1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/xe/xe_devcoredump.c
John Harrison 70fb86a85d
drm/xe: Revert some changes that break a mesa debug tool
There is a mesa debug tool for decoding devcoredump files. Recent
changes to improve the devcoredump output broke that tool. So revert
the changes until the tool can be extended to support the new fields.

Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Fixes: c28fd6c358 ("drm/xe/devcoredump: Improve section headings and add tile info")
Fixes: ec1455ce7e ("drm/xe/devcoredump: Add ASCII85 dump helper function")
Cc: John Harrison <John.C.Harrison@Intel.com>
Cc: Julia Filipchuk <julia.filipchuk@intel.com>
Cc: Lucas De Marchi <lucas.demarchi@intel.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: intel-xe@lists.freedesktop.org
Reviewed-by: Jonathan Cavitt <jonathan.cavitt@intel.com>
Reviewed-by: José Roberto de Souza <jose.souza@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20241213172833.1733376-1-John.C.Harrison@Intel.com
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2024-12-13 17:01:26 -05:00

488 lines
14 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include "xe_devcoredump.h"
#include "xe_devcoredump_types.h"
#include <linux/ascii85.h>
#include <linux/devcoredump.h>
#include <generated/utsrelease.h>
#include <drm/drm_managed.h>
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_capture.h"
#include "xe_guc_ct.h"
#include "xe_guc_log.h"
#include "xe_guc_submit.h"
#include "xe_hw_engine.h"
#include "xe_module.h"
#include "xe_pm.h"
#include "xe_sched_job.h"
#include "xe_vm.h"
/**
* DOC: Xe device coredump
*
* Xe uses dev_coredump infrastructure for exposing the crash errors in a
* standardized way. Once a crash occurs, devcoredump exposes a temporary
* node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
* accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
* ``failing_device`` symlink points to the device that crashed and created the
* coredump.
*
* The following characteristics are observed by xe when creating a device
* coredump:
*
* **Snapshot at hang**:
* The 'data' file contains a snapshot of the HW and driver states at the time
* the hang happened. Due to the driver recovering from resets/crashes, it may
* not correspond to the state of the system when the file is read by
* userspace.
*
* **Coredump release**:
* After a coredump is generated, it stays in kernel memory until released by
* userpace by writing anything to it, or after an internal timer expires. The
* exact timeout may vary and should not be relied upon. Example to release
* a coredump:
*
* .. code-block:: shell
*
* $ > /sys/class/drm/card0/device/devcoredump/data
*
* **First failure only**:
* In general, the first hang is the most critical one since the following
* hangs can be a consequence of the initial hang. For this reason a snapshot
* is taken only for the first failure. Until the devcoredump is released by
* userspace or kernel, all subsequent hangs do not override the snapshot nor
* create new ones. Devcoredump has a delayed work queue that will eventually
* delete the file node and free all the dump information.
*/
#ifdef CONFIG_DEV_COREDUMP
/* 1 hour timeout */
#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
{
return container_of(coredump, struct xe_device, devcoredump);
}
static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
{
return &q->gt->uc.guc;
}
static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
struct xe_devcoredump *coredump)
{
struct xe_device *xe;
struct xe_devcoredump_snapshot *ss;
struct drm_printer p;
struct drm_print_iterator iter;
struct timespec64 ts;
int i;
xe = coredump_to_xe(coredump);
ss = &coredump->snapshot;
iter.data = buffer;
iter.start = 0;
iter.remain = count;
p = drm_coredump_printer(&iter);
drm_puts(&p, "**** Xe Device Coredump ****\n");
drm_printf(&p, "Reason: %s\n", ss->reason);
drm_puts(&p, "kernel: " UTS_RELEASE "\n");
drm_puts(&p, "module: " KBUILD_MODNAME "\n");
ts = ktime_to_timespec64(ss->snapshot_time);
drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
ts = ktime_to_timespec64(ss->boot_time);
drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid);
xe_device_snapshot_print(xe, &p);
drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
drm_puts(&p, "\n**** GuC Log ****\n");
xe_guc_log_snapshot_print(ss->guc.log, &p);
drm_puts(&p, "\n**** GuC CT ****\n");
xe_guc_ct_snapshot_print(ss->guc.ct, &p);
/*
* Don't add a new section header here because the mesa debug decoder
* tool expects the context information to be in the 'GuC CT' section.
*/
/* drm_puts(&p, "\n**** Contexts ****\n"); */
xe_guc_exec_queue_snapshot_print(ss->ge, &p);
drm_puts(&p, "\n**** Job ****\n");
xe_sched_job_snapshot_print(ss->job, &p);
drm_puts(&p, "\n**** HW Engines ****\n");
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (ss->hwe[i])
xe_engine_snapshot_print(ss->hwe[i], &p);
drm_puts(&p, "\n**** VM state ****\n");
xe_vm_snapshot_print(ss->vm, &p);
return count - iter.remain;
}
static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
{
int i;
kfree(ss->reason);
ss->reason = NULL;
xe_guc_log_snapshot_free(ss->guc.log);
ss->guc.log = NULL;
xe_guc_ct_snapshot_free(ss->guc.ct);
ss->guc.ct = NULL;
xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
ss->matched_node = NULL;
xe_guc_exec_queue_snapshot_free(ss->ge);
ss->ge = NULL;
xe_sched_job_snapshot_free(ss->job);
ss->job = NULL;
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
if (ss->hwe[i]) {
xe_hw_engine_snapshot_free(ss->hwe[i]);
ss->hwe[i] = NULL;
}
xe_vm_snapshot_free(ss->vm);
ss->vm = NULL;
}
static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
size_t count, void *data, size_t datalen)
{
struct xe_devcoredump *coredump = data;
struct xe_devcoredump_snapshot *ss;
ssize_t byte_copied;
if (!coredump)
return -ENODEV;
ss = &coredump->snapshot;
/* Ensure delayed work is captured before continuing */
flush_work(&ss->work);
mutex_lock(&coredump->lock);
if (!ss->read.buffer) {
mutex_unlock(&coredump->lock);
return -ENODEV;
}
if (offset >= ss->read.size) {
mutex_unlock(&coredump->lock);
return 0;
}
byte_copied = count < ss->read.size - offset ? count :
ss->read.size - offset;
memcpy(buffer, ss->read.buffer + offset, byte_copied);
mutex_unlock(&coredump->lock);
return byte_copied;
}
static void xe_devcoredump_free(void *data)
{
struct xe_devcoredump *coredump = data;
/* Our device is gone. Nothing to do... */
if (!data || !coredump_to_xe(coredump))
return;
cancel_work_sync(&coredump->snapshot.work);
mutex_lock(&coredump->lock);
xe_devcoredump_snapshot_free(&coredump->snapshot);
kvfree(coredump->snapshot.read.buffer);
/* To prevent stale data on next snapshot, clear everything */
memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
coredump->captured = false;
drm_info(&coredump_to_xe(coredump)->drm,
"Xe device coredump has been deleted.\n");
mutex_unlock(&coredump->lