset, f, m); \
|
|
\
|
|
READ_ONCE(v->arch.flagset) & (m); \
|
|
})
|
|
|
|
/*
|
|
* Note that the set/clear accessors must be preempt-safe in order to
|
|
* avoid nesting them with load/put which also manipulate flags...
|
|
*/
|
|
#ifdef __KVM_NVHE_HYPERVISOR__
|
|
/* the nVHE hypervisor is always non-preemptible */
|
|
#define __vcpu_flags_preempt_disable()
|
|
#define __vcpu_flags_preempt_enable()
|
|
#else
|
|
#define __vcpu_flags_preempt_disable() preempt_disable()
|
|
#define __vcpu_flags_preempt_enable() preempt_enable()
|
|
#endif
|
|
|
|
#define __vcpu_set_flag(v, flagset, f, m) \
|
|
do { \
|
|
typeof(v->arch.flagset) *fset; \
|
|
\
|
|
__build_check_flag(v, flagset, f, m); \
|
|
\
|
|
fset = &v->arch.flagset; \
|
|
__vcpu_flags_preempt_disable(); \
|
|
if (HWEIGHT(m) > 1) \
|
|
*fset &= ~(m); \
|
|
*fset |= (f); \
|
|
__vcpu_flags_preempt_enable(); \
|
|
} while (0)
|
|
|
|
#define __vcpu_clear_flag(v, flagset, f, m) \
|
|
do { \
|
|
typeof(v->arch.flagset) *fset; \
|
|
\
|
|
__build_check_flag(v, flagset, f, m); \
|
|
\
|
|
fset = &v->arch.flagset; \
|
|
__vcpu_flags_preempt_disable(); \
|
|
*fset &= ~(m); \
|
|
__vcpu_flags_preempt_enable(); \
|
|
} while (0)
|
|
|
|
#define vcpu_get_flag(v, ...) __vcpu_get_flag((v), __VA_ARGS__)
|
|
#define vcpu_set_flag(v, ...) __vcpu_set_flag((v), __VA_ARGS__)
|
|
#define vcpu_clear_flag(v, ...) __vcpu_clear_flag((v), __VA_ARGS__)
|
|
|
|
/* SVE exposed to guest */
|
|
#define GUEST_HAS_SVE __vcpu_single_flag(cflags, BIT(0))
|
|
/* SVE config completed */
|
|
#define VCPU_SVE_FINALIZED __vcpu_single_flag(cflags, BIT(1))
|
|
/* PTRAUTH exposed to guest */
|
|
#define GUEST_HAS_PTRAUTH __vcpu_single_flag(cflags, BIT(2))
|
|
/* KVM_ARM_VCPU_INIT completed */
|
|
#define VCPU_INITIALIZED __vcpu_single_flag(cflags, BIT(3))
|
|
|
|
/* Exception pending */
|
|
#define PENDING_EXCEPTION __vcpu_single_flag(iflags, BIT(0))
|
|
/*
|
|
* PC increment. Overlaps with EXCEPT_MASK on purpose so that it can't
|
|
* be set together with an exception...
