1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/tools/perf/util/bpf_skel/lock_contention.bpf.c
Namhyung Kim b5711042a1 perf lock contention: Use per-cpu array map for spinlocks
Currently lock contention timestamp is maintained in a hash map keyed by
pid.  That means it needs to get and release a map element (which is
proctected by spinlock!) on each contention begin and end pair.  This
can impact on performance if there are a lot of contention (usually from
spinlocks).

It used to go with task local storage but it had an issue on memory
allocation in some critical paths.  Although it's addressed in recent
kernels IIUC, the tool should support old kernels too.  So it cannot
simply switch to the task local storage at least for now.

As spinlocks create lots of contention and they disabled preemption
during the spinning, it can use per-cpu array to keep the timestamp to
avoid overhead in hashmap update and delete.

In contention_begin, it's easy to check the lock types since it can see
the flags.  But contention_end cannot see it.  So let's try to per-cpu
array first (unconditionally) if it has an active element (lock != 0).
Then it should be used and per-task tstamp map should not be used until
the per-cpu array element is cleared which means nested spinlock
contention (if any) was finished and it nows see (the outer) lock.

Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Ian Rogers <irogers@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Song Liu <song@kernel.org>
Cc: bpf@vger.kernel.org
Link: https://lore.kernel.org/r/20231020204741.1869520-3-namhyung@kernel.org
2023-10-25 10:02:55 -07:00

