The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a
("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-5-miquel.raynal@bootlin.com
359 lines
7.8 KiB
C
359 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2004 Embedded Edge, LLC
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
#include <asm/mach-au1x00/au1550nd.h>
|
|
|
|
|
|
struct au1550nd_ctx {
|
|
struct nand_controller controller;
|
|
struct nand_chip chip;
|
|
|
|
int cs;
|
|
void __iomem *base;
|
|
};
|
|
|
|
static struct au1550nd_ctx *chip_to_au_ctx(struct nand_chip *this)
|
|
{
|
|
return container_of(this, struct au1550nd_ctx, chip);
|
|
}
|
|
|
|
/**
|
|
* au_write_buf - write buffer to chip
|
|
* @this: NAND chip object
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* write function for 8bit buswidth
|
|
*/
|
|
static void au_write_buf(struct nand_chip *this, const void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
|
|
const u8 *p = buf;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
writeb(p[i], ctx->base + MEM_STNAND_DATA);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* au_read_buf - read chip data into buffer
|
|
* @this: NAND chip object
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* read function for 8bit buswidth
|
|
*/
|
|
static void au_read_buf(struct nand_chip *this, void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
|
|
u8 *p = buf;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
p[i] = readb(ctx->base + MEM_STNAND_DATA);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* au_write_buf16 - write buffer to chip
|
|
* @this: NAND chip object
|
|
* @buf: data buffer
|
|
* @len: number of bytes to write
|
|
*
|
|
* write function for 16bit buswidth
|
|
*/
|
|
static void au_write_buf16(struct nand_chip *this, const void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
|
|
const u16 *p = buf;
|
|
unsigned int i;
|
|
|
|
len >>= 1;
|
|
for (i = 0; i < len; i++) {
|
|
writew(p[i], ctx->base + MEM_STNAND_DATA);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* au_read_buf16 - read chip data into buffer
|
|
* @this: NAND chip object
|
|
* @buf: buffer to store date
|
|
* @len: number of bytes to read
|
|
*
|
|
* read function for 16bit buswidth
|
|
*/
|
|
static void au_read_buf16(struct nand_chip *this, void *buf, unsigned int len)
|
|
{
|
|
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
|
|
unsigned int i;
|
|
u16 *p = buf;
|
|
|
|
len >>= 1;
|
|
for (i = 0; i < len; i++) {
|
|
p[i] = readw(ctx->base + MEM_STNAND_DATA);
|
|
wmb(); /* drain writebuffer */
|
|
}
|
|
}
|
|
|
|
static int find_nand_cs(unsigned long nand_base)
|
|
{
|
|
void __iomem *base =
|
|
(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
|
|
unsigned long addr, staddr, start, mask, end;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
addr = 0x1000 + (i * 0x10); /* CSx */
|
|
staddr = __raw_readl(base + addr + 0x08); /* STADDRx */
|
|
/* figure out the decoded range of this CS */
|
|
start = (staddr << 4) & 0xfffc0000;
|
|
mask = (staddr << 18) & 0xfffc0000;
|
|
end = (start | (start - 1)) & ~(start ^ mask);
|
|
if ((nand_base >= start) && (nand_base < end))
|
|
return i;
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int au1550nd_waitrdy(struct nand_chip *this, unsigned int timeout_ms)
|
|
{
|
|
unsigned long timeout_jiffies = jiffies;
|
|
|
|
timeout_jiffies += msecs_to_jiffies(timeout_ms) + 1;
|
|
do {
|
|
if (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1)
|
|
return 0;
|
|
|
|
usleep_range(10, 100);
|
|
} while (time_before(jiffies, timeout_jiffies));
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int au1550nd_exec_instr(struct nand_chip *this,
|
|
const struct nand_op_instr *instr)
|
|
{
|
|
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
switch (instr->type) {
|
|
case NAND_OP_CMD_INSTR:
|
|
writeb(instr->ctx.cmd.opcode,
|
|
ctx->base + MEM_STNAND_CMD);
|
|
/* Drain the writebuffer */
|
|
wmb();
|
|
break;
|
|
|
|
case NAND_OP_ADDR_INSTR:
|
|
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
|
|
writeb(instr->ctx.addr.addrs[i],
|
|
ctx->base + MEM_STNAND_ADDR);
|
|
/* Drain the writebuffer */
|
|
wmb();
|
|
}
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