|
|
*/
|
|
#define INCREMENT_PC __vcpu_single_flag(iflags, BIT(1))
|
|
/* Target EL/MODE (not a single flag, but let's abuse the macro) */
|
|
#define EXCEPT_MASK __vcpu_single_flag(iflags, GENMASK(3, 1))
|
|
|
|
/* Helpers to encode exceptions with minimum fuss */
|
|
#define __EXCEPT_MASK_VAL unpack_vcpu_flag(EXCEPT_MASK)
|
|
#define __EXCEPT_SHIFT __builtin_ctzl(__EXCEPT_MASK_VAL)
|
|
#define __vcpu_except_flags(_f) iflags, (_f << __EXCEPT_SHIFT), __EXCEPT_MASK_VAL
|
|
|
|
/*
|
|
* When PENDING_EXCEPTION is set, EXCEPT_MASK can take the following
|
|
* values:
|
|
*
|
|
* For AArch32 EL1:
|
|
*/
|
|
#define EXCEPT_AA32_UND __vcpu_except_flags(0)
|
|
#define EXCEPT_AA32_IABT __vcpu_except_flags(1)
|
|
#define EXCEPT_AA32_DABT __vcpu_except_flags(2)
|
|
/* For AArch64: */
|
|
#define EXCEPT_AA64_EL1_SYNC __vcpu_except_flags(0)
|
|
#define EXCEPT_AA64_EL1_IRQ __vcpu_except_flags(1)
|
|
#define EXCEPT_AA64_EL1_FIQ __vcpu_except_flags(2)
|
|
#define EXCEPT_AA64_EL1_SERR __vcpu_except_flags(3)
|
|
/* For AArch64 with NV: */
|
|
#define EXCEPT_AA64_EL2_SYNC __vcpu_except_flags(4)
|
|
#define EXCEPT_AA64_EL2_IRQ __vcpu_except_flags(5)
|
|
#define EXCEPT_AA64_EL2_FIQ __vcpu_except_flags(6)
|
|
#define EXCEPT_AA64_EL2_SERR __vcpu_except_flags(7)
|
|
/* Guest debug is live */
|
|
#define DEBUG_DIRTY __vcpu_single_flag(iflags, BIT(4))
|
|
/* Save SPE context if active */
|
|
#define DEBUG_STATE_SAVE_SPE __vcpu_single_flag(iflags, BIT(5))
|
|
/* Save TRBE context if active */
|
|
#define DEBUG_STATE_SAVE_TRBE __vcpu_single_flag(iflags, BIT(6))
|
|
|
|
/* SVE enabled for host EL0 */
|
|
#define HOST_SVE_ENABLED __vcpu_single_flag(sflags, BIT(0))
|
|
/* SME enabled for EL0 */
|
|
#define HOST_SME_ENABLED __vcpu_single_flag(sflags, BIT(1))
|
|
/* Physical CPU not in supported_cpus */
|
|
#define ON_UNSUPPORTED_CPU __vcpu_single_flag(sflags, BIT(2))
|
|
/* WFIT instruction trapped */
|
|
#define IN_WFIT __vcpu_single_flag(sflags, BIT(3))
|
|
/* vcpu system registers loaded on physical CPU */
|
|
#define SYSREGS_ON_CPU __vcpu_single_flag(sflags, BIT(4))
|
|
/* Software step state is Active-pending */
|
|
#define DBG_SS_ACTIVE_PENDING __vcpu_single_flag(sflags, BIT(5))
|
|
/* PMUSERENR for the guest EL0 is on physical CPU */
|
|
#define PMUSERENR_ON_CPU __vcpu_single_flag(sflags, BIT(6))
|
|
/* WFI instruction trapped */
|
|
#define IN_WFI __vcpu_single_flag(sflags, BIT(7))
|
|
|
|
|
|
/* Pointer to the vcpu's SVE FFR for sve_{save,load}_state() */
|
|
#define vcpu_sve_pffr(vcpu) (kern_hyp_va((vcpu)->arch.sve_state) + \
|
|
sve_ffr_offset((vcpu)->arch.sve_max_vl))
|
|
|
|
#define vcpu_sve_max_vq(vcpu) sve_vq_from_vl((vcpu)->arch.sve_max_vl)
|
|
|
|
#define vcpu_sve_state_size(vcpu) ({ \
|
|
size_t __size_ret; \
|
|
unsigned int __vcpu_vq; \
|
|
\
|
|
if (WARN_ON(!sve_vl_valid((vcpu)->arch.sve_max_vl))) { \
|
|
__size_ret = 0; \
|
|
} else { \
|
|
__vcpu_vq = vcpu_sve_max_vq(vcpu); \
|
|
__size_ret = SVE_SIG_REGS_SIZE(__vcpu_vq); \
|
|
} \
|
|
\
|
|
__size_ret; \
|
|
})
|
|
|
|
#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE | \
|
|
KVM_GUESTDBG_USE_SW_BP | \
|
|
KVM_GUESTDBG_USE_HW | \
|
|
KVM_GUESTDBG_SINGLESTEP)
|
|
|
|
#define vcpu_has_sve(vcpu) (system_supports_sve() && \
|
|
vcpu_get_flag(vcpu, GUEST_HAS_SVE))
|
|
|
|
#ifdef CONFIG_ARM64_PTR_AUTH
|
|
#define vcpu_has_ptrauth(vcpu) \
|
|
((cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH) || \
|
|
cpus_have_final_cap(ARM64_HAS_GENERIC_AUTH)) && \
|
|
vcpu_get_flag(vcpu, GUEST_HAS_PTRAUTH))
|
|
#else
|
|
#define vcpu_has_ptrauth(vcpu) false
|
|
#endif
|
|
|
|
#define vcpu_on_unsupported_cpu(vcpu) \
|
|
vcpu_get_flag(vcpu, ON_UNSUPPORTED_CPU)
|
|
|
|
#define vcpu_set_on_unsupported_cpu(vcpu) \
|
|
vcpu_set_flag(vcpu, ON_UNSUPPORTED_CPU)
|
|
|
|
#define vcpu_clear_on_unsupported_cpu(vcpu) \
