1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/amd/pm/amdgpu_pm.c
Wolfgang Müller 6bfe777e92 drm/amd/pm: add zero RPM stop temperature OD setting support for SMU13
Together with the feature to enable or disable zero RPM in the last
commit, it also makes sense to expose the OD setting determining under
which temperature the fan should stop if zero RPM is enabled.

Reviewed-by: Kenneth Feng <kenneth.feng@amd.com>
Signed-off-by: Wolfgang Müller <wolf@oriole.systems>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2024-11-05 10:33:47 -05:00

4866 lines
137 KiB
C

/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Rafał Miłecki <zajec5@gmail.com>
* Alex Deucher <alexdeucher@gmail.com>
*/
#include "amdgpu.h"
#include "amdgpu_drv.h"
#include "amdgpu_pm.h"
#include "amdgpu_dpm.h"
#include "atom.h"
#include <linux/pci.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/nospec.h>
#include <linux/pm_runtime.h>
#include <asm/processor.h>
#define MAX_NUM_OF_FEATURES_PER_SUBSET 8
#define MAX_NUM_OF_SUBSETS 8
#define DEVICE_ATTR_IS(_name) (attr_id == device_attr_id__##_name)
struct od_attribute {
struct kobj_attribute attribute;
struct list_head entry;
};
struct od_kobj {
struct kobject kobj;
struct list_head entry;
struct list_head attribute;
void *priv;
};
struct od_feature_ops {
umode_t (*is_visible)(struct amdgpu_device *adev);
ssize_t (*show)(struct kobject *kobj, struct kobj_attribute *attr,
char *buf);
ssize_t (*store)(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count);
};
struct od_feature_item {
const char *name;
struct od_feature_ops ops;
};
struct od_feature_container {
char *name;
struct od_feature_ops ops;
struct od_feature_item sub_feature[MAX_NUM_OF_FEATURES_PER_SUBSET];
};
struct od_feature_set {
struct od_feature_container containers[MAX_NUM_OF_SUBSETS];
};
static const struct hwmon_temp_label {
enum PP_HWMON_TEMP channel;
const char *label;
} temp_label[] = {
{PP_TEMP_EDGE, "edge"},
{PP_TEMP_JUNCTION, "junction"},
{PP_TEMP_MEM, "mem"},
};
const char * const amdgpu_pp_profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM",
"WINDOW_3D",
"CAPPED",
"UNCAPPED",
};
/**
* DOC: power_dpm_state
*
* The power_dpm_state file is a legacy interface and is only provided for
* backwards compatibility. The amdgpu driver provides a sysfs API for adjusting
* certain power related parameters. The file power_dpm_state is used for this.
* It accepts the following arguments:
*
* - battery
*
* - balanced
*
* - performance
*
* battery
*
* On older GPUs, the vbios provided a special power state for battery
* operation. Selecting battery switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* balanced
*
* On older GPUs, the vbios provided a special power state for balanced
* operation. Selecting balanced switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
* performance
*
* On older GPUs, the vbios provided a special power state for performance
* operation. Selecting performance switched to this state. This is no
* longer provided on newer GPUs so the option does nothing in that case.
*
*/
static ssize_t amdgpu_get_power_dpm_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type pm;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
amdgpu_dpm_get_current_power_state(adev, &pm);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%s\n",
(pm == POWER_STATE_TYPE_BATTERY) ? "battery" :
(pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance");
}
static ssize_t amdgpu_set_power_dpm_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type state;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strncmp("battery", buf, strlen("battery")) == 0)
state = POWER_STATE_TYPE_BATTERY;
else if (strncmp("balanced", buf, strlen("balanced")) == 0)
state = POWER_STATE_TYPE_BALANCED;
else if (strncmp("performance", buf, strlen("performance")) == 0)
state = POWER_STATE_TYPE_PERFORMANCE;
else
return -EINVAL;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
amdgpu_dpm_set_power_state(adev, state);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: power_dpm_force_performance_level
*
* The amdgpu driver provides a sysfs API for adjusting certain power
* related parameters. The file power_dpm_force_performance_level is
* used for this. It accepts the following arguments:
*
* - auto
*
* - low
*
* - high
*
* - manual
*
* - profile_standard
*
* - profile_min_sclk
*
* - profile_min_mclk
*
* - profile_peak
*
* auto
*
* When auto is selected, the driver will attempt to dynamically select
* the optimal power profile for current conditions in the driver.
*
* low
*
* When low is selected, the clocks are forced to the lowest power state.
*
* high
*
* When high is selected, the clocks are forced to the highest power state.
*
* manual
*
* When manual is selected, the user can manually adjust which power states
* are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk,
* and pp_dpm_pcie files and adjust the power state transition heuristics
* via the pp_power_profile_mode sysfs file.
*
* profile_standard
* profile_min_sclk
* profile_min_mclk
* profile_peak
*
* When the profiling modes are selected, clock and power gating are
* disabled and the clocks are set for different profiling cases. This
* mode is recommended for profiling specific work loads where you do
* not want clock or power gating for clock fluctuation to interfere
* with your results. profile_standard sets the clocks to a fixed clock
* level which varies from asic to asic. profile_min_sclk forces the sclk
* to the lowest level. profile_min_mclk forces the mclk to the lowest level.
* profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels.
*
*/
static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_dpm_forced_level level = 0xff;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
level = amdgpu_dpm_get_performance_level(adev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%s\n",
(level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" :
(level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" :
(level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" :
(level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" :
(level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" :
(level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) ? "perf_determinism" :
"unknown");
}
static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_dpm_forced_level level;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (strncmp("low", buf, strlen("low")) == 0) {
level = AMD_DPM_FORCED_LEVEL_LOW;
} else if (strncmp("high", buf, strlen("high")) == 0) {
level = AMD_DPM_FORCED_LEVEL_HIGH;
} else if (strncmp("auto", buf, strlen("auto")) == 0) {
level = AMD_DPM_FORCED_LEVEL_AUTO;
} else if (strncmp("manual", buf, strlen("manual")) == 0) {
level = AMD_DPM_FORCED_LEVEL_MANUAL;
} else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT;
} else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD;
} else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK;
} else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK;
} else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
} else if (strncmp("perf_determinism", buf, strlen("perf_determinism")) == 0) {
level = AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM;
} else {
return -EINVAL;
}
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
mutex_lock(&adev->pm.stable_pstate_ctx_lock);
if (amdgpu_dpm_force_performance_level(adev, level)) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
mutex_unlock(&adev->pm.stable_pstate_ctx_lock);
return -EINVAL;
}
/* override whatever a user ctx may have set */
adev->pm.stable_pstate_ctx = NULL;
mutex_unlock(&adev->pm.stable_pstate_ctx_lock);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_num_states(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct pp_states_info data;
uint32_t i;
int buf_len, ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
if (amdgpu_dpm_get_pp_num_states(adev, &data))
memset(&data, 0, sizeof(data));
pm_runtime_put_autosuspend(ddev->dev);
buf_len = sysfs_emit(buf, "states: %d\n", data.nums);
for (i = 0; i < data.nums; i++)
buf_len += sysfs_emit_at(buf, buf_len, "%d %s\n", i,
(data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" :
(data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" :
(data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" :
(data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default");
return buf_len;
}
static ssize_t amdgpu_get_pp_cur_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct pp_states_info data = {0};
enum amd_pm_state_type pm = 0;
int i = 0, ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
amdgpu_dpm_get_current_power_state(adev, &pm);
ret = amdgpu_dpm_get_pp_num_states(adev, &data);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return ret;
for (i = 0; i < data.nums; i++) {
if (pm == data.states[i])
break;
}
if (i == data.nums)
i = -EINVAL;
return sysfs_emit(buf, "%d\n", i);
}
static ssize_t amdgpu_get_pp_force_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->pm.pp_force_state_enabled)
return amdgpu_get_pp_cur_state(dev, attr, buf);
else
return sysfs_emit(buf, "\n");
}
static ssize_t amdgpu_set_pp_force_state(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amd_pm_state_type state = 0;
struct pp_states_info data;
unsigned long idx;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
adev->pm.pp_force_state_enabled = false;
if (strlen(buf) == 1)
return count;
ret = kstrtoul(buf, 0, &idx);
if (ret || idx >= ARRAY_SIZE(data.states))
return -EINVAL;
idx = array_index_nospec(idx, ARRAY_SIZE(data.states));
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_get_pp_num_states(adev, &data);
if (ret)
goto err_out;
state = data.states[idx];
/* only set user selected power states */
if (state != POWER_STATE_TYPE_INTERNAL_BOOT &&
state != POWER_STATE_TYPE_DEFAULT) {
ret = amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_ENABLE_USER_STATE, &state);
if (ret)
goto err_out;
adev->pm.pp_force_state_enabled = true;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
err_out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return ret;
}
/**
* DOC: pp_table
*
* The amdgpu driver provides a sysfs API for uploading new powerplay
* tables. The file pp_table is used for this. Reading the file
* will dump the current power play table. Writing to the file
* will attempt to upload a new powerplay table and re-initialize
* powerplay using that new table.
*
*/
static ssize_t amdgpu_get_pp_table(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
char *table = NULL;
int size, ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
size = amdgpu_dpm_get_pp_table(adev, &table);
pm_runtime_put_autosuspend(ddev->dev);
if (size <= 0)
return size;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, table, size);
return size;
}
static ssize_t amdgpu_set_pp_table(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_set_pp_table(adev, buf, count);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return ret;
return count;
}
/**
* DOC: pp_od_clk_voltage
*
* The amdgpu driver provides a sysfs API for adjusting the clocks and voltages
* in each power level within a power state. The pp_od_clk_voltage is used for
* this.
*
* Note that the actual memory controller clock rate are exposed, not
* the effective memory clock of the DRAMs. To translate it, use the
* following formula:
*
* Clock conversion (Mhz):
*
* HBM: effective_memory_clock = memory_controller_clock * 1
*
* G5: effective_memory_clock = memory_controller_clock * 1
*
* G6: effective_memory_clock = memory_controller_clock * 2
*
* DRAM data rate (MT/s):
*
* HBM: effective_memory_clock * 2 = data_rate
*
* G5: effective_memory_clock * 4 = data_rate
*
* G6: effective_memory_clock * 8 = data_rate
*
* Bandwidth (MB/s):
*
* data_rate * vram_bit_width / 8 = memory_bandwidth
*
* Some examples:
*
* G5 on RX460:
*
* memory_controller_clock = 1750 Mhz
*
* effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz
*
* data rate = 1750 * 4 = 7000 MT/s
*
* memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s
*
* G6 on RX5700:
*
* memory_controller_clock = 875 Mhz
*
* effective_memory_clock = 875 Mhz * 2 = 1750 Mhz
*
* data rate = 1750 * 8 = 14000 MT/s
*
* memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s
*
* < For Vega10 and previous ASICs >
*
* Reading the file will display:
*
* - a list of engine clock levels and voltages labeled OD_SCLK
*
* - a list of memory clock levels and voltages labeled OD_MCLK
*
* - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE
*
* To manually adjust these settings, first select manual using
* power_dpm_force_performance_level. Enter a new value for each
* level by writing a string that contains "s/m level clock voltage" to
* the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz
* at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at
* 810 mV. When you have edited all of the states as needed, write
* "c" (commit) to the file to commit your changes. If you want to reset to the
* default power levels, write "r" (reset) to the file to reset them.
*
*
* < For Vega20 and newer ASICs >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - minimum(not available for Vega20 and Navi1x) and maximum memory
* clock labeled OD_MCLK
*
* - three <frequency, voltage> points labeled OD_VDDC_CURVE.