562 lines
13 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
// Copyright (c) 2022 Google
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#include <bpf/bpf_core_read.h>
#include <asm-generic/errno-base.h>
#include "lock_data.h"
/* for collect_lock_syms(). 4096 was rejected by the verifier */
#define MAX_CPUS 1024
/* lock contention flags from include/trace/events/lock.h */
#define LCB_F_SPIN (1U << 0)
#define LCB_F_READ (1U << 1)
#define LCB_F_WRITE (1U << 2)
#define LCB_F_RT (1U << 3)
#define LCB_F_PERCPU (1U << 4)
#define LCB_F_MUTEX (1U << 5)
struct tstamp_data {
__u64 timestamp;
__u64 lock;
__u32 flags;
__s32 stack_id;
};
/* callstack storage */
struct {
__uint(type, BPF_MAP_TYPE_STACK_TRACE);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u64));
__uint(max_entries, MAX_ENTRIES);
} stacks SEC(".maps");
/* maintain timestamp at the beginning of contention */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__type(key, int);
__type(value, struct tstamp_data);
__uint(max_entries, MAX_ENTRIES);
} tstamp SEC(".maps");
/* maintain per-CPU timestamp at the beginning of contention */
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(struct tstamp_data));
__uint(max_entries, 1);
} tstamp_cpu SEC(".maps");
/* actual lock contention statistics */
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(struct contention_key));
__uint(value_size, sizeof(struct contention_data));
__uint(max_entries, MAX_ENTRIES);
} lock_stat SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(struct contention_task_data));
__uint(max_entries, MAX_ENTRIES);
} task_data SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u32));
__uint(max_entries, MAX_ENTRIES);
} lock_syms SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} cpu_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} task_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u32));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} type_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} addr_filter SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(key_size, sizeof(__u64));
__uint(value_size, sizeof(__u8));
__uint(max_entries, 1);
} cgroup_filter SEC(".maps");
struct rw_semaphore___old {
struct task_struct *owner;
} __attribute__((preserve_access_index));
struct rw_semaphore___new {
atomic_long_t owner;
} __attribute__((preserve_access_index));
struct mm_struct___old {
struct rw_semaphore mmap_sem;
} __attribute__((preserve_access_index));
struct mm_struct___new {
struct rw_semaphore mmap_lock;
} __attribute__((preserve_access_index));
/* control flags */
int enabled;
int has_cpu;
int has_task;
int has_type;
int has_addr;
int has_cgroup;
int needs_callstack;
int stack_skip;
int lock_owner;
int use_cgroup_v2;
int perf_subsys_id = -1;
/* determine the key of lock stat */
int aggr_mode;
/* error stat */
int task_fail;
int stack_fail;
int time_fail;
int data_fail;
int task_map_full;
int data_map_full;
static inline __u64 get_current_cgroup_id(void)
{
struct task_struct *task;
struct cgroup *cgrp;
if (use_cgroup_v2)
return bpf_get_current_cgroup_id();
task = bpf_get_current_task_btf();
if (perf_subsys_id == -1) {
#if __has_builtin(__builtin_preserve_enum_value)
perf_subsys_id = bpf_core_enum_value(enum cgroup_subsys_id,
perf_event_cgrp_id);
#else
perf_subsys_id = perf_event_cgrp_id;
#endif
}
cgrp = BPF_CORE_READ(task, cgroups, subsys[perf_subsys_id], cgroup);
return BPF_CORE_READ(cgrp, kn, id);
}
static inline int can_record(u64 *ctx)
{
if (has_cpu) {
__u32 cpu = bpf_get_smp_processor_id();
__u8 *ok;
ok = bpf_map_lookup_elem(&cpu_filter, &cpu);
if (!ok)
return 0;
}
if (has_task) {
__u8 *ok;
__u32 pid = bpf_get_current_pid_tgid();
ok = bpf_map_lookup_elem(&task_filter, &pid);
if (!ok)
return 0;
}
if (has_type) {
__u8 *ok;
__u32 flags = (__u32)ctx[1];
ok = bpf_map_lookup_elem(&type_filter, &flags);
if (!ok)
return 0;
}
if (has_addr) {
__u8 *ok;
__u64 addr = ctx[0];
ok = bpf_map_lookup_elem(&addr_filter, &addr);
if (!ok)
return 0;
}
if (has_cgroup) {
__u8 *ok;
__u64 cgrp = get_current_cgroup_id();
ok = bpf_map_lookup_elem(&cgroup_filter, &cgrp);
if (!ok)
return 0;
}
return 1;
}
static inline int update_task_data(struct task_struct *task)
{
struct contention_task_data *p;
int pid, err;
err = bpf_core_read(&pid, sizeof(pid), &task->pid);
if (err)
return -1;
p = bpf_map_lookup_elem(&task_data, &pid);
if (p == NULL && !task_map_full) {
struct contention_task_data data = {};
BPF_CORE_READ_STR_INTO(&data.comm, task, comm);
if (bpf_map_update_elem(&task_data, &pid, &data, BPF_NOEXIST) == -E2BIG)
task_map_full = 1;
}
return 0;
}
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
static inline struct task_struct *get_lock_owner(__u64 lock, __u32 flags)
{
struct task_struct *task;
__u64 owner = 0;
if (flags & LCB_F_MUTEX) {
struct mutex *mutex = (void *)lock;
owner = BPF_CORE_READ(mutex, owner.counter);
} else if (flags == LCB_F_READ || flags == LCB_F_WRITE) {
/*
* Support for the BPF_TYPE_MATCHES argument to the
* __builtin_preserve_type_info builtin was added at some point during
* development of clang 15 and it's what is needed for
* bpf_core_type_matches.
*/
#if __has_builtin(__builtin_preserve_type_info) && __clang_major__ >= 15
if (bpf_core_type_matches(struct rw_semaphore___old)) {
struct rw_semaphore___old *rwsem = (void *)lock;
owner = (unsigned long)BPF_CORE_READ(rwsem, owner);
} else if (bpf_core_type_matches(struct rw_semaphore___new)) {
struct rw_semaphore___new *rwsem = (void *)lock;
owner = BPF_CORE_READ(rwsem, owner.counter);
}
#else
/* assume new struct */
struct rw_semaphore *rwsem = (void *)lock;
owner = BPF_CORE_READ(rwsem, owner.counter);
#endif
}
if (!owner)
return NULL;
task = (void *)(owner & ~7UL);
return task;
}
static inline __u32 check_lock_type(__u64 lock, __u32 flags)
{