|
|
vcpu_clear_flag(vcpu, ON_UNSUPPORTED_CPU)
|
|
|
|
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
|
|
|
|
/*
|
|
* Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
|
|
* memory backed version of a register, and not the one most recently
|
|
* accessed by a running VCPU. For example, for userspace access or
|
|
* for system registers that are never context switched, but only
|
|
* emulated.
|
|
*
|
|
* Don't bother with VNCR-based accesses in the nVHE code, it has no
|
|
* business dealing with NV.
|
|
*/
|
|
static inline u64 *___ctxt_sys_reg(const struct kvm_cpu_context *ctxt, int r)
|
|
{
|
|
#if !defined (__KVM_NVHE_HYPERVISOR__)
|
|
if (unlikely(cpus_have_final_cap(ARM64_HAS_NESTED_VIRT) &&
|
|
r >= __VNCR_START__ && ctxt->vncr_array))
|
|
return &ctxt->vncr_array[r - __VNCR_START__];
|
|
#endif
|
|
return (u64 *)&ctxt->sys_regs[r];
|
|
}
|
|
|
|
#define __ctxt_sys_reg(c,r) \
|
|
({ \
|
|
BUILD_BUG_ON(__builtin_constant_p(r) && \
|
|
(r) >= NR_SYS_REGS); \
|
|
___ctxt_sys_reg(c, r); \
|
|
})
|
|
|
|
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
|
|
|
|
u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *, enum vcpu_sysreg);
|
|
#define __vcpu_sys_reg(v,r) \
|
|
(*({ \
|
|
const struct kvm_cpu_context *ctxt = &(v)->arch.ctxt; \
|
|
u64 *__r = __ctxt_sys_reg(ctxt, (r)); \
|
|
if (vcpu_has_nv((v)) && (r) >= __VNCR_START__) \
|
|
*__r = kvm_vcpu_sanitise_vncr_reg((v), (r)); \
|
|
__r; \
|
|
}))
|
|
|
|
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
|
|
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
|
|
|
|
static inline bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
|
|
{
|
|
/*
|
|
* *** VHE ONLY ***
|
|
*
|
|
* System registers listed in the switch are not saved on every
|
|
* exit from the guest but are only saved on vcpu_put.
|
|
*
|
|
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
|
|
* should never be listed below, because the guest cannot modify its
|
|
* own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
|
|
* thread when emulating cross-VCPU communication.
|
|
*/
|
|
if (!has_vhe())
|
|
return false;
|
|
|
|
switch (reg) {
|
|
case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
|
|
case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
|
|
case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
|
|
case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
|
|
case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
|
|
case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
|
|
case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
|
|
case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
|
|
case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
|
|
case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
|
|
case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
|
|
case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
|
|
case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
|
|
case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
|
|
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
|
|
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
|
|
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
|
|
case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
|
|
case SPSR_EL1: *val = read_sysreg_s(SYS_SPSR_EL12); break;
|
|
case PAR_EL1: *val = read_sysreg_par(); break;
|
|
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
|
|
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
|
|
case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
|
|
default: return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
|
|
{
|
|
/*
|
|
* *** VHE ONLY ***
|
|
*
|
|
* System registers listed in the switch are not restored on every
|
|
* entry to the guest but are only restored on vcpu_load.