* They can be used to calibrate the sclk voltage curve. This is
* available for Vega20 and NV1X.
*
* - voltage offset(in mV) applied on target voltage calculation.
* This is available for Sienna Cichlid, Navy Flounder, Dimgrey
* Cavefish and some later SMU13 ASICs. For these ASICs, the target
* voltage calculation can be illustrated by "voltage = voltage
* calculated from v/f curve + overdrive vddgfx offset"
*
* - a list of valid ranges for sclk, mclk, voltage curve points
* or voltage offset labeled OD_RANGE
*
* < For APUs >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
*
* - a list of valid ranges for sclk labeled OD_RANGE
*
* < For VanGogh >
*
* Reading the file will display:
*
* - minimum and maximum engine clock labeled OD_SCLK
* - minimum and maximum core clocks labeled OD_CCLK
*
* - a list of valid ranges for sclk and cclk labeled OD_RANGE
*
* To manually adjust these settings:
*
* - First select manual using power_dpm_force_performance_level
*
* - For clock frequency setting, enter a new value by writing a
* string that contains "s/m index clock" to the file. The index
* should be 0 if to set minimum clock. And 1 if to set maximum
* clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz.
* "m 1 800" will update maximum mclk to be 800Mhz. For core
* clocks on VanGogh, the string contains "p core index clock".
* E.g., "p 2 0 800" would set the minimum core clock on core
* 2 to 800Mhz.
*
* For sclk voltage curve supported by Vega20 and NV1X, enter the new
* values by writing a string that contains "vc point clock voltage"
* to the file. The points are indexed by 0, 1 and 2. E.g., "vc 0 300
* 600" will update point1 with clock set as 300Mhz and voltage as 600mV.
* "vc 2 1000 1000" will update point3 with clock set as 1000Mhz and
* voltage 1000mV.
*
* For voltage offset supported by Sienna Cichlid, Navy Flounder, Dimgrey
* Cavefish and some later SMU13 ASICs, enter the new value by writing a
* string that contains "vo offset". E.g., "vo -10" will update the extra
* voltage offset applied to the whole v/f curve line as -10mv.
*
* - When you have edited all of the states as needed, write "c" (commit)
* to the file to commit your changes
*
* - If you want to reset to the default power levels, write "r" (reset)
* to the file to reset them
*
*/
static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
uint32_t parameter_size = 0;
long parameter[64];
char buf_cpy[128];
char *tmp_str;
char *sub_str;
const char delimiter[3] = {' ', '\n', '\0'};
uint32_t type;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (count > 127 || count == 0)
return -EINVAL;
if (*buf == 's')
type = PP_OD_EDIT_SCLK_VDDC_TABLE;
else if (*buf == 'p')
type = PP_OD_EDIT_CCLK_VDDC_TABLE;
else if (*buf == 'm')
type = PP_OD_EDIT_MCLK_VDDC_TABLE;
else if (*buf == 'r')
type = PP_OD_RESTORE_DEFAULT_TABLE;
else if (*buf == 'c')
type = PP_OD_COMMIT_DPM_TABLE;
else if (!strncmp(buf, "vc", 2))
type = PP_OD_EDIT_VDDC_CURVE;
else if (!strncmp(buf, "vo", 2))
type = PP_OD_EDIT_VDDGFX_OFFSET;
else
return -EINVAL;
memcpy(buf_cpy, buf, count);
buf_cpy[count] = 0;
tmp_str = buf_cpy;
if ((type == PP_OD_EDIT_VDDC_CURVE) ||
(type == PP_OD_EDIT_VDDGFX_OFFSET))
tmp_str++;
while (isspace(*++tmp_str));
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
if (!tmp_str)
break;
while (isspace(*tmp_str))
tmp_str++;
}
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
if (amdgpu_dpm_set_fine_grain_clk_vol(adev,
type,
parameter,
parameter_size))
goto err_out;
if (amdgpu_dpm_odn_edit_dpm_table(adev, type,
parameter, parameter_size))
goto err_out;
if (type == PP_OD_COMMIT_DPM_TABLE) {
if (amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_READJUST_POWER_STATE,
NULL))
goto err_out;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
err_out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return -EINVAL;
}
static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int size = 0;
int ret;
enum pp_clock_type od_clocks[6] = {
OD_SCLK,
OD_MCLK,
OD_VDDC_CURVE,
OD_RANGE,
OD_VDDGFX_OFFSET,
OD_CCLK,
};
uint clk_index;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
for (clk_index = 0 ; clk_index < 6 ; clk_index++) {
ret = amdgpu_dpm_emit_clock_levels(adev, od_clocks[clk_index], buf, &size);
if (ret)
break;
}
if (ret == -ENOENT) {
size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf);
size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_VDDGFX_OFFSET, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf + size);
size += amdgpu_dpm_print_clock_levels(adev, OD_CCLK, buf + size);
}
if (size == 0)
size = sysfs_emit(buf, "\n");
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: pp_features
*
* The amdgpu driver provides a sysfs API for adjusting what powerplay
* features to be enabled. The file pp_features is used for this. And
* this is only available for Vega10 and later dGPUs.
*
* Reading back the file will show you the followings:
* - Current ppfeature masks
* - List of the all supported powerplay features with their naming,
* bitmasks and enablement status('Y'/'N' means "enabled"/"disabled").
*
* To manually enable or disable a specific feature, just set or clear
* the corresponding bit from original ppfeature masks and input the
* new ppfeature masks.
*/
static ssize_t amdgpu_set_pp_features(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t featuremask;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtou64(buf, 0, &featuremask);
if (ret)
return -EINVAL;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_features(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
size = amdgpu_dpm_get_ppfeature_status(adev, buf);
if (size <= 0)
size = sysfs_emit(buf, "\n");
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie
*
* The amdgpu driver provides a sysfs API for adjusting what power levels
* are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk,
* pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for
* this.
*
* pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for
* Vega10 and later ASICs.
* pp_dpm_fclk interface is only available for Vega20 and later ASICs.
*
* Reading back the files will show you the available power levels within
* the power state and the clock information for those levels. If deep sleep is
* applied to a clock, the level will be denoted by a special level 'S:'
* E.g., ::
*
* S: 19Mhz *
* 0: 615Mhz
* 1: 800Mhz
* 2: 888Mhz
* 3: 1000Mhz
*
*
* To manually adjust these states, first select manual using
* power_dpm_force_performance_level.
* Secondly, enter a new value for each level by inputing a string that
* contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie"
* E.g.,
*
* .. code-block:: bash
*
* echo "4 5 6" > pp_dpm_sclk
*
* will enable sclk levels 4, 5, and 6.
*
* NOTE: change to the dcefclk max dpm level is not supported now
*/
static ssize_t amdgpu_get_pp_dpm_clock(struct device *dev,
enum pp_clock_type type,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int size = 0;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
ret = amdgpu_dpm_emit_clock_levels(adev, type, buf, &size);
if (ret == -ENOENT)
size = amdgpu_dpm_print_clock_levels(adev, type, buf);
if (size == 0)
size = sysfs_emit(buf, "\n");
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/*
* Worst case: 32 bits individually specified, in octal at 12 characters
* per line (+1 for \n).
*/
#define AMDGPU_MASK_BUF_MAX (32 * 13)
static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask)
{
int ret;
unsigned long level;
char *sub_str = NULL;
char *tmp;
char buf_cpy[AMDGPU_MASK_BUF_MAX + 1];
const char delimiter[3] = {' ', '\n', '\0'};
size_t bytes;
*mask = 0;
bytes = min(count, sizeof(buf_cpy) - 1);
memcpy(buf_cpy, buf, bytes);
buf_cpy[bytes] = '\0';
tmp = buf_cpy;
while ((sub_str = strsep(&tmp, delimiter)) != NULL) {
if (strlen(sub_str)) {
ret = kstrtoul(sub_str, 0, &level);
if (ret || level > 31)
return -EINVAL;
*mask |= 1 << level;
} else
break;
}
return 0;
}
static ssize_t amdgpu_set_pp_dpm_clock(struct device *dev,
enum pp_clock_type type,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
uint32_t mask = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = amdgpu_read_mask(buf, count, &mask);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_force_clock_level(adev, type, mask);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_SCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_SCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_MCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_MCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_SOCCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_SOCCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_FCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_FCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_vclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_VCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_vclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_VCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_vclk1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_VCLK1, buf);
}
static ssize_t amdgpu_set_pp_dpm_vclk1(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_VCLK1, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_dclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dclk1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCLK1, buf);
}
static ssize_t amdgpu_set_pp_dpm_dclk1(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCLK1, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_DCEFCLK, buf);
}
static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_DCEFCLK, buf, count);
}
static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_get_pp_dpm_clock(dev, PP_PCIE, buf);
}
static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
return amdgpu_set_pp_dpm_clock(dev, PP_PCIE, buf, count);
}
static ssize_t amdgpu_get_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t value = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
value = amdgpu_dpm_get_sclk_od(adev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t amdgpu_set_pp_sclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
amdgpu_dpm_set_sclk_od(adev, (uint32_t)value);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static ssize_t amdgpu_get_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t value = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
value = amdgpu_dpm_get_mclk_od(adev);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t amdgpu_set_pp_mclk_od(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int ret;
long int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = kstrtol(buf, 0, &value);
if (ret)
return -EINVAL;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
amdgpu_dpm_set_mclk_od(adev, (uint32_t)value);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
/**
* DOC: pp_power_profile_mode
*
* The amdgpu driver provides a sysfs API for adjusting the heuristics
* related to switching between power levels in a power state. The file
* pp_power_profile_mode is used for this.
*
* Reading this file outputs a list of all of the predefined power profiles
* and the relevant heuristics settings for that profile.
*
* To select a profile or create a custom profile, first select manual using
* power_dpm_force_performance_level. Writing the number of a predefined
* profile to pp_power_profile_mode will enable those heuristics. To
* create a custom set of heuristics, write a string of numbers to the file
* starting with the number of the custom profile along with a setting
* for each heuristic parameter. Due to differences across asic families
* the heuristic parameters vary from family to family.
*
*/
static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
size = amdgpu_dpm_get_power_profile_mode(adev, buf);
if (size <= 0)
size = sysfs_emit(buf, "\n");
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t parameter_size = 0;
long parameter[64];
char *sub_str, buf_cpy[128];
char *tmp_str;
uint32_t i = 0;
char tmp[2];
long int profile_mode = 0;
const char delimiter[3] = {' ', '\n', '\0'};
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
tmp[0] = *(buf);
tmp[1] = '\0';
ret = kstrtol(tmp, 0, &profile_mode);
if (ret)
return -EINVAL;
if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (count < 2 || count > 127)
return -EINVAL;
while (isspace(*++buf))
i++;
memcpy(buf_cpy, buf, count-i);
tmp_str = buf_cpy;
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &parameter[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
}
parameter[parameter_size] = profile_mode;
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (!ret)
return count;
return -EINVAL;
}
static int amdgpu_hwmon_get_sensor_generic(struct amdgpu_device *adev,
enum amd_pp_sensors sensor,
void *query)
{
int r, size = sizeof(uint32_t);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_if_active(adev->dev);
if (r <= 0)
return r ?: -EPERM;
/* get the sensor value */
r = amdgpu_dpm_read_sensor(adev, sensor, query, &size);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return r;
}
/**
* DOC: gpu_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the GPU
* is as a percentage. The file gpu_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
unsigned int value;
int r;
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_LOAD, &value);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: mem_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the VRAM
* is as a percentage. The file mem_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_mem_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
unsigned int value;
int r;
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MEM_LOAD, &value);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: vcn_busy_percent
*
* The amdgpu driver provides a sysfs API for reading how busy the VCN
* is as a percentage. The file vcn_busy_percent is used for this.
