1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/amd/display/dc/basics/fixpt31_32.c
Samson Tam f822007034 drm/amd/display: remove dc dependencies from SPL library
[Why]
Make SPL library dc-independent so it can be reused by other
 components

[How]
Create separate set of fixed31_32 calls in SPL
Make all inputs and outputs to SPL use primitive types
For ratios and inits, return as uint32 from SPL.  So
 add conversion from uint32 back to fixed point in
 SPL-to-dc translate function

Reviewed-by: Relja Vojvodic <relja.vojvodic@amd.com>
Signed-off-by: Jerry Zuo <jerry.zuo@amd.com>
Signed-off-by: Samson Tam <samson.tam@amd.com>
Tested-by: Daniel Wheeler <daniel.wheeler@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2024-07-23 17:07:12 -04:00

515 lines
12 KiB
C

/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "include/fixed31_32.h"
static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL };
static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL };
static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL };
static inline unsigned long long abs_i64(
long long arg)
{
if (arg > 0)
return (unsigned long long)arg;
else
return (unsigned long long)(-arg);
}
/*
* @brief
* result = dividend / divisor
* *remainder = dividend % divisor
*/
static inline unsigned long long complete_integer_division_u64(
unsigned long long dividend,
unsigned long long divisor,
unsigned long long *remainder)
{
unsigned long long result;
ASSERT(divisor);
result = div64_u64_rem(dividend, divisor, remainder);
return result;
}
#define FRACTIONAL_PART_MASK \
((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
#define GET_INTEGER_PART(x) \
((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
#define GET_FRACTIONAL_PART(x) \
(FRACTIONAL_PART_MASK & (x))
struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
{
struct fixed31_32 res;
bool arg1_negative = numerator < 0;
bool arg2_negative = denominator < 0;
unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
unsigned long long remainder;
/* determine integer part */
unsigned long long res_value = complete_integer_division_u64(
arg1_value, arg2_value, &remainder);
ASSERT(res_value <= LONG_MAX);
/* determine fractional part */
{
unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
do {
remainder <<= 1;
res_value <<= 1;
if (remainder >= arg2_value) {
res_value |= 1;
remainder -= arg2_value;
}
} while (--i != 0);
}
/* round up LSB */
{
unsigned long long summand = (remainder << 1) >= arg2_value;
ASSERT(res_value <= LLONG_MAX - summand);
res_value += summand;
}
res.value = (long long)res_value;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
struct fixed31_32 res;
bool arg1_negative = arg1.value < 0;
bool arg2_negative = arg2.value < 0;
unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
unsigned long long tmp;
res.value = arg1_int * arg2_int;
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg1_int * arg2_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg2_int * arg1_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg1_fra * arg2_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (unsigned long long)dc_fixpt_half.value);
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
if (arg1_negative ^ arg2_negative)
res.value = -res.value;
return res;
}
struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
{
struct fixed31_32 res;
unsigned long long arg_value = abs_i64(arg.value);
unsigned long long arg_int = GET_INTEGER_PART(arg_value);
unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
unsigned long long tmp;
res.value = arg_int * arg_int;
res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
tmp = arg_int * arg_fra;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
tmp = arg_fra * arg_fra;
tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
(tmp >= (unsigned long long)dc_fixpt_half.value);
ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
res.value += tmp;
return res;
}
struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
{
/*
* @note
* Good idea to use Newton's method
*/
ASSERT(arg.value);
return dc_fixpt_from_fraction(
dc_fixpt_one.value,
arg.value);
}
struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
{
struct fixed31_32 square;
struct fixed31_32 res = dc_fixpt_one;
int n = 27;
struct fixed31_32 arg_norm = arg;
if (dc_fixpt_le(
dc_fixpt_two_pi,
dc_fixpt_abs(arg))) {
arg_norm = dc_fixpt_sub(
arg_norm,
dc_fixpt_mul_int(
dc_fixpt_two_pi,
(int)div64_s64(
arg_norm.value,
dc_fixpt_two_pi.value)));
}
square = dc_fixpt_sqr(arg_norm);
do {
res = dc_fixpt_sub(
dc_fixpt_one,
dc_fixpt_div_int(
dc_fixpt_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n > 2);
if (arg.value != arg_norm.value)
res = dc_fixpt_div(
dc_fixpt_mul(res, arg_norm),
arg);
return res;
}
struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
{
return dc_fixpt_mul(
arg,
dc_fixpt_sinc(arg));
}
struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
{