|
|
*
|
|
* Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
|
|
* should never be listed below, because the MPIDR should only be set
|
|
* once, before running the VCPU, and never changed later.
|
|
*/
|
|
if (!has_vhe())
|
|
return false;
|
|
|
|
switch (reg) {
|
|
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
|
|
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
|
|
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
|
|
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
|
|
case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
|
|
case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
|
|
case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
|
|
case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
|
|
case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
|
|
case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
|
|
case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
|
|
case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
|
|
case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
|
|
case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
|
|
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
|
|
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
|
|
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
|
|
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
|
|
case SPSR_EL1: write_sysreg_s(val, SYS_SPSR_EL12); break;
|
|
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
|
|
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
|
|
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
|
|
case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
|
|
default: return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct kvm_vm_stat {
|
|
struct kvm_vm_stat_generic generic;
|
|
};
|
|
|
|
struct kvm_vcpu_stat {
|
|
struct kvm_vcpu_stat_generic generic;
|
|
u64 hvc_exit_stat;
|
|
u64 wfe_exit_stat;
|
|
u64 wfi_exit_stat;
|
|
u64 mmio_exit_user;
|
|
u64 mmio_exit_kernel;
|
|
u64 signal_exits;
|
|
u64 exits;
|
|
};
|
|
|
|
unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu);
|
|
int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices);
|
|
int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
|
|
int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg);
|
|
|
|
unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu);
|
|
int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices);
|
|
|
|
int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events);
|
|
|
|
int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_events *events);
|
|
|
|
void kvm_arm_halt_guest(struct kvm *kvm);
|
|
void kvm_arm_resume_guest(struct kvm *kvm);
|
|
|
|
#define vcpu_has_run_once(vcpu) !!rcu_access_pointer((vcpu)->pid)
|
|
|
|
#ifndef __KVM_NVHE_HYPERVISOR__
|
|
#define kvm_call_hyp_nvhe(f, ...) \
|
|
({ \
|
|
struct arm_smccc_res res; \
|
|
\
|
|
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(f), \
|
|
##__VA_ARGS__, &res); \
|
|
WARN_ON(res.a0 != SMCCC_RET_SUCCESS); \
|
|
\
|
|
res.a1; \
|
|
})
|
|
|
|
/*
|
|
* The couple of isb() below are there to guarantee the same behaviour
|
|
* on VHE as on !VHE, where the eret to EL1 acts as a context
|
|
* synchronization event.
|
|
*/
|
|
#define kvm_call_hyp(f, ...) \
|
|
do { \
|
|
if (has_vhe()) { \
|
|
f(__VA_ARGS__); \
|
|
isb(); \
|
|
} else { \
|
|
kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
|
|
} \
|
|
} while(0)
|
|
|
|
#define kvm_call_hyp_ret(f, ...) \
|
|
({ \
|
|
typeof(f(__VA_ARGS__)) ret; \
|
|
\
|
|
if (has_vhe()) { \
|
|
ret = f(__VA_ARGS__); \
|
|
isb(); \
|
|
} else { \
|
|
ret = kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
|
|
} \
|
|
\
|
|
ret; \
|
|
})
|
|
#else /* __KVM_NVHE_HYPERVISOR__ */
|
|
#define kvm_call_hyp(f, ...) f(__VA_ARGS__)
|
|
#define kvm_call_hyp_ret(f, ...) f(__VA_ARGS__)
|
|
#define kvm_call_hyp_nvhe(f, ...) f(__VA_ARGS__)
|
|
#endif /* __KVM_NVHE_HYPERVISOR__ */
|
|
|
|
int handle_exit(struct kvm_vcpu *vcpu, int exception_index);
|
|
void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index);
|
|
|
|
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu);
|
|
int kvm_handle_cp10_id(struct kvm_vcpu *vcpu);
|
|
|
|
void kvm_sys_regs_create_debugfs(struct kvm *kvm);
|
|
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu);
|
|
|
|
int __init kvm_sys_reg_table_init(void);
|
|
struct sys_reg_desc;
|
|
int __init populate_sysreg_config(const struct sys_reg_desc *sr,
|
|
unsigned int idx);
|
|
int __init populate_nv_trap_config(void);
|
|
|
|
bool lock_all_vcpus(struct kvm *kvm);
|
|
void unlock_all_vcpus(struct kvm *kvm);
|
|
|
|
void kvm_init_sysreg(struct kvm_vcpu *);
|
|
|
|
/* MMIO helpers */
|
|
void kvm_mmio_write_buf(void *buf, unsigned int len, unsigned long data);
|
|
unsigned long kvm_mmio_read_buf(const void *buf, unsigned int len);
|
|
|
|
int kvm_handle_mmio_return(struct kvm_vcpu *vcpu);
|
|
int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa);
|
|
|
|
/*
|
|
* Returns true if a Performance Monitoring Interrupt (PMI), a.k.a. perf event,
|
|
* arrived in guest context. For arm64, any event that arrives while a vCPU is
|
|
* loaded is considered to be "in guest".