* The SMU firmware computes a percentage of load based on the
* aggregate activity level in the IP cores.
*/
static ssize_t amdgpu_get_vcn_busy_percent(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
unsigned int value;
int r;
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VCN_LOAD, &value);
if (r)
return r;
return sysfs_emit(buf, "%d\n", value);
}
/**
* DOC: pcie_bw
*
* The amdgpu driver provides a sysfs API for estimating how much data
* has been received and sent by the GPU in the last second through PCIe.
* The file pcie_bw is used for this.
* The Perf counters count the number of received and sent messages and return
* those values, as well as the maximum payload size of a PCIe packet (mps).
* Note that it is not possible to easily and quickly obtain the size of each
* packet transmitted, so we output the max payload size (mps) to allow for
* quick estimation of the PCIe bandwidth usage
*/
static ssize_t amdgpu_get_pcie_bw(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint64_t count0 = 0, count1 = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->flags & AMD_IS_APU)
return -ENODATA;
if (!adev->asic_funcs->get_pcie_usage)
return -ENODATA;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
amdgpu_asic_get_pcie_usage(adev, &count0, &count1);
pm_runtime_put_autosuspend(ddev->dev);
return sysfs_emit(buf, "%llu %llu %i\n",
count0, count1, pcie_get_mps(adev->pdev));
}
/**
* DOC: unique_id
*
* The amdgpu driver provides a sysfs API for providing a unique ID for the GPU
* The file unique_id is used for this.
* This will provide a Unique ID that will persist from machine to machine
*
* NOTE: This will only work for GFX9 and newer. This file will be absent
* on unsupported ASICs (GFX8 and older)
*/
static ssize_t amdgpu_get_unique_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (adev->unique_id)
return sysfs_emit(buf, "%016llx\n", adev->unique_id);
return 0;
}
/**
* DOC: thermal_throttling_logging
*
* Thermal throttling pulls down the clock frequency and thus the performance.
* It's an useful mechanism to protect the chip from overheating. Since it
* impacts performance, the user controls whether it is enabled and if so,
* the log frequency.
*
* Reading back the file shows you the status(enabled or disabled) and
* the interval(in seconds) between each thermal logging.
*
* Writing an integer to the file, sets a new logging interval, in seconds.
* The value should be between 1 and 3600. If the value is less than 1,
* thermal logging is disabled. Values greater than 3600 are ignored.
*/
static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
return sysfs_emit(buf, "%s: thermal throttling logging %s, with interval %d seconds\n",
adev_to_drm(adev)->unique,
atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled",
adev->throttling_logging_rs.interval / HZ + 1);
}
static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
long throttling_logging_interval;
unsigned long flags;
int ret = 0;
ret = kstrtol(buf, 0, &throttling_logging_interval);
if (ret)
return ret;
if (throttling_logging_interval > 3600)
return -EINVAL;
if (throttling_logging_interval > 0) {
raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags);
/*
* Reset the ratelimit timer internals.
* This can effectively restart the timer.
*/
adev->throttling_logging_rs.interval =
(throttling_logging_interval - 1) * HZ;
adev->throttling_logging_rs.begin = 0;
adev->throttling_logging_rs.printed = 0;
adev->throttling_logging_rs.missed = 0;
raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags);
atomic_set(&adev->throttling_logging_enabled, 1);
} else {
atomic_set(&adev->throttling_logging_enabled, 0);
}
return count;
}
/**
* DOC: apu_thermal_cap
*
* The amdgpu driver provides a sysfs API for retrieving/updating thermal
* limit temperature in millidegrees Celsius
*
* Reading back the file shows you core limit value
*
* Writing an integer to the file, sets a new thermal limit. The value
* should be between 0 and 100. If the value is less than 0 or greater
* than 100, then the write request will be ignored.
*/
static ssize_t amdgpu_get_apu_thermal_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int ret, size;
u32 limit;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
ret = amdgpu_dpm_get_apu_thermal_limit(adev, &limit);
if (!ret)
size = sysfs_emit(buf, "%u\n", limit);
else
size = sysfs_emit(buf, "failed to get thermal limit\n");
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
static ssize_t amdgpu_set_apu_thermal_cap(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
int ret;
u32 value;
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ret = kstrtou32(buf, 10, &value);
if (ret)
return ret;
if (value > 100) {
dev_err(dev, "Invalid argument !\n");
return -EINVAL;
}
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_set_apu_thermal_limit(adev, value);
if (ret) {
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
dev_err(dev, "failed to update thermal limit\n");
return ret;
}
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return count;
}
static int amdgpu_pm_metrics_attr_update(struct amdgpu_device *adev,
struct amdgpu_device_attr *attr,
uint32_t mask,
enum amdgpu_device_attr_states *states)
{
if (amdgpu_dpm_get_pm_metrics(adev, NULL, 0) == -EOPNOTSUPP)
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static ssize_t amdgpu_get_pm_metrics(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
ssize_t size = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
size = amdgpu_dpm_get_pm_metrics(adev, buf, PAGE_SIZE);
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
/**
* DOC: gpu_metrics
*
* The amdgpu driver provides a sysfs API for retrieving current gpu
* metrics data. The file gpu_metrics is used for this. Reading the
* file will dump all the current gpu metrics data.
*
* These data include temperature, frequency, engines utilization,
* power consume, throttler status, fan speed and cpu core statistics(
* available for APU only). That's it will give a snapshot of all sensors
* at the same time.
*/
static ssize_t amdgpu_get_gpu_metrics(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
void *gpu_metrics;
ssize_t size = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(ddev->dev);
if (ret <= 0)
return ret ?: -EPERM;
size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics);
if (size <= 0)
goto out;
if (size >= PAGE_SIZE)
size = PAGE_SIZE - 1;
memcpy(buf, gpu_metrics, size);
out:
pm_runtime_put_autosuspend(ddev->dev);
return size;
}
static int amdgpu_show_powershift_percent(struct device *dev,
char *buf, enum amd_pp_sensors sensor)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
uint32_t ss_power;
int r = 0, i;
r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&ss_power);
if (r == -EOPNOTSUPP) {
/* sensor not available on dGPU, try to read from APU */
adev = NULL;
mutex_lock(&mgpu_info.mutex);
for (i = 0; i < mgpu_info.num_gpu; i++) {
if (mgpu_info.gpu_ins[i].adev->flags & AMD_IS_APU) {
adev = mgpu_info.gpu_ins[i].adev;
break;
}
}
mutex_unlock(&mgpu_info.mutex);
if (adev)
r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&ss_power);
}
if (r)
return r;
return sysfs_emit(buf, "%u%%\n", ss_power);
}
/**
* DOC: smartshift_apu_power
*
* The amdgpu driver provides a sysfs API for reporting APU power
* shift in percentage if platform supports smartshift. Value 0 means that
* there is no powershift and values between [1-100] means that the power
* is shifted to APU, the percentage of boost is with respect to APU power
* limit on the platform.
*/
static ssize_t amdgpu_get_smartshift_apu_power(struct device *dev, struct device_attribute *attr,
char *buf)
{
return amdgpu_show_powershift_percent(dev, buf, AMDGPU_PP_SENSOR_SS_APU_SHARE);
}
/**
* DOC: smartshift_dgpu_power
*
* The amdgpu driver provides a sysfs API for reporting dGPU power
* shift in percentage if platform supports smartshift. Value 0 means that
* there is no powershift and values between [1-100] means that the power is
* shifted to dGPU, the percentage of boost is with respect to dGPU power
* limit on the platform.
*/
static ssize_t amdgpu_get_smartshift_dgpu_power(struct device *dev, struct device_attribute *attr,
char *buf)
{
return amdgpu_show_powershift_percent(dev, buf, AMDGPU_PP_SENSOR_SS_DGPU_SHARE);
}
/**
* DOC: smartshift_bias
*
* The amdgpu driver provides a sysfs API for reporting the
* smartshift(SS2.0) bias level. The value ranges from -100 to 100
* and the default is 0. -100 sets maximum preference to APU
* and 100 sets max perference to dGPU.
*/
static ssize_t amdgpu_get_smartshift_bias(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int r = 0;
r = sysfs_emit(buf, "%d\n", amdgpu_smartshift_bias);
return r;
}
static ssize_t amdgpu_set_smartshift_bias(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int r = 0;
int bias = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_resume_and_get(ddev->dev);
if (r < 0)
return r;
r = kstrtoint(buf, 10, &bias);
if (r)
goto out;
if (bias > AMDGPU_SMARTSHIFT_MAX_BIAS)
bias = AMDGPU_SMARTSHIFT_MAX_BIAS;
else if (bias < AMDGPU_SMARTSHIFT_MIN_BIAS)
bias = AMDGPU_SMARTSHIFT_MIN_BIAS;
amdgpu_smartshift_bias = bias;
r = count;
/* TODO: update bias level with SMU message */
out:
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
return r;
}
static int ss_power_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev)))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static int ss_bias_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
uint32_t ss_power;
if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev)))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE,
(void *)&ss_power))
*states = ATTR_STATE_UNSUPPORTED;
else if (amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE,
(void *)&ss_power))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static int pp_od_clk_voltage_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
*states = ATTR_STATE_SUPPORTED;
if (!amdgpu_dpm_is_overdrive_supported(adev)) {
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
/* Enable pp_od_clk_voltage node for gc 9.4.3 SRIOV/BM support */
if (gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4)) {
if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
if (!(attr->flags & mask))
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
static int pp_dpm_dcefclk_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
struct device_attribute *dev_attr = &attr->dev_attr;
uint32_t gc_ver;
*states = ATTR_STATE_SUPPORTED;
if (!(attr->flags & mask)) {
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
/* dcefclk node is not available on gfx 11.0.3 sriov */
if ((gc_ver == IP_VERSION(11, 0, 3) && amdgpu_sriov_is_pp_one_vf(adev)) ||
gc_ver < IP_VERSION(9, 0, 0) ||
!amdgpu_device_has_display_hardware(adev))
*states = ATTR_STATE_UNSUPPORTED;
/* SMU MP1 does not support dcefclk level setting,
* setting should not be allowed from VF if not in one VF mode.