struct task_struct *curr;
struct mm_struct___old *mm_old;
struct mm_struct___new *mm_new;
switch (flags) {
case LCB_F_READ: /* rwsem */
case LCB_F_WRITE:
curr = bpf_get_current_task_btf();
if (curr->mm == NULL)
break;
mm_new = (void *)curr->mm;
if (bpf_core_field_exists(mm_new->mmap_lock)) {
if (&mm_new->mmap_lock == (void *)lock)
return LCD_F_MMAP_LOCK;
break;
}
mm_old = (void *)curr->mm;
if (bpf_core_field_exists(mm_old->mmap_sem)) {
if (&mm_old->mmap_sem == (void *)lock)
return LCD_F_MMAP_LOCK;
}
break;
case LCB_F_SPIN: /* spinlock */
curr = bpf_get_current_task_btf();
if (&curr->sighand->siglock == (void *)lock)
return LCD_F_SIGHAND_LOCK;
break;
default:
break;
}
return 0;
}
static inline struct tstamp_data *get_tstamp_elem(__u32 flags)
{
__u32 pid;
struct tstamp_data *pelem;
/* Use per-cpu array map for spinlock and rwlock */
if (flags == (LCB_F_SPIN | LCB_F_READ) || flags == LCB_F_SPIN ||
flags == (LCB_F_SPIN | LCB_F_WRITE)) {
__u32 idx = 0;
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
/* Do not update the element for nested locks */
if (pelem && pelem->lock)
pelem = NULL;
return pelem;
}
pid = bpf_get_current_pid_tgid();
pelem = bpf_map_lookup_elem(&tstamp, &pid);
/* Do not update the element for nested locks */
if (pelem && pelem->lock)
return NULL;
if (pelem == NULL) {
struct tstamp_data zero = {};
if (bpf_map_update_elem(&tstamp, &pid, &zero, BPF_NOEXIST) < 0) {
__sync_fetch_and_add(&task_fail, 1);
return NULL;
}
pelem = bpf_map_lookup_elem(&tstamp, &pid);
if (pelem == NULL) {
__sync_fetch_and_add(&task_fail, 1);
return NULL;
}
}
return pelem;
}
SEC("tp_btf/contention_begin")
int contention_begin(u64 *ctx)
{
struct tstamp_data *pelem;
if (!enabled || !can_record(ctx))
return 0;
pelem = get_tstamp_elem(ctx[1]);
if (pelem == NULL)
return 0;
pelem->timestamp = bpf_ktime_get_ns();
pelem->lock = (__u64)ctx[0];
pelem->flags = (__u32)ctx[1];
if (needs_callstack) {
pelem->stack_id = bpf_get_stackid(ctx, &stacks,
BPF_F_FAST_STACK_CMP | stack_skip);
if (pelem->stack_id < 0)
__sync_fetch_and_add(&stack_fail, 1);
} else if (aggr_mode == LOCK_AGGR_TASK) {
struct task_struct *task;
if (lock_owner) {
task = get_lock_owner(pelem->lock, pelem->flags);
/* The flags is not used anymore. Pass the owner pid. */
if (task)
pelem->flags = BPF_CORE_READ(task, pid);
else
pelem->flags = -1U;
} else {
task = bpf_get_current_task_btf();
}
if (task) {
if (update_task_data(task) < 0 && lock_owner)
pelem->flags = -1U;
}
}
return 0;
}
SEC("tp_btf/contention_end")
int contention_end(u64 *ctx)
{
__u32 pid = 0, idx = 0;
struct tstamp_data *pelem;
struct contention_key key = {};
struct contention_data *data;
__u64 duration;
bool need_delete = false;
if (!enabled)
return 0;
/*
* For spinlock and rwlock, it needs to get the timestamp for the
* per-cpu map. However, contention_end does not have the flags
* so it cannot know whether it reads percpu or hash map.
*
* Try per-cpu map first and check if there's active contention.
* If it is, do not read hash map because it cannot go to sleeping
* locks before releasing the spinning locks.
*/
pelem = bpf_map_lookup_elem(&tstamp_cpu, &idx);
if (pelem && pelem->lock) {
if (pelem->lock != ctx[0])
return 0;
} else {
pid = bpf_get_current_pid_tgid();
pelem = bpf_map_lookup_elem(&tstamp, &pid);
if (!pelem || pelem->lock != ctx[0])
return 0;
need_delete = true;
}
duration = bpf_ktime_get_ns() - pelem->timestamp;
if ((__s64)duration < 0) {
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
__sync_fetch_and_add(&time_fail, 1);
return 0;
}
switch (aggr_mode) {
case LOCK_AGGR_CALLER:
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_TASK:
if (lock_owner)
key.pid = pelem->flags;
else {
if (!need_delete)
pid = bpf_get_current_pid_tgid();
key.pid = pid;
}
if (needs_callstack)
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_ADDR:
key.lock_addr_or_cgroup = pelem->lock;
if (needs_callstack)
key.stack_id = pelem->stack_id;
break;
case LOCK_AGGR_CGROUP:
key.lock_addr_or_cgroup = get_current_cgroup_id();
break;
default:
/* should not happen */
return 0;
}
data = bpf_map_lookup_elem(&lock_stat, &key);
if (!data) {
if (data_map_full) {
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
__sync_fetch_and_add(&data_fail, 1);
return 0;
}
struct contention_data first = {
.total_time = duration,
.max_time = duration,
.min_time = duration,
.count = 1,
.flags = pelem->flags,
};
int err;
if (aggr_mode == LOCK_AGGR_ADDR)
first.flags |= check_lock_type(pelem->lock, pelem->flags);
err = bpf_map_update_elem(&lock_stat, &key, &first, BPF_NOEXIST);
if (err < 0) {
if (err == -E2BIG)
data_map_full = 1;
__sync_fetch_and_add(&data_fail, 1);
}
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
return 0;
}
__sync_fetch_and_add(&data->total_time, duration);
__sync_fetch_and_add(&data->count, 1);
/* FIXME: need atomic operations */
if (data->max_time < duration)
data->max_time = duration;
if (data->min_time > duration)
data->min_time = duration;
pelem->lock = 0;
if (need_delete)
bpf_map_delete_elem(&tstamp, &pid);
return 0;
}
extern struct rq runqueues __ksym;
struct rq___old {
raw_spinlock_t lock;
} __attribute__((preserve_access_index));
struct rq___new {
raw_spinlock_t __lock;
} __attribute__((preserve_access_index));
SEC("raw_tp/bpf_test_finish")
int BPF_PROG(collect_lock_syms)
{
__u64 lock_addr, lock_off;
__u32 lock_flag;
if (bpf_core_field_exists(struct rq___new, __lock))
lock_off = offsetof(struct rq___new, __lock);
else
lock_off = offsetof(struct rq___old, lock);
for (int i = 0; i < MAX_CPUS; i++) {
struct rq *rq = bpf_per_cpu_ptr(&runqueues, i);
if (rq == NULL)
break;
lock_addr = (__u64)(void *)rq + lock_off;
lock_flag = LOCK_CLASS_RQLOCK;
bpf_map_update_elem(&lock_syms, &lock_addr, &lock_flag, BPF_ANY);
}
return 0;
}
char LICENSE[] SEC("license") = "Dual BSD/GPL";