|
|
*/
|
|
static inline bool kvm_arch_pmi_in_guest(struct kvm_vcpu *vcpu)
|
|
{
|
|
return IS_ENABLED(CONFIG_GUEST_PERF_EVENTS) && !!vcpu;
|
|
}
|
|
|
|
long kvm_hypercall_pv_features(struct kvm_vcpu *vcpu);
|
|
gpa_t kvm_init_stolen_time(struct kvm_vcpu *vcpu);
|
|
void kvm_update_stolen_time(struct kvm_vcpu *vcpu);
|
|
|
|
bool kvm_arm_pvtime_supported(void);
|
|
int kvm_arm_pvtime_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_pvtime_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_pvtime_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
|
|
extern unsigned int __ro_after_init kvm_arm_vmid_bits;
|
|
int __init kvm_arm_vmid_alloc_init(void);
|
|
void __init kvm_arm_vmid_alloc_free(void);
|
|
bool kvm_arm_vmid_update(struct kvm_vmid *kvm_vmid);
|
|
void kvm_arm_vmid_clear_active(void);
|
|
|
|
static inline void kvm_arm_pvtime_vcpu_init(struct kvm_vcpu_arch *vcpu_arch)
|
|
{
|
|
vcpu_arch->steal.base = INVALID_GPA;
|
|
}
|
|
|
|
static inline bool kvm_arm_is_pvtime_enabled(struct kvm_vcpu_arch *vcpu_arch)
|
|
{
|
|
return (vcpu_arch->steal.base != INVALID_GPA);
|
|
}
|
|
|
|
void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 syndrome);
|
|
|
|
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr);
|
|
|
|
DECLARE_KVM_HYP_PER_CPU(struct kvm_host_data, kvm_host_data);
|
|
|
|
/*
|
|
* How we access per-CPU host data depends on the where we access it from,
|
|
* and the mode we're in:
|
|
*
|
|
* - VHE and nVHE hypervisor bits use their locally defined instance
|
|
*
|
|
* - the rest of the kernel use either the VHE or nVHE one, depending on
|
|
* the mode we're running in.
|
|
*
|
|
* Unless we're in protected mode, fully deprivileged, and the nVHE
|
|
* per-CPU stuff is exclusively accessible to the protected EL2 code.
|
|
* In this case, the EL1 code uses the *VHE* data as its private state
|
|
* (which makes sense in a way as there shouldn't be any shared state
|
|
* between the host and the hypervisor).
|
|
*
|
|
* Yes, this is all totally trivial. Shoot me now.