*/
if (gc_ver >= IP_VERSION(10, 0, 0) ||
(amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev))) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
return 0;
}
static int pp_dpm_clk_default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
struct device_attribute *dev_attr = &attr->dev_attr;
enum amdgpu_device_attr_id attr_id = attr->attr_id;
uint32_t mp1_ver = amdgpu_ip_version(adev, MP1_HWIP, 0);
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
*states = ATTR_STATE_SUPPORTED;
if (!(attr->flags & mask)) {
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
if (DEVICE_ATTR_IS(pp_dpm_socclk)) {
if (gc_ver < IP_VERSION(9, 0, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_fclk)) {
if (mp1_ver < IP_VERSION(10, 0, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_vclk)) {
if (!(gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 3) ||
gc_ver == IP_VERSION(10, 3, 6) ||
gc_ver == IP_VERSION(10, 3, 7) ||
gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(10, 1, 2) ||
gc_ver == IP_VERSION(11, 0, 0) ||
gc_ver == IP_VERSION(11, 0, 1) ||
gc_ver == IP_VERSION(11, 0, 4) ||
gc_ver == IP_VERSION(11, 5, 0) ||
gc_ver == IP_VERSION(11, 0, 2) ||
gc_ver == IP_VERSION(11, 0, 3) ||
gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4)))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_vclk1)) {
if (!((gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(11, 0, 2) ||
gc_ver == IP_VERSION(11, 0, 3)) && adev->vcn.num_vcn_inst >= 2))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_dclk)) {
if (!(gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 3) ||
gc_ver == IP_VERSION(10, 3, 6) ||
gc_ver == IP_VERSION(10, 3, 7) ||
gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(10, 1, 2) ||
gc_ver == IP_VERSION(11, 0, 0) ||
gc_ver == IP_VERSION(11, 0, 1) ||
gc_ver == IP_VERSION(11, 0, 4) ||
gc_ver == IP_VERSION(11, 5, 0) ||
gc_ver == IP_VERSION(11, 0, 2) ||
gc_ver == IP_VERSION(11, 0, 3) ||
gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4)))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_dclk1)) {
if (!((gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(11, 0, 2) ||
gc_ver == IP_VERSION(11, 0, 3)) && adev->vcn.num_vcn_inst >= 2))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_dpm_pcie)) {
if (gc_ver == IP_VERSION(9, 4, 2) ||
gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4))
*states = ATTR_STATE_UNSUPPORTED;
}
switch (gc_ver) {
case IP_VERSION(9, 4, 1):
case IP_VERSION(9, 4, 2):
/* the Mi series card does not support standalone mclk/socclk/fclk level setting */
if (DEVICE_ATTR_IS(pp_dpm_mclk) ||
DEVICE_ATTR_IS(pp_dpm_socclk) ||
DEVICE_ATTR_IS(pp_dpm_fclk)) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
break;
default:
break;
}
/* setting should not be allowed from VF if not in one VF mode */
if (amdgpu_sriov_vf(adev) && amdgpu_sriov_is_pp_one_vf(adev)) {
dev_attr->attr.mode &= ~S_IWUGO;
dev_attr->store = NULL;
}
return 0;
}
/* pm policy attributes */
struct amdgpu_pm_policy_attr {
struct device_attribute dev_attr;
enum pp_pm_policy id;
};
/**
* DOC: pm_policy
*
* Certain SOCs can support different power policies to optimize application
* performance. However, this policy is provided only at SOC level and not at a
* per-process level. This is useful especially when entire SOC is utilized for
* dedicated workload.
*
* The amdgpu driver provides a sysfs API for selecting the policy. Presently,
* only two types of policies are supported through this interface.
*
* Pstate Policy Selection - This is to select different Pstate profiles which
* decides clock/throttling preferences.
*
* XGMI PLPD Policy Selection - When multiple devices are connected over XGMI,
* this helps to select policy to be applied for per link power down.
*
* The list of available policies and policy levels vary between SOCs. They can
* be viewed under pm_policy node directory. If SOC doesn't support any policy,
* this node won't be available. The different policies supported will be
* available as separate nodes under pm_policy.
*
* cat /sys/bus/pci/devices/.../pm_policy/<policy_type>
*
* Reading the policy file shows the different levels supported. The level which
* is applied presently is denoted by * (asterisk). E.g.,
*
* .. code-block:: console
*
* cat /sys/bus/pci/devices/.../pm_policy/soc_pstate
* 0 : soc_pstate_default
* 1 : soc_pstate_0
* 2 : soc_pstate_1*
* 3 : soc_pstate_2
*
* cat /sys/bus/pci/devices/.../pm_policy/xgmi_plpd
* 0 : plpd_disallow
* 1 : plpd_default
* 2 : plpd_optimized*
*
* To apply a specific policy
*
* "echo <level> > /sys/bus/pci/devices/.../pm_policy/<policy_type>"
*
* For the levels listed in the example above, to select "plpd_optimized" for
* XGMI and "soc_pstate_2" for soc pstate policy -
*
* .. code-block:: console
*
* echo "2" > /sys/bus/pci/devices/.../pm_policy/xgmi_plpd
* echo "3" > /sys/bus/pci/devices/.../pm_policy/soc_pstate
*
*/
static ssize_t amdgpu_get_pm_policy_attr(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct amdgpu_pm_policy_attr *policy_attr;
policy_attr =
container_of(attr, struct amdgpu_pm_policy_attr, dev_attr);
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
return amdgpu_dpm_get_pm_policy_info(adev, policy_attr->id, buf);
}
static ssize_t amdgpu_set_pm_policy_attr(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct amdgpu_pm_policy_attr *policy_attr;
int ret, num_params = 0;
char delimiter[] = " \n\t";
char tmp_buf[128];
char *tmp, *param;
long val;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
count = min(count, sizeof(tmp_buf));
memcpy(tmp_buf, buf, count);
tmp_buf[count - 1] = '\0';
tmp = tmp_buf;
tmp = skip_spaces(tmp);
while ((param = strsep(&tmp, delimiter))) {
if (!strlen(param)) {
tmp = skip_spaces(tmp);
continue;
}
ret = kstrtol(param, 0, &val);
if (ret)
return -EINVAL;
num_params++;
if (num_params > 1)
return -EINVAL;
}
if (num_params != 1)
return -EINVAL;
policy_attr =
container_of(attr, struct amdgpu_pm_policy_attr, dev_attr);
ret = pm_runtime_resume_and_get(ddev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_set_pm_policy(adev, policy_attr->id, val);
pm_runtime_mark_last_busy(ddev->dev);
pm_runtime_put_autosuspend(ddev->dev);
if (ret)
return ret;
return count;
}
#define AMDGPU_PM_POLICY_ATTR(_name, _id) \
static struct amdgpu_pm_policy_attr pm_policy_attr_##_name = { \
.dev_attr = __ATTR(_name, 0644, amdgpu_get_pm_policy_attr, \
amdgpu_set_pm_policy_attr), \
.id = PP_PM_POLICY_##_id, \
};
#define AMDGPU_PM_POLICY_ATTR_VAR(_name) pm_policy_attr_##_name.dev_attr.attr
AMDGPU_PM_POLICY_ATTR(soc_pstate, SOC_PSTATE)
AMDGPU_PM_POLICY_ATTR(xgmi_plpd, XGMI_PLPD)
static struct attribute *pm_policy_attrs[] = {
&AMDGPU_PM_POLICY_ATTR_VAR(soc_pstate),
&AMDGPU_PM_POLICY_ATTR_VAR(xgmi_plpd),
NULL
};
static umode_t amdgpu_pm_policy_attr_visible(struct kobject *kobj,
struct attribute *attr, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
struct amdgpu_pm_policy_attr *policy_attr;
policy_attr =
container_of(attr, struct amdgpu_pm_policy_attr, dev_attr.attr);
if (amdgpu_dpm_get_pm_policy_info(adev, policy_attr->id, NULL) ==
-ENOENT)
return 0;
return attr->mode;
}
const struct attribute_group amdgpu_pm_policy_attr_group = {
.name = "pm_policy",
.attrs = pm_policy_attrs,
.is_visible = amdgpu_pm_policy_attr_visible,
};
static struct amdgpu_device_attr amdgpu_device_attrs[] = {
AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk1, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk1, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_dcefclk_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF,
.attr_update = pp_dpm_clk_default_attr_update),
AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC,
.attr_update = pp_od_clk_voltage_attr_update),
AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(vcn_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC),
AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RW(apu_thermal_cap, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF),
AMDGPU_DEVICE_ATTR_RO(smartshift_apu_power, ATTR_FLAG_BASIC,
.attr_update = ss_power_attr_update),
AMDGPU_DEVICE_ATTR_RO(smartshift_dgpu_power, ATTR_FLAG_BASIC,
.attr_update = ss_power_attr_update),
AMDGPU_DEVICE_ATTR_RW(smartshift_bias, ATTR_FLAG_BASIC,
.attr_update = ss_bias_attr_update),
AMDGPU_DEVICE_ATTR_RO(pm_metrics, ATTR_FLAG_BASIC,
.attr_update = amdgpu_pm_metrics_attr_update),
};
static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states)
{
struct device_attribute *dev_attr = &attr->dev_attr;
enum amdgpu_device_attr_id attr_id = attr->attr_id;
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
if (!(attr->flags & mask)) {
*states = ATTR_STATE_UNSUPPORTED;
return 0;
}
if (DEVICE_ATTR_IS(mem_busy_percent)) {
if ((adev->flags & AMD_IS_APU &&
gc_ver != IP_VERSION(9, 4, 3)) ||
gc_ver == IP_VERSION(9, 0, 1))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(vcn_busy_percent)) {
if (!(gc_ver == IP_VERSION(10, 3, 1) ||
gc_ver == IP_VERSION(10, 3, 3) ||
gc_ver == IP_VERSION(10, 3, 6) ||
gc_ver == IP_VERSION(10, 3, 7) ||
gc_ver == IP_VERSION(11, 0, 1) ||
gc_ver == IP_VERSION(11, 0, 4) ||
gc_ver == IP_VERSION(11, 5, 0)))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pcie_bw)) {
/* PCIe Perf counters won't work on APU nodes */
if (adev->flags & AMD_IS_APU ||
!adev->asic_funcs->get_pcie_usage)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(unique_id)) {
switch (gc_ver) {
case IP_VERSION(9, 0, 1):
case IP_VERSION(9, 4, 0):
case IP_VERSION(9, 4, 1):
case IP_VERSION(9, 4, 2):
case IP_VERSION(9, 4, 3):
case IP_VERSION(9, 4, 4):
case IP_VERSION(10, 3, 0):
case IP_VERSION(11, 0, 0):
case IP_VERSION(11, 0, 1):
case IP_VERSION(11, 0, 2):
case IP_VERSION(11, 0, 3):
*states = ATTR_STATE_SUPPORTED;
break;
default:
*states = ATTR_STATE_UNSUPPORTED;
}
} else if (DEVICE_ATTR_IS(pp_features)) {
if ((adev->flags & AMD_IS_APU &&
gc_ver != IP_VERSION(9, 4, 3)) ||
gc_ver < IP_VERSION(9, 0, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(gpu_metrics)) {
if (gc_ver < IP_VERSION(9, 1, 0))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_power_profile_mode)) {
if (amdgpu_dpm_get_power_profile_mode(adev, NULL) == -EOPNOTSUPP)
*states = ATTR_STATE_UNSUPPORTED;
else if ((gc_ver == IP_VERSION(10, 3, 0) ||
gc_ver == IP_VERSION(11, 0, 3)) && amdgpu_sriov_vf(adev))
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_mclk_od)) {
if (amdgpu_dpm_get_mclk_od(adev) == -EOPNOTSUPP)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(pp_sclk_od)) {
if (amdgpu_dpm_get_sclk_od(adev) == -EOPNOTSUPP)
*states = ATTR_STATE_UNSUPPORTED;
} else if (DEVICE_ATTR_IS(apu_thermal_cap)) {
u32 limit;
if (amdgpu_dpm_get_apu_thermal_limit(adev, &limit) ==
-EOPNOTSUPP)
*states = ATTR_STATE_UNSUPPORTED;
}
switch (gc_ver) {
case IP_VERSION(10, 3, 0):
if (DEVICE_ATTR_IS(power_dpm_force_performance_level) &&
amdgpu_sriov_vf(adev)) {
dev_attr->attr.mode &= ~0222;
dev_attr->store = NULL;
}
break;
default:
break;
}
return 0;
}
static int amdgpu_device_attr_create(struct amdgpu_device *adev,
struct amdgpu_device_attr *attr,
uint32_t mask, struct list_head *attr_list)
{
int ret = 0;
enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED;
struct amdgpu_device_attr_entry *attr_entry;
struct device_attribute *dev_attr;
const char *name;
int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr,
uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update;
if (!attr)
return -EINVAL;
dev_attr = &attr->dev_attr;
name = dev_attr->attr.name;
attr_update = attr->attr_update ? attr->attr_update : default_attr_update;
ret = attr_update(adev, attr, mask, &attr_states);
if (ret) {
dev_err(adev->dev, "failed to update device file %s, ret = %d\n",
name, ret);
return ret;
}
if (attr_states == ATTR_STATE_UNSUPPORTED)
return 0;
ret = device_create_file(adev->dev, dev_attr);
if (ret) {
dev_err(adev->dev, "failed to create device file %s, ret = %d\n",
name, ret);
}
attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL);
if (!attr_entry)
return -ENOMEM;
attr_entry->attr = attr;
INIT_LIST_HEAD(&attr_entry->entry);
list_add_tail(&attr_entry->entry, attr_list);
return ret;
}
static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr)
{
struct device_attribute *dev_attr = &attr->dev_attr;
device_remove_file(adev->dev, dev_attr);
}
static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev,
struct list_head *attr_list);