/* TODO implement argument normalization */
const struct fixed31_32 square = dc_fixpt_sqr(arg);
struct fixed31_32 res = dc_fixpt_one;
int n = 26;
do {
res = dc_fixpt_sub(
dc_fixpt_one,
dc_fixpt_div_int(
dc_fixpt_mul(
square,
res),
n * (n - 1)));
n -= 2;
} while (n != 0);
return res;
}
/*
* @brief
* result = exp(arg),
* where abs(arg) < 1
*
* Calculated as Taylor series.
*/
static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
{
unsigned int n = 9;
struct fixed31_32 res = dc_fixpt_from_fraction(
n + 2,
n + 1);
/* TODO find correct res */
ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
do
res = dc_fixpt_add(
dc_fixpt_one,
dc_fixpt_div_int(
dc_fixpt_mul(
arg,
res),
n));
while (--n != 1);
return dc_fixpt_add(
dc_fixpt_one,
dc_fixpt_mul(
arg,
res));
}
struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
{
/*
* @brief
* Main equation is:
* exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
* where m = round(x / ln(2)), r = x - m * ln(2)
*/
if (dc_fixpt_le(
dc_fixpt_ln2_div_2,
dc_fixpt_abs(arg))) {
int m = dc_fixpt_round(
dc_fixpt_div(
arg,
dc_fixpt_ln2));
struct fixed31_32 r = dc_fixpt_sub(
arg,
dc_fixpt_mul_int(
dc_fixpt_ln2,
m));
ASSERT(m != 0);
ASSERT(dc_fixpt_lt(
dc_fixpt_abs(r),
dc_fixpt_one));
if (m > 0)
return dc_fixpt_shl(
fixed31_32_exp_from_taylor_series(r),
(unsigned char)m);
else
return dc_fixpt_div_int(
fixed31_32_exp_from_taylor_series(r),
1LL << -m);
} else if (arg.value != 0)
return fixed31_32_exp_from_taylor_series(arg);
else
return dc_fixpt_one;
}
struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
{
struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
/* TODO improve 1st estimation */
struct fixed31_32 error;
ASSERT(arg.value > 0);
/* TODO if arg is negative, return NaN */
/* TODO if arg is zero, return -INF */
do {
struct fixed31_32 res1 = dc_fixpt_add(
dc_fixpt_sub(
res,
dc_fixpt_one),
dc_fixpt_div(
arg,
dc_fixpt_exp(res)));
error = dc_fixpt_sub(
res,
res1);
res = res1;
/* TODO determine max_allowed_error based on quality of exp() */
} while (abs_i64(error.value) > 100ULL);
return res;
}
/* this function is a generic helper to translate fixed point value to
* specified integer format that will consist of integer_bits integer part and
* fractional_bits fractional part. For example it is used in
* dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
* part in 32 bits. It is used in hw programming (scaler)
*/
static inline unsigned int ux_dy(
long long value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
/* 1. create mask of integer part */
unsigned int result = (1 << integer_bits) - 1;
/* 2. mask out fractional part */
unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
/* 3. shrink fixed point integer part to be of integer_bits width*/
result &= GET_INTEGER_PART(value);
/* 4. make space for fractional part to be filled in after integer */
result <<= fractional_bits;
/* 5. shrink fixed point fractional part to of fractional_bits width*/
fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
/* 6. merge the result */
return result | fractional_part;
}
static inline unsigned int clamp_ux_dy(
long long value,
unsigned int integer_bits,
unsigned int fractional_bits,
unsigned int min_clamp)
{
unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
return (1 << (integer_bits + fractional_bits)) - 1;
else if (truncated_val > min_clamp)
return truncated_val;
else
return min_clamp;
}
unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 4, 19);
}
unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 3, 19);
}
unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 2, 19);
}
unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
{
return ux_dy(arg.value, 0, 19);
}
unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 14, 1);
}
unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
{
return clamp_ux_dy(arg.value, 0, 10, 1);
}
int dc_fixpt_s4d19(struct fixed31_32 arg)
{
if (arg.value < 0)
return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
else
return ux_dy(arg.value, 4, 19);
}
struct fixed31_32 dc_fixpt_from_ux_dy(unsigned int value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
struct fixed31_32 fixpt_value = dc_fixpt_zero;
struct fixed31_32 fixpt_int_value = dc_fixpt_zero;
long long frac_mask = ((long long)1 << (long long)integer_bits) - 1;
fixpt_value.value = (long long)value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
frac_mask = frac_mask << fractional_bits;
fixpt_int_value.value = value & frac_mask;
fixpt_int_value.value <<= (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
fixpt_value.value |= fixpt_int_value.value;
return fixpt_value;
}
struct fixed31_32 dc_fixpt_from_int_dy(unsigned int int_value,
unsigned int frac_value,
unsigned int integer_bits,
unsigned int fractional_bits)
{
struct fixed31_32 fixpt_value = dc_fixpt_from_int(int_value);
fixpt_value.value |= (long long)frac_value << (FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits);
return fixpt_value;
}