|
|
*/
|
|
#if defined(__KVM_NVHE_HYPERVISOR__) || defined(__KVM_VHE_HYPERVISOR__)
|
|
#define host_data_ptr(f) (&this_cpu_ptr(&kvm_host_data)->f)
|
|
#else
|
|
#define host_data_ptr(f) \
|
|
(static_branch_unlikely(&kvm_protected_mode_initialized) ? \
|
|
&this_cpu_ptr(&kvm_host_data)->f : \
|
|
&this_cpu_ptr_hyp_sym(kvm_host_data)->f)
|
|
#endif
|
|
|
|
/* Check whether the FP regs are owned by the guest */
|
|
static inline bool guest_owns_fp_regs(void)
|
|
{
|
|
return *host_data_ptr(fp_owner) == FP_STATE_GUEST_OWNED;
|
|
}
|
|
|
|
/* Check whether the FP regs are owned by the host */
|
|
static inline bool host_owns_fp_regs(void)
|
|
{
|
|
return *host_data_ptr(fp_owner) == FP_STATE_HOST_OWNED;
|
|
}
|
|
|
|
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
|
|
{
|
|
/* The host's MPIDR is immutable, so let's set it up at boot time */
|
|
ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
|
|
}
|
|
|
|
static inline bool kvm_system_needs_idmapped_vectors(void)
|
|
{
|
|
return cpus_have_final_cap(ARM64_SPECTRE_V3A);
|
|
}
|
|
|
|
static inline void kvm_arch_sync_events(struct kvm *kvm) {}
|
|
static inline void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) {}
|
|
|
|
void kvm_arm_init_debug(void);
|
|
void kvm_arm_vcpu_init_debug(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_setup_debug(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_clear_debug(struct kvm_vcpu *vcpu);
|
|
void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu);
|
|
|
|
#define kvm_vcpu_os_lock_enabled(vcpu) \
|
|
(!!(__vcpu_sys_reg(vcpu, OSLSR_EL1) & OSLSR_EL1_OSLK))
|
|
|
|
int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr);
|
|
|
|
int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
|
|
struct kvm_arm_copy_mte_tags *copy_tags);
|
|
int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm,
|
|
struct kvm_arm_counter_offset *offset);
|
|
int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm,
|
|
struct reg_mask_range *range);
|
|
|
|
/* Guest/host FPSIMD coordination helpers */
|
|
int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu);
|
|
|
|
static inline bool kvm_pmu_counter_deferred(struct perf_event_attr *attr)
|
|
{
|
|
return (!has_vhe() && attr->exclude_host);
|
|
}
|
|
|
|
/* Flags for host debug state */
|
|
void kvm_arch_vcpu_load_debug_state_flags(struct kvm_vcpu *vcpu);
|
|
void kvm_arch_vcpu_put_debug_state_flags(struct kvm_vcpu *vcpu);
|
|
|
|
#ifdef CONFIG_KVM
|
|
void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr);
|
|
void kvm_clr_pmu_events(u32 clr);
|
|
bool kvm_set_pmuserenr(u64 val);
|
|
#else
|
|
static inline void kvm_set_pmu_events(u32 set, struct perf_event_attr *attr) {}
|
|
static inline void kvm_clr_pmu_events(u32 clr) {}
|
|
static inline bool kvm_set_pmuserenr(u64 val)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
void kvm_vcpu_load_vhe(struct kvm_vcpu *vcpu);
|
|
void kvm_vcpu_put_vhe(struct kvm_vcpu *vcpu);
|
|
|
|
int __init kvm_set_ipa_limit(void);
|
|
u32 kvm_get_pa_bits(struct kvm *kvm);
|
|
|
|
#define __KVM_HAVE_ARCH_VM_ALLOC
|
|
struct kvm *kvm_arch_alloc_vm(void);
|
|
|
|
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
|
|
|
|
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
|
|
|
|
#define kvm_vm_is_protected(kvm) (is_protected_kvm_enabled() && (kvm)->arch.pkvm.enabled)
|
|
|
|
#define vcpu_is_protected(vcpu) kvm_vm_is_protected((vcpu)->kvm)
|
|
|
|