static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev,
struct amdgpu_device_attr *attrs,
uint32_t counts,
uint32_t mask,
struct list_head *attr_list)
{
int ret = 0;
uint32_t i = 0;
for (i = 0; i < counts; i++) {
ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list);
if (ret)
goto failed;
}
return 0;
failed:
amdgpu_device_attr_remove_groups(adev, attr_list);
return ret;
}
static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev,
struct list_head *attr_list)
{
struct amdgpu_device_attr_entry *entry, *entry_tmp;
if (list_empty(attr_list))
return ;
list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) {
amdgpu_device_attr_remove(adev, entry->attr);
list_del(&entry->entry);
kfree(entry);
}
}
static ssize_t amdgpu_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int r, temp = 0;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
switch (channel) {
case PP_TEMP_JUNCTION:
/* get current junction temperature */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP,
(void *)&temp);
break;
case PP_TEMP_EDGE:
/* get current edge temperature */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_EDGE_TEMP,
(void *)&temp);
break;
case PP_TEMP_MEM:
/* get current memory temperature */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MEM_TEMP,
(void *)&temp);
break;
default:
r = -EINVAL;
break;
}
if (r)
return r;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_temp;
else
temp = adev->pm.dpm.thermal.max_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_hotspot_temp;
else
temp = adev->pm.dpm.thermal.max_hotspot_crit_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int hyst = to_sensor_dev_attr(attr)->index;
int temp;
if (hyst)
temp = adev->pm.dpm.thermal.min_mem_temp;
else
temp = adev->pm.dpm.thermal.max_mem_crit_temp;
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int channel = to_sensor_dev_attr(attr)->index;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
return sysfs_emit(buf, "%s\n", temp_label[channel].label);
}
static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int channel = to_sensor_dev_attr(attr)->index;
int temp = 0;
if (channel >= PP_TEMP_MAX)
return -EINVAL;
switch (channel) {
case PP_TEMP_JUNCTION:
temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp;
break;
case PP_TEMP_EDGE:
temp = adev->pm.dpm.thermal.max_edge_emergency_temp;
break;
case PP_TEMP_MEM:
temp = adev->pm.dpm.thermal.max_mem_emergency_temp;
break;
}
return sysfs_emit(buf, "%d\n", temp);
}
static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(adev->dev);
if (ret <= 0)
return ret ?: -EPERM;
ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (ret)
return -EINVAL;
return sysfs_emit(buf, "%u\n", pwm_mode);
}
static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err, ret;
u32 pwm_mode;
int value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
if (value == 0)
pwm_mode = AMD_FAN_CTRL_NONE;
else if (value == 1)
pwm_mode = AMD_FAN_CTRL_MANUAL;
else if (value == 2)
pwm_mode = AMD_FAN_CTRL_AUTO;
else
return -EINVAL;
ret = pm_runtime_resume_and_get(adev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_set_fan_control_mode(adev, pwm_mode);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (ret)
return -EINVAL;
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 0);
}
static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%i\n", 255);
}
static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
err = pm_runtime_resume_and_get(adev->dev);
if (err < 0)
return err;
err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
if (err)
goto out;
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
pr_info("manual fan speed control should be enabled first\n");
err = -EINVAL;
goto out;
}
err = amdgpu_dpm_set_fan_speed_pwm(adev, value);
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_if_active(adev->dev);
if (err <= 0)
return err ?: -EPERM;
err = amdgpu_dpm_get_fan_speed_pwm(adev, &speed);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 speed = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_if_active(adev->dev);
if (err <= 0)
return err ?: -EPERM;
err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", speed);
}
static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 min_rpm = 0;
int r;
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM,
(void *)&min_rpm);
if (r)
return r;
return sysfs_emit(buf, "%d\n", min_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 max_rpm = 0;
int r;
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM,
(void *)&max_rpm);
if (r)
return r;
return sysfs_emit(buf, "%d\n", max_rpm);
}
static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 rpm = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = pm_runtime_get_if_active(adev->dev);
if (err <= 0)
return err ?: -EPERM;
err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return sysfs_emit(buf, "%i\n", rpm);
}
static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
u32 value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
err = pm_runtime_resume_and_get(adev->dev);
if (err < 0)
return err;
err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
if (err)
goto out;
if (pwm_mode != AMD_FAN_CTRL_MANUAL) {
err = -ENODATA;
goto out;
}
err = amdgpu_dpm_set_fan_speed_rpm(adev, value);
out:
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 pwm_mode = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(adev->dev);
if (ret <= 0)
return ret ?: -EPERM;
ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (ret)
return -EINVAL;
return sysfs_emit(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1);
}
static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int err;
int value;
u32 pwm_mode;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
err = kstrtoint(buf, 10, &value);
if (err)
return err;
if (value == 0)
pwm_mode = AMD_FAN_CTRL_AUTO;
else if (value == 1)
pwm_mode = AMD_FAN_CTRL_MANUAL;
else
return -EINVAL;
err = pm_runtime_resume_and_get(adev->dev);
if (err < 0)
return err;
err = amdgpu_dpm_set_fan_control_mode(adev, pwm_mode);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return -EINVAL;
return count;
}
static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 vddgfx;
int r;
/* get the voltage */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VDDGFX,
(void *)&vddgfx);
if (r)
return r;
return sysfs_emit(buf, "%d\n", vddgfx);
}
static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "vddgfx\n");
}
static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
u32 vddnb;
int r;
/* only APUs have vddnb */
if (!(adev->flags & AMD_IS_APU))
return -EINVAL;
/* get the voltage */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_VDDNB,
(void *)&vddnb);
if (r)
return r;
return sysfs_emit(buf, "%d\n", vddnb);
}
static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "vddnb\n");
}
static int amdgpu_hwmon_get_power(struct device *dev,
enum amd_pp_sensors sensor)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
unsigned int uw;
u32 query = 0;
int r;
r = amdgpu_hwmon_get_sensor_generic(adev, sensor, (void *)&query);
if (r)
return r;
/* convert to microwatts */
uw = (query >> 8) * 1000000 + (query & 0xff) * 1000;
return uw;
}
static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t val;
val = amdgpu_hwmon_get_power(dev, AMDGPU_PP_SENSOR_GPU_AVG_POWER);
if (val < 0)
return val;
return sysfs_emit(buf, "%zd\n", val);
}
static ssize_t amdgpu_hwmon_show_power_input(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t val;
val = amdgpu_hwmon_get_power(dev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER);
if (val < 0)
return val;
return sysfs_emit(buf, "%zd\n", val);
}
static ssize_t amdgpu_hwmon_show_power_cap_generic(struct device *dev,
struct device_attribute *attr,
char *buf,
enum pp_power_limit_level pp_limit_level)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
enum pp_power_type power_type = to_sensor_dev_attr(attr)->index;
uint32_t limit;
ssize_t size;
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_get_if_active(adev->dev);
if (r <= 0)
return r ?: -EPERM;
r = amdgpu_dpm_get_power_limit(adev, &limit,
pp_limit_level, power_type);
if (!r)
size = sysfs_emit(buf, "%u\n", limit * 1000000);
else
size = sysfs_emit(buf, "\n");
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
return size;
}
static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MIN);
}
static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MAX);
}
static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_CURRENT);
}
static ssize_t amdgpu_hwmon_show_power_cap_default(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_DEFAULT);
}
static ssize_t amdgpu_hwmon_show_power_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
if (gc_ver == IP_VERSION(10, 3, 1))
return sysfs_emit(buf, "%s\n",
to_sensor_dev_attr(attr)->index == PP_PWR_TYPE_FAST ?
"fastPPT" : "slowPPT");
else
return sysfs_emit(buf, "PPT\n");
}
static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
int limit_type = to_sensor_dev_attr(attr)->index;
int err;
u32 value;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
if (amdgpu_sriov_vf(adev))
return -EINVAL;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
value = value / 1000000; /* convert to Watt */
value |= limit_type << 24;
err = pm_runtime_resume_and_get(adev->dev);
if (err < 0)
return err;
err = amdgpu_dpm_set_power_limit(adev, value);
pm_runtime_mark_last_busy(adev_to_drm(adev)->dev);
pm_runtime_put_autosuspend(adev_to_drm(adev)->dev);
if (err)
return err;
return count;
}
static ssize_t amdgpu_hwmon_show_sclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t sclk;
int r;
/* get the sclk */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GFX_SCLK,
(void *)&sclk);
if (r)
return r;
return sysfs_emit(buf, "%u\n", sclk * 10 * 1000);
}
static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "sclk\n");
}
static ssize_t amdgpu_hwmon_show_mclk(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct amdgpu_device *adev = dev_get_drvdata(dev);
uint32_t mclk;
int r;
/* get the sclk */
r = amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GFX_MCLK,
(void *)&mclk);
if (r)
return r;
return sysfs_emit(buf, "%u\n", mclk * 10 * 1000);
}
static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "mclk\n");
}
/**
* DOC: hwmon
*
* The amdgpu driver exposes the following sensor interfaces:
*
* - GPU temperature (via the on-die sensor)
*
* - GPU voltage
*
* - Northbridge voltage (APUs only)
*
* - GPU power
*
* - GPU fan
*
* - GPU gfx/compute engine clock
*
* - GPU memory clock (dGPU only)
*
* hwmon interfaces for GPU temperature:
*
* - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius
* - temp2_input and temp3_input are supported on SOC15 dGPUs only
*
* - temp[1-3]_label: temperature channel label
* - temp2_label and temp3_label are supported on SOC15 dGPUs only
*
* - temp[1-3]_crit: temperature critical max value in millidegrees Celsius
* - temp2_crit and temp3_crit are supported on SOC15 dGPUs only
*
* - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius
* - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only
*
* - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius
* - these are supported on SOC15 dGPUs only
*
* hwmon interfaces for GPU voltage:
*
* - in0_input: the voltage on the GPU in millivolts
*
* - in1_input: the voltage on the Northbridge in millivolts
*
* hwmon interfaces for GPU power:
*
* - power1_average: average power used by the SoC in microWatts. On APUs this includes the CPU.
*
* - power1_input: instantaneous power used by the SoC in microWatts. On APUs this includes the CPU.
*
* - power1_cap_min: minimum cap supported in microWatts
*
* - power1_cap_max: maximum cap supported in microWatts
*
* - power1_cap: selected power cap in microWatts
*
* hwmon interfaces for GPU fan:
*
* - pwm1: pulse width modulation fan level (0-255)
*
* - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control)
*
* - pwm1_min: pulse width modulation fan control minimum level (0)
*
* - pwm1_max: pulse width modulation fan control maximum level (255)
*
* - fan1_min: a minimum value Unit: revolution/min (RPM)
*
* - fan1_max: a maximum value Unit: revolution/max (RPM)
*
* - fan1_input: fan speed in RPM
*
* - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM)
*
* - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable
*
* NOTE: DO NOT set the fan speed via "pwm1" and "fan[1-\*]_target" interfaces at the same time.