if ((this->options & NAND_BUSWIDTH_16) &&
|
|
!instr->ctx.data.force_8bit)
|
|
au_read_buf16(this, instr->ctx.data.buf.in,
|
|
instr->ctx.data.len);
|
|
else
|
|
au_read_buf(this, instr->ctx.data.buf.in,
|
|
instr->ctx.data.len);
|
|
break;
|
|
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
if ((this->options & NAND_BUSWIDTH_16) &&
|
|
!instr->ctx.data.force_8bit)
|
|
au_write_buf16(this, instr->ctx.data.buf.out,
|
|
instr->ctx.data.len);
|
|
else
|
|
au_write_buf(this, instr->ctx.data.buf.out,
|
|
instr->ctx.data.len);
|
|
break;
|
|
|
|
case NAND_OP_WAITRDY_INSTR:
|
|
ret = au1550nd_waitrdy(this, instr->ctx.waitrdy.timeout_ms);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (instr->delay_ns)
|
|
ndelay(instr->delay_ns);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int au1550nd_exec_op(struct nand_chip *this,
|
|
const struct nand_operation *op,
|
|
bool check_only)
|
|
{
|
|
struct au1550nd_ctx *ctx = chip_to_au_ctx(this);
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
/* assert (force assert) chip enable */
|
|
alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
|
|
/* Drain the writebuffer */
|
|
wmb();
|
|
|
|
for (i = 0; i < op->ninstrs; i++) {
|
|
ret = au1550nd_exec_instr(this, &op->instrs[i]);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
/* deassert chip enable */
|
|
alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
|
|
/* Drain the writebuffer */
|
|
wmb();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int au1550nd_attach_chip(struct nand_chip *chip)
|
|
{
|
|
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
|
|
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops au1550nd_ops = {
|
|
.exec_op = au1550nd_exec_op,
|
|
.attach_chip = au1550nd_attach_chip,
|
|
};
|
|
|
|
static int au1550nd_probe(struct platform_device *pdev)
|
|
{
|
|
struct au1550nd_platdata *pd;
|
|
struct au1550nd_ctx *ctx;
|
|
struct nand_chip *this;
|
|
struct mtd_info *mtd;
|
|
struct resource *r;
|
|
int ret, cs;
|
|
|
|
pd = dev_get_platdata(&pdev->dev);
|
|
if (!pd) {
|
|
dev_err(&pdev->dev, "missing platform data\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!r) {
|
|
dev_err(&pdev->dev, "no NAND memory resource\n");
|
|
ret = -ENODEV;
|
|
goto out1;
|
|
}
|
|
if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
|
|
dev_err(&pdev->dev, "cannot claim NAND memory area\n");
|
|
ret = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
ctx->base = ioremap(r->start, 0x1000);
|
|
if (!ctx->base) {
|
|
dev_err(&pdev->dev, "cannot remap NAND memory area\n");
|
|
ret = -ENODEV;
|
|
goto out2;
|
|
}
|
|
|
|
this = &ctx->chip;
|
|
mtd = nand_to_mtd(this);
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
/* figure out which CS# r->start belongs to */
|
|
cs = find_nand_cs(r->start);
|
|
if (cs < 0) {
|
|
dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
|
|
ret = -ENODEV;
|
|
goto out3;
|
|
}
|
|
ctx->cs = cs;
|
|
|
|
nand_controller_init(&ctx->controller);
|
|
ctx->controller.ops = &au1550nd_ops;
|
|
this->controller = &ctx->controller;
|
|
|
|
if (pd->devwidth)
|
|
this->options |= NAND_BUSWIDTH_16;
|
|
|
|
ret = nand_scan(this, 1);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
|
|
goto out3;
|
|
}
|
|
|
|
mtd_device_register(mtd, pd->parts, pd->num_parts);
|
|
|
|
platform_set_drvdata(pdev, ctx);
|
|
|
|
return 0;
|
|
|
|
out3:
|
|
iounmap(ctx->base);
|
|
out2:
|
|
release_mem_region(r->start, resource_size(r));
|
|
out1:
|
|
kfree(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int au1550nd_remove(struct platform_device *pdev)
|
|
{
|
|
struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
|
|
struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
struct nand_chip *chip = &ctx->chip;
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
iounmap(ctx->base);
|
|
release_mem_region(r->start, 0x1000);
|
|
kfree(ctx);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver au1550nd_driver = {
|
|
.driver = {
|
|
.name = "au1550-nand",
|
|
},
|
|
.probe = au1550nd_probe,
|
|
.remove = au1550nd_remove,
|
|
};
|
|
|
|
module_platform_driver(au1550nd_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Embedded Edge, LLC");
|
|
MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
|