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature);
|
|
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu);
|
|
|
|
#define kvm_arm_vcpu_sve_finalized(vcpu) vcpu_get_flag(vcpu, VCPU_SVE_FINALIZED)
|
|
|
|
#define kvm_has_mte(kvm) \
|
|
(system_supports_mte() && \
|
|
test_bit(KVM_ARCH_FLAG_MTE_ENABLED, &(kvm)->arch.flags))
|
|
|
|
#define kvm_supports_32bit_el0() \
|
|
(system_supports_32bit_el0() && \
|
|
!static_branch_unlikely(&arm64_mismatched_32bit_el0))
|
|
|
|
#define kvm_vm_has_ran_once(kvm) \
|
|
(test_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &(kvm)->arch.flags))
|
|
|
|
static inline bool __vcpu_has_feature(const struct kvm_arch *ka, int feature)
|
|
{
|
|
return test_bit(feature, ka->vcpu_features);
|
|
}
|
|
|
|
#define vcpu_has_feature(v, f) __vcpu_has_feature(&(v)->kvm->arch, (f))
|
|
|
|
#define kvm_vcpu_initialized(v) vcpu_get_flag(vcpu, VCPU_INITIALIZED)
|
|
|
|
int kvm_trng_call(struct kvm_vcpu *vcpu);
|
|
#ifdef CONFIG_KVM
|
|
extern phys_addr_t hyp_mem_base;
|
|
extern phys_addr_t hyp_mem_size;
|
|
void __init kvm_hyp_reserve(void);
|
|
#else
|
|
static inline void kvm_hyp_reserve(void) { }
|
|
#endif
|
|
|
|
void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu);
|
|
bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu);
|
|
|
|
#define __expand_field_sign_unsigned(id, fld, val) \
|
|
((u64)SYS_FIELD_VALUE(id, fld, val))
|
|
|
|
#define __expand_field_sign_signed(id, fld, val) \
|
|
({ \
|
|
u64 __val = SYS_FIELD_VALUE(id, fld, val); \
|
|
sign_extend64(__val, id##_##fld##_WIDTH - 1); \
|
|
})
|
|
|
|
#define expand_field_sign(id, fld, val) \
|
|
(id##_##fld##_SIGNED ? \
|
|
__expand_field_sign_signed(id, fld, val) : \
|
|
__expand_field_sign_unsigned(id, fld, val))
|
|
|
|
#define get_idreg_field_unsigned(kvm, id, fld) \
|
|
({ \
|
|
u64 __val = IDREG((kvm), SYS_##id); \
|
|
FIELD_GET(id##_##fld##_MASK, __val); \
|
|
})
|
|
|
|
#define get_idreg_field_signed(kvm, id, fld) \
|
|
({ \
|
|
u64 __val = get_idreg_field_unsigned(kvm, id, fld); \
|
|
sign_extend64(__val, id##_##fld##_WIDTH - 1); \
|
|
})
|
|
|
|
#define get_idreg_field_enum(kvm, id, fld) \
|
|
get_idreg_field_unsigned(kvm, id, fld)
|
|
|
|
#define get_idreg_field(kvm, id, fld) \
|
|
(id##_##fld##_SIGNED ? \
|
|
get_idreg_field_signed(kvm, id, fld) : \
|
|
get_idreg_field_unsigned(kvm, id, fld))
|
|
|
|
#define kvm_has_feat(kvm, id, fld, limit) \
|
|
(get_idreg_field((kvm), id, fld) >= expand_field_sign(id, fld, limit))
|
|
|
|
#define kvm_has_feat_enum(kvm, id, fld, val) \
|
|
(get_idreg_field_unsigned((kvm), id, fld) == __expand_field_sign_unsigned(id, fld, val))
|
|
|
|
#define kvm_has_feat_range(kvm, id, fld, min, max) \
|
|
(get_idreg_field((kvm), id, fld) >= expand_field_sign(id, fld, min) && \
|
|
get_idreg_field((kvm), id, fld) <= expand_field_sign(id, fld, max))
|
|
|
|
/* Check for a given level of PAuth support */
|
|
#define kvm_has_pauth(k, l) \
|
|
({ \
|
|
bool pa, pi, pa3; \
|
|
\
|
|
pa = kvm_has_feat((k), ID_AA64ISAR1_EL1, APA, l); \
|
|
pa &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPA, IMP); \
|
|
pi = kvm_has_feat((k), ID_AA64ISAR1_EL1, API, l); \
|
|
pi &= kvm_has_feat((k), ID_AA64ISAR1_EL1, GPI, IMP); \
|
|
pa3 = kvm_has_feat((k), ID_AA64ISAR2_EL1, APA3, l); \
|
|
pa3 &= kvm_has_feat((k), ID_AA64ISAR2_EL1, GPA3, IMP); \
|
|
\
|
|
(pa + pi + pa3) == 1; \
|
|
})
|
|
|
|
#endif /* __ARM64_KVM_HOST_H__ */
|