* That will get the former one overridden.
*
* hwmon interfaces for GPU clocks:
*
* - freq1_input: the gfx/compute clock in hertz
*
* - freq2_input: the memory clock in hertz
*
* You can use hwmon tools like sensors to view this information on your system.
*
*/
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0);
static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1);
static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE);
static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION);
static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM);
static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0);
static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0);
static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0);
static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0);
static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, amdgpu_hwmon_show_power_input, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0);
static SENSOR_DEVICE_ATTR(power1_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 0);
static SENSOR_DEVICE_ATTR(power1_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 0);
static SENSOR_DEVICE_ATTR(power2_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 1);
static SENSOR_DEVICE_ATTR(power2_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 1);
static SENSOR_DEVICE_ATTR(power2_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 1);
static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0);
static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0);
static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0);
static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0);
static struct attribute *hwmon_attributes[] = {
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_crit.dev_attr.attr,
&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_emergency.dev_attr.attr,
&sensor_dev_attr_temp2_emergency.dev_attr.attr,
&sensor_dev_attr_temp3_emergency.dev_attr.attr,
&sensor_dev_attr_temp1_label.dev_attr.attr,
&sensor_dev_attr_temp2_label.dev_attr.attr,
&sensor_dev_attr_temp3_label.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_min.dev_attr.attr,
&sensor_dev_attr_pwm1_max.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_max.dev_attr.attr,
&sensor_dev_attr_fan1_target.dev_attr.attr,
&sensor_dev_attr_fan1_enable.dev_attr.attr,
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_label.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_label.dev_attr.attr,
&sensor_dev_attr_power1_average.dev_attr.attr,
&sensor_dev_attr_power1_input.dev_attr.attr,
&sensor_dev_attr_power1_cap_max.dev_attr.attr,
&sensor_dev_attr_power1_cap_min.dev_attr.attr,
&sensor_dev_attr_power1_cap.dev_attr.attr,
&sensor_dev_attr_power1_cap_default.dev_attr.attr,
&sensor_dev_attr_power1_label.dev_attr.attr,
&sensor_dev_attr_power2_average.dev_attr.attr,
&sensor_dev_attr_power2_cap_max.dev_attr.attr,
&sensor_dev_attr_power2_cap_min.dev_attr.attr,
&sensor_dev_attr_power2_cap.dev_attr.attr,
&sensor_dev_attr_power2_cap_default.dev_attr.attr,
&sensor_dev_attr_power2_label.dev_attr.attr,
&sensor_dev_attr_freq1_input.dev_attr.attr,
&sensor_dev_attr_freq1_label.dev_attr.attr,
&sensor_dev_attr_freq2_input.dev_attr.attr,
&sensor_dev_attr_freq2_label.dev_attr.attr,
NULL
};
static umode_t hwmon_attributes_visible(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = kobj_to_dev(kobj);
struct amdgpu_device *adev = dev_get_drvdata(dev);
umode_t effective_mode = attr->mode;
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
uint32_t tmp;
/* under pp one vf mode manage of hwmon attributes is not supported */
if (amdgpu_sriov_is_pp_one_vf(adev))
effective_mode &= ~S_IWUSR;
/* Skip fan attributes if fan is not present */
if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* Skip fan attributes on APU */
if ((adev->flags & AMD_IS_APU) &&
(attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* Skip crit temp on APU */
if ((((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ)) ||
(gc_ver == IP_VERSION(9, 4, 3) || gc_ver == IP_VERSION(9, 4, 4))) &&
(attr == &sensor_dev_attr_temp1_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr))
return 0;
/* Skip limit attributes if DPM is not enabled */
if (!adev->pm.dpm_enabled &&
(attr == &sensor_dev_attr_temp1_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_input.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_target.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_enable.dev_attr.attr))
return 0;
/* mask fan attributes if we have no bindings for this asic to expose */
if (((amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */
((amdgpu_dpm_get_fan_control_mode(adev, NULL) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */
effective_mode &= ~S_IRUGO;
if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */
((amdgpu_dpm_set_fan_control_mode(adev, U32_MAX) == -EOPNOTSUPP) &&
attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */
effective_mode &= ~S_IWUSR;
/* not implemented yet for APUs other than GC 10.3.1 (vangogh) and 9.4.3 */
if (((adev->family == AMDGPU_FAMILY_SI) ||
((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(10, 3, 1)) &&
(gc_ver != IP_VERSION(9, 4, 3) && gc_ver != IP_VERSION(9, 4, 4)))) &&
(attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap.dev_attr.attr ||
attr == &sensor_dev_attr_power1_cap_default.dev_attr.attr))
return 0;
/* not implemented yet for APUs having < GC 9.3.0 (Renoir) */
if (((adev->family == AMDGPU_FAMILY_SI) ||
((adev->flags & AMD_IS_APU) && (gc_ver < IP_VERSION(9, 3, 0)))) &&
(attr == &sensor_dev_attr_power1_average.dev_attr.attr))
return 0;
/* not all products support both average and instantaneous */
if (attr == &sensor_dev_attr_power1_average.dev_attr.attr &&
amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_AVG_POWER, (void *)&tmp) == -EOPNOTSUPP)
return 0;
if (attr == &sensor_dev_attr_power1_input.dev_attr.attr &&
amdgpu_hwmon_get_sensor_generic(adev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER, (void *)&tmp) == -EOPNOTSUPP)
return 0;
/* hide max/min values if we can't both query and manage the fan */
if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) &&
(amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) &&
(amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) &&
(amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP)) &&
(attr == &sensor_dev_attr_pwm1_max.dev_attr.attr ||
attr == &sensor_dev_attr_pwm1_min.dev_attr.attr))
return 0;
if ((amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) &&
(amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP) &&
(attr == &sensor_dev_attr_fan1_max.dev_attr.attr ||
attr == &sensor_dev_attr_fan1_min.dev_attr.attr))
return 0;
if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */
adev->family == AMDGPU_FAMILY_KV || /* not implemented yet */
(gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4))) &&
(attr == &sensor_dev_attr_in0_input.dev_attr.attr ||
attr == &sensor_dev_attr_in0_label.dev_attr.attr))
return 0;
/* only APUs other than gc 9,4,3 have vddnb */
if ((!(adev->flags & AMD_IS_APU) ||
(gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4))) &&
(attr == &sensor_dev_attr_in1_input.dev_attr.attr ||
attr == &sensor_dev_attr_in1_label.dev_attr.attr))
return 0;
/* no mclk on APUs other than gc 9,4,3*/
if (((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(9, 4, 3))) &&
(attr == &sensor_dev_attr_freq2_input.dev_attr.attr ||
attr == &sensor_dev_attr_freq2_label.dev_attr.attr))
return 0;
if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) &&
(gc_ver != IP_VERSION(9, 4, 3) && gc_ver != IP_VERSION(9, 4, 4)) &&
(attr == &sensor_dev_attr_temp2_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_label.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_crit.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_label.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_crit.dev_attr.attr))
return 0;
/* hotspot temperature for gc 9,4,3*/
if (gc_ver == IP_VERSION(9, 4, 3) ||
gc_ver == IP_VERSION(9, 4, 4)) {
if (attr == &sensor_dev_attr_temp1_input.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_label.dev_attr.attr)
return 0;
if (attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr)
return attr->mode;
}
/* only SOC15 dGPUs support hotspot and mem temperatures */
if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) &&
(attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr ||
attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr ||
attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr))
return 0;
/* only Vangogh has fast PPT limit and power labels */
if (!(gc_ver == IP_VERSION(10, 3, 1)) &&
(attr == &sensor_dev_attr_power2_average.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap_max.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap_min.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap.dev_attr.attr ||
attr == &sensor_dev_attr_power2_cap_default.dev_attr.attr ||
attr == &sensor_dev_attr_power2_label.dev_attr.attr))
return 0;
return effective_mode;
}
static const struct attribute_group hwmon_attrgroup = {
.attrs = hwmon_attributes,
.is_visible = hwmon_attributes_visible,
};
static const struct attribute_group *hwmon_groups[] = {
&hwmon_attrgroup,
NULL
};
static int amdgpu_retrieve_od_settings(struct amdgpu_device *adev,
enum pp_clock_type od_type,
char *buf)
{
int size = 0;
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = pm_runtime_get_if_active(adev->dev);
if (ret <= 0)
return ret ?: -EPERM;
size = amdgpu_dpm_print_clock_levels(adev, od_type, buf);
if (size == 0)
size = sysfs_emit(buf, "\n");
pm_runtime_put_autosuspend(adev->dev);
return size;
}
static int parse_input_od_command_lines(const char *buf,
size_t count,
u32 *type,
long *params,
uint32_t *num_of_params)
{
const char delimiter[3] = {' ', '\n', '\0'};
uint32_t parameter_size = 0;
char buf_cpy[128] = {0};
char *tmp_str, *sub_str;
int ret;
if (count > sizeof(buf_cpy) - 1)
return -EINVAL;
memcpy(buf_cpy, buf, count);
tmp_str = buf_cpy;
/* skip heading spaces */
while (isspace(*tmp_str))
tmp_str++;
switch (*tmp_str) {
case 'c':
*type = PP_OD_COMMIT_DPM_TABLE;
return 0;
case 'r':
params[parameter_size] = *type;
*num_of_params = 1;
*type = PP_OD_RESTORE_DEFAULT_TABLE;
return 0;
default:
break;
}
while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) {
if (strlen(sub_str) == 0)
continue;
ret = kstrtol(sub_str, 0, &params[parameter_size]);
if (ret)
return -EINVAL;
parameter_size++;
while (isspace(*tmp_str))
tmp_str++;
}
*num_of_params = parameter_size;
return 0;
}
static int
amdgpu_distribute_custom_od_settings(struct amdgpu_device *adev,
enum PP_OD_DPM_TABLE_COMMAND cmd_type,
const char *in_buf,
size_t count)
{
uint32_t parameter_size = 0;
long parameter[64];
int ret;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = parse_input_od_command_lines(in_buf,
count,
&cmd_type,
parameter,
&parameter_size);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(adev->dev);
if (ret < 0)
return ret;
ret = amdgpu_dpm_odn_edit_dpm_table(adev,
cmd_type,
parameter,
parameter_size);
if (ret)
goto err_out;
if (cmd_type == PP_OD_COMMIT_DPM_TABLE) {
ret = amdgpu_dpm_dispatch_task(adev,
AMD_PP_TASK_READJUST_POWER_STATE,
NULL);
if (ret)
goto err_out;
}
pm_runtime_mark_last_busy(adev->dev);
pm_runtime_put_autosuspend(adev->dev);
return count;
err_out:
pm_runtime_mark_last_busy(adev->dev);
pm_runtime_put_autosuspend(adev->dev);
return ret;
}
/**
* DOC: fan_curve
*
* The amdgpu driver provides a sysfs API for checking and adjusting the fan
* control curve line.
*
* Reading back the file shows you the current settings(temperature in Celsius
* degree and fan speed in pwm) applied to every anchor point of the curve line
* and their permitted ranges if changable.
*
* Writing a desired string(with the format like "anchor_point_index temperature
* fan_speed_in_pwm") to the file, change the settings for the specific anchor
* point accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them
*
* There are two fan control modes supported: auto and manual. With auto mode,
* PMFW handles the fan speed control(how fan speed reacts to ASIC temperature).
* While with manual mode, users can set their own fan curve line as what
* described here. Normally the ASIC is booted up with auto mode. Any
* settings via this interface will switch the fan control to manual mode
* implicitly.
*/
static ssize_t fan_curve_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_CURVE, buf);
}
static ssize_t fan_curve_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_FAN_CURVE,
buf,
count);
}
static umode_t fan_curve_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_CURVE_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_CURVE_SET)
umode |= S_IWUSR;
return umode;
}
/**
* DOC: acoustic_limit_rpm_threshold
*
* The amdgpu driver provides a sysfs API for checking and adjusting the
* acoustic limit in RPM for fan control.
*
* Reading back the file shows you the current setting and the permitted
* ranges if changable.
*
* Writing an integer to the file, change the setting accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them
*
* This setting works under auto fan control mode only. It adjusts the PMFW's
* behavior about the maximum speed in RPM the fan can spin. Setting via this
* interface will switch the fan control to auto mode implicitly.
*/
static ssize_t acoustic_limit_threshold_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_ACOUSTIC_LIMIT, buf);
}
static ssize_t acoustic_limit_threshold_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_ACOUSTIC_LIMIT,
buf,
count);
}
static umode_t acoustic_limit_threshold_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_LIMIT_THRESHOLD_SET)
umode |= S_IWUSR;
return umode;
}
/**
* DOC: acoustic_target_rpm_threshold
*
* The amdgpu driver provides a sysfs API for checking and adjusting the
* acoustic target in RPM for fan control.
*
* Reading back the file shows you the current setting and the permitted
* ranges if changable.
*
* Writing an integer to the file, change the setting accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them
*
* This setting works under auto fan control mode only. It can co-exist with
* other settings which can work also under auto mode. It adjusts the PMFW's
* behavior about the maximum speed in RPM the fan can spin when ASIC
* temperature is not greater than target temperature. Setting via this
* interface will switch the fan control to auto mode implicitly.
*/
static ssize_t acoustic_target_threshold_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_ACOUSTIC_TARGET, buf);
}
static ssize_t acoustic_target_threshold_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_ACOUSTIC_TARGET,
buf,
count);
}
static umode_t acoustic_target_threshold_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_ACOUSTIC_TARGET_THRESHOLD_SET)
umode |= S_IWUSR;
return umode;
}
/**
* DOC: fan_target_temperature
*
* The amdgpu driver provides a sysfs API for checking and adjusting the
* target tempeature in Celsius degree for fan control.
*
* Reading back the file shows you the current setting and the permitted
* ranges if changable.
*
* Writing an integer to the file, change the setting accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them
*
* This setting works under auto fan control mode only. It can co-exist with
* other settings which can work also under auto mode. Paring with the
* acoustic_target_rpm_threshold setting, they define the maximum speed in
* RPM the fan can spin when ASIC temperature is not greater than target
* temperature. Setting via this interface will switch the fan control to
* auto mode implicitly.
*/
static ssize_t fan_target_temperature_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_TARGET_TEMPERATURE, buf);
}
static ssize_t fan_target_temperature_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_FAN_TARGET_TEMPERATURE,
buf,
count);
}
static umode_t fan_target_temperature_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_TARGET_TEMPERATURE_SET)
umode |= S_IWUSR;
return umode;
}
/**
* DOC: fan_minimum_pwm
*
* The amdgpu driver provides a sysfs API for checking and adjusting the
* minimum fan speed in PWM.
*
* Reading back the file shows you the current setting and the permitted
* ranges if changable.
*
* Writing an integer to the file, change the setting accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them
*
* This setting works under auto fan control mode only. It can co-exist with
* other settings which can work also under auto mode. It adjusts the PMFW's
* behavior about the minimum fan speed in PWM the fan should spin. Setting
* via this interface will switch the fan control to auto mode implicitly.
*/
static ssize_t fan_minimum_pwm_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_MINIMUM_PWM, buf);
}
static ssize_t fan_minimum_pwm_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_FAN_MINIMUM_PWM,
buf,
count);
}
static umode_t fan_minimum_pwm_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_MINIMUM_PWM_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_MINIMUM_PWM_SET)
umode |= S_IWUSR;
return umode;
}
/**
* DOC: fan_zero_rpm_enable
*
* The amdgpu driver provides a sysfs API for checking and adjusting the
* zero RPM feature.
*
* Reading back the file shows you the current setting and the permitted
* ranges if changable.
*
* Writing an integer to the file, change the setting accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them.
*/
static ssize_t fan_zero_rpm_enable_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_ZERO_RPM_ENABLE, buf);
}
static ssize_t fan_zero_rpm_enable_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_FAN_ZERO_RPM_ENABLE,
buf,
count);
}
static umode_t fan_zero_rpm_enable_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_ZERO_RPM_ENABLE_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_ZERO_RPM_ENABLE_SET)
umode |= S_IWUSR;
return umode;
}
/**
* DOC: fan_zero_rpm_stop_temperature
*
* The amdgpu driver provides a sysfs API for checking and adjusting the
* zero RPM stop temperature feature.
*
* Reading back the file shows you the current setting and the permitted
* ranges if changable.
*
* Writing an integer to the file, change the setting accordingly.
*
* When you have finished the editing, write "c" (commit) to the file to commit
* your changes.
*
* If you want to reset to the default value, write "r" (reset) to the file to
* reset them.
*
* This setting works only if the Zero RPM setting is enabled. It adjusts the
* temperature below which the fan can stop.
*/
static ssize_t fan_zero_rpm_stop_temp_show(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_retrieve_od_settings(adev, OD_FAN_ZERO_RPM_STOP_TEMP, buf);
}
static ssize_t fan_zero_rpm_stop_temp_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf,
size_t count)
{
struct od_kobj *container = container_of(kobj, struct od_kobj, kobj);
struct amdgpu_device *adev = (struct amdgpu_device *)container->priv;
return (ssize_t)amdgpu_distribute_custom_od_settings(adev,
PP_OD_EDIT_FAN_ZERO_RPM_STOP_TEMP,
buf,
count);
}
static umode_t fan_zero_rpm_stop_temp_visible(struct amdgpu_device *adev)
{
umode_t umode = 0000;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_ZERO_RPM_STOP_TEMP_RETRIEVE)
umode |= S_IRUSR | S_IRGRP | S_IROTH;
if (adev->pm.od_feature_mask & OD_OPS_SUPPORT_FAN_ZERO_RPM_STOP_TEMP_SET)
umode |= S_IWUSR;
return umode;
}
static struct od_feature_set amdgpu_od_set = {
.containers = {
[0] = {
.name = "fan_ctrl",
.sub_feature = {
[0] = {
.name = "fan_curve",
.ops = {
.is_visible = fan_curve_visible,
.show = fan_curve_show,
.store = fan_curve_store,
},
},
[1] = {
.name = "acoustic_limit_rpm_threshold",
.ops = {
.is_visible = acoustic_limit_threshold_visible,
.show = acoustic_limit_threshold_show,
.store = acoustic_limit_threshold_store,
},
},
[2] = {
.name = "acoustic_target_rpm_threshold",
.ops = {
.is_visible = acoustic_target_threshold_visible,
.show = acoustic_target_threshold_show,
.store = acoustic_target_threshold_store,
},
},
[3] = {
.name = "fan_target_temperature",
.ops = {
.is_visible = fan_target_temperature_visible,
.show = fan_target_temperature_show,
.store = fan_target_temperature_store,
},
},
[4] = {
.name = "fan_minimum_pwm",
.ops = {
.is_visible = fan_minimum_pwm_visible,
.show = fan_minimum_pwm_show,
.store = fan_minimum_pwm_store,
},
},
[5] = {
.name = "fan_zero_rpm_enable",
.ops = {
.is_visible = fan_zero_rpm_enable_visible,
.show = fan_zero_rpm_enable_show,
.store = fan_zero_rpm_enable_store,
},
},
[6] = {
.name = "fan_zero_rpm_stop_temperature",
.ops = {
.is_visible = fan_zero_rpm_stop_temp_visible,
.show = fan_zero_rpm_stop_temp_show,
.store = fan_zero_rpm_stop_temp_store,
},
},
},
},
},
};
static void od_kobj_release(struct kobject *kobj)
{
struct od_kobj *od_kobj = container_of(kobj, struct od_kobj, kobj);
kfree(od_kobj);
}
static const struct kobj_type od_ktype = {
.release = od_kobj_release,
.sysfs_ops = &kobj_sysfs_ops,
};
static void amdgpu_od_set_fini(struct amdgpu_device *adev)
{
struct od_kobj *container, *container_next;
struct od_attribute *attribute, *attribute_next;
if (list_empty(&adev->pm.od_kobj_list))
return;
list_for_each_entry_safe(container, container_next,
&adev->pm.od_kobj_list, entry) {
list_del(&container->entry);
list_for_each_entry_safe(attribute, attribute_next,
&container->attribute, entry) {
list_del(&attribute->entry);
sysfs_remove_file(&container->kobj,
&attribute->attribute.attr);
kfree(attribute);
}
kobject_put(&container->kobj);
}
}
static bool amdgpu_is_od_feature_supported(struct amdgpu_device *adev,
struct od_feature_ops *feature_ops)
{
umode_t mode;
if (!feature_ops->is_visible)
return false;
/*
* If the feature has no user read and write mode set,
* we can assume the feature is actually not supported.(?)
* And the revelant sysfs interface should not be exposed.
*/
mode = feature_ops->is_visible(adev);
if (mode & (S_IRUSR | S_IWUSR))
return true;
return false;
}
static bool amdgpu_od_is_self_contained(struct amdgpu_device *adev,
struct od_feature_container *container)
{
int i;
/*
* If there is no valid entry within the container, the container
* is recognized as a self contained container. And the valid entry
* here means it has a valid naming and it is visible/supported by
* the ASIC.
*/
for (i = 0; i < ARRAY_SIZE(container->sub_feature); i++) {
if (container->sub_feature[i].name &&
amdgpu_is_od_feature_supported(adev,
&container->sub_feature[i].ops))
return false;
}
return true;
}
static int amdgpu_od_set_init(struct amdgpu_device *adev)
{
struct od_kobj *top_set, *sub_set;
struct od_attribute *attribute;
struct od_feature_container *container;
struct od_feature_item *feature;
int i, j;
int ret;
/* Setup the top `gpu_od` directory which holds all other OD interfaces */
top_set = kzalloc(sizeof(*top_set), GFP_KERNEL);
if (!top_set)
return -ENOMEM;
list_add(&top_set->entry, &adev->pm.od_kobj_list);
ret = kobject_init_and_add(&top_set->kobj,
&od_ktype,
&adev->dev->kobj,
"%s",
"gpu_od");
if (ret)
goto err_out;
INIT_LIST_HEAD(&top_set->attribute);
top_set->priv = adev;
for (i = 0; i < ARRAY_SIZE(amdgpu_od_set.containers); i++) {
container = &amdgpu_od_set.containers[i];
if (!container->name)
continue;
/*
* If there is valid entries within the container, the container
* will be presented as a sub directory and all its holding entries
* will be presented as plain files under it.
* While if there is no valid entry within the container, the container
* itself will be presented as a plain file under top `gpu_od` directory.
*/
if (amdgpu_od_is_self_contained(adev, container)) {
if (!amdgpu_is_od_feature_supported(adev,
&container->ops))
continue;
/*
* The container is presented as a plain file under top `gpu_od`
* directory.
*/
attribute = kzalloc(sizeof(*attribute), GFP_KERNEL);
if (!attribute) {
ret = -ENOMEM;
goto err_out;
}
list_add(&attribute->entry, &top_set->attribute);
attribute->attribute.attr.mode =
container->ops.is_visible(adev);
attribute->attribute.attr.name = container->name;
attribute->attribute.show =
container->ops.show;
attribute->attribute.store =
container->ops.store;
ret = sysfs_create_file(&top_set->kobj,
&attribute->attribute.attr);
if (ret)
goto err_out;
} else {
/* The container is presented as a sub directory. */
sub_set = kzalloc(sizeof(*sub_set), GFP_KERNEL);
if (!sub_set) {
ret = -ENOMEM;
goto err_out;
}
list_add(&sub_set->entry, &adev->pm.od_kobj_list);
ret = kobject_init_and_add(&sub_set->kobj,
&od_ktype,
&top_set->kobj,
"%s",
container->name);
if (ret)
goto err_out;
INIT_LIST_HEAD(&sub_set->attribute);
sub_set->priv = adev;
for (j = 0; j < ARRAY_SIZE(container->sub_feature); j++) {
feature = &container->sub_feature[j];
if (!feature->name)
continue;
if (!amdgpu_is_od_feature_supported(adev,
&feature->ops))
continue;
/*
* With the container presented as a sub directory, the entry within
* it is presented as a plain file under the sub directory.
*/
attribute = kzalloc(sizeof(*attribute), GFP_KERNEL);
if (!attribute) {
ret = -ENOMEM;
goto err_out;
}
list_add(&attribute->entry, &sub_set->attribute);
attribute->attribute.attr.mode =
feature->ops.is_visible(adev);
attribute->attribute.attr.name = feature->name;
attribute->attribute.show =
feature->ops.show;
attribute->attribute.store =
feature->ops.store;
ret = sysfs_create_file(&sub_set->kobj,
&attribute->attribute.attr);
if (ret)
goto err_out;
}
}
}
/*
* If gpu_od is the only member in the list, that means gpu_od is an
* empty directory, so remove it.
*/
if (list_is_singular(&adev->pm.od_kobj_list))
goto err_out;
return 0;
err_out:
amdgpu_od_set_fini(adev);
return ret;
}
int amdgpu_pm_sysfs_init(struct amdgpu_device *adev)
{
enum amdgpu_sriov_vf_mode mode;
uint32_t mask = 0;
int ret;
if (adev->pm.sysfs_initialized)
return 0;
INIT_LIST_HEAD(&adev->pm.pm_attr_list);
if (adev->pm.dpm_enabled == 0)
return 0;
mode = amdgpu_virt_get_sriov_vf_mode(adev);
/* under multi-vf mode, the hwmon attributes are all not supported */
if (mode != SRIOV_VF_MODE_MULTI_VF) {
adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev,
DRIVER_NAME, adev,
hwmon_groups);
if (IS_ERR(adev->pm.int_hwmon_dev)) {
ret = PTR_ERR(adev->pm.int_hwmon_dev);
dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret);
return ret;
}
}
switch (mode) {
case SRIOV_VF_MODE_ONE_VF:
mask = ATTR_FLAG_ONEVF;
break;
case SRIOV_VF_MODE_MULTI_VF:
mask = 0;
break;
case SRIOV_VF_MODE_BARE_METAL:
default:
mask = ATTR_FLAG_MASK_ALL;
break;
}
ret = amdgpu_device_attr_create_groups(adev,
amdgpu_device_attrs,
ARRAY_SIZE(amdgpu_device_attrs),
mask,
&adev->pm.pm_attr_list);
if (ret)
goto err_out0;
if (amdgpu_dpm_is_overdrive_supported(adev)) {
ret = amdgpu_od_set_init(adev);
if (ret)
goto err_out1;
} else if (adev->pm.pp_feature & PP_OVERDRIVE_MASK) {
dev_info(adev->dev, "overdrive feature is not supported\n");
}
if (amdgpu_dpm_get_pm_policy_info(adev, PP_PM_POLICY_NONE, NULL) !=
-EOPNOTSUPP) {
ret = devm_device_add_group(adev->dev,
&amdgpu_pm_policy_attr_group);
if (ret)
goto err_out0;
}
adev->pm.sysfs_initialized = true;
return 0;
err_out1:
amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list);
err_out0:
if (adev->pm.int_hwmon_dev)
hwmon_device_unregister(adev->pm.int_hwmon_dev);
return ret;
}
void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev)
{
amdgpu_od_set_fini(adev);
if (adev->pm.int_hwmon_dev)
hwmon_device_unregister(adev->pm.int_hwmon_dev);
amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list);
}
/*
* Debugfs info
*/
#if defined(CONFIG_DEBUG_FS)
static void amdgpu_debugfs_prints_cpu_info(struct seq_file *m,
struct amdgpu_device *adev)
{
uint16_t *p_val;
uint32_t size;
int i;
uint32_t num_cpu_cores = amdgpu_dpm_get_num_cpu_cores(adev);
if (amdgpu_dpm_is_cclk_dpm_supported(adev)) {
p_val = kcalloc(num_cpu_cores, sizeof(uint16_t),
GFP_KERNEL);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_CPU_CLK,
(void *)p_val, &size)) {
for (i = 0; i < num_cpu_cores; i++)
seq_printf(m, "\t%u MHz (CPU%d)\n",
*(p_val + i), i);
}
kfree(p_val);
}
}
static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev)
{
uint32_t mp1_ver = amdgpu_ip_version(adev, MP1_HWIP, 0);
uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
uint32_t value;
uint64_t value64 = 0;
uint32_t query = 0;
int size;
/* GPU Clocks */
size = sizeof(value);
seq_printf(m, "GFX Clocks and Power:\n");
amdgpu_debugfs_prints_cpu_info(m, adev);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDGFX)\n", value);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size))
seq_printf(m, "\t%u mV (VDDNB)\n", value);
size = sizeof(uint32_t);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_AVG_POWER, (void *)&query, &size)) {
if (adev->flags & AMD_IS_APU)
seq_printf(m, "\t%u.%02u W (average SoC including CPU)\n", query >> 8, query & 0xff);
else
seq_printf(m, "\t%u.%02u W (average SoC)\n", query >> 8, query & 0xff);
}
size = sizeof(uint32_t);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_INPUT_POWER, (void *)&query, &size)) {
if (adev->flags & AMD_IS_APU)
seq_printf(m, "\t%u.%02u W (current SoC including CPU)\n", query >> 8, query & 0xff);
else
seq_printf(m, "\t%u.%02u W (current SoC)\n", query >> 8, query & 0xff);
}
size = sizeof(value);
seq_printf(m, "\n");
/* GPU Temp */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size))
seq_printf(m, "GPU Temperature: %u C\n", value/1000);
/* GPU Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size))
seq_printf(m, "GPU Load: %u %%\n", value);
/* MEM Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size))
seq_printf(m, "MEM Load: %u %%\n", value);
/* VCN Load */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_LOAD, (void *)&value, &size))
seq_printf(m, "VCN Load: %u %%\n", value);
seq_printf(m, "\n");
/* SMC feature mask */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size))
seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64);
/* ASICs greater than CHIP_VEGA20 supports these sensors */
if (gc_ver != IP_VERSION(9, 4, 0) && mp1_ver > IP_VERSION(9, 0, 0)) {
/* VCN clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "VCN: Powered down\n");
} else {
seq_printf(m, "VCN: Powered up\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (DCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (VCLK)\n", value/100);
}
}
seq_printf(m, "\n");
} else {
/* UVD clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "UVD: Powered down\n");
} else {
seq_printf(m, "UVD: Powered up\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (DCLK)\n", value/100);
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (VCLK)\n", value/100);
}
}
seq_printf(m, "\n");
/* VCE clocks */
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) {
if (!value) {
seq_printf(m, "VCE: Powered down\n");
} else {
seq_printf(m, "VCE: Powered up\n");
if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size))
seq_printf(m, "\t%u MHz (ECCLK)\n", value/100);
}
}
}
return 0;
}
static const struct cg_flag_name clocks[] = {
{AMD_CG_SUPPORT_GFX_FGCG, "Graphics Fine Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"},
{AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"},
{AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"},
{AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"},
{AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"},
{AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"},
{AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"},
{AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"},
{AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"},
{AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"},
{AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_VCN_MGCG, "VCN Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_HDP_DS, "Host Data Path Deep Sleep"},
{AMD_CG_SUPPORT_HDP_SD, "Host Data Path Shutdown"},
{AMD_CG_SUPPORT_IH_CG, "Interrupt Handler Clock Gating"},
{AMD_CG_SUPPORT_JPEG_MGCG, "JPEG Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_REPEATER_FGCG, "Repeater Fine Grain Clock Gating"},
{AMD_CG_SUPPORT_GFX_PERF_CLK, "Perfmon Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"},
{AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"},
{0, NULL},
};
static void amdgpu_parse_cg_state(struct seq_file *m, u64 flags)
{
int i;
for (i = 0; clocks[i].flag; i++)
seq_printf(m, "\t%s: %s\n", clocks[i].name,
(flags & clocks[i].flag) ? "On" : "Off");
}
static int amdgpu_debugfs_pm_info_show(struct seq_file *m, void *unused)
{
struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
struct drm_device *dev = adev_to_drm(adev);
u64 flags = 0;
int r;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
r = pm_runtime_resume_and_get(dev->dev);
if (r < 0)
return r;
if (amdgpu_dpm_debugfs_print_current_performance_level(adev, m)) {
r = amdgpu_debugfs_pm_info_pp(m, adev);
if (r)
goto out;
}
amdgpu_device_ip_get_clockgating_state(adev, &flags);
seq_printf(m, "Clock Gating Flags Mask: 0x%llx\n", flags);
amdgpu_parse_cg_state(m, flags);
seq_printf(m, "\n");
out:
pm_runtime_put_autosuspend(dev->dev);
return r;
}
DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_pm_info);
/*
* amdgpu_pm_priv_buffer_read - Read memory region allocated to FW
*
* Reads debug memory region allocated to PMFW
*/
static ssize_t amdgpu_pm_prv_buffer_read(struct file *f, char __user *buf,
size_t size, loff_t *pos)
{
struct amdgpu_device *adev = file_inode(f)->i_private;
size_t smu_prv_buf_size;
void *smu_prv_buf;
int ret = 0;
if (amdgpu_in_reset(adev))
return -EPERM;
if (adev->in_suspend && !adev->in_runpm)
return -EPERM;
ret = amdgpu_dpm_get_smu_prv_buf_details(adev, &smu_prv_buf, &smu_prv_buf_size);
if (ret)
return ret;
if (!smu_prv_buf || !smu_prv_buf_size)
return -EINVAL;
return simple_read_from_buffer(buf, size, pos, smu_prv_buf,
smu_prv_buf_size);
}
static const struct file_operations amdgpu_debugfs_pm_prv_buffer_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.read = amdgpu_pm_prv_buffer_read,
.llseek = default_llseek,
};
#endif
void amdgpu_debugfs_pm_init(struct amdgpu_device *adev)
{
#if defined(CONFIG_DEBUG_FS)
struct drm_minor *minor = adev_to_drm(adev)->primary;
struct dentry *root = minor->debugfs_root;
if (!adev->pm.dpm_enabled)
return;
debugfs_create_file("amdgpu_pm_info", 0444, root, adev,
&amdgpu_debugfs_pm_info_fops);
if (adev->pm.smu_prv_buffer_size > 0)
debugfs_create_file_size("amdgpu_pm_prv_buffer", 0444, root,
adev,
&amdgpu_debugfs_pm_prv_buffer_fops,
adev->pm.smu_prv_buffer_size);
amdgpu_dpm_stb_debug_fs_init(adev);
#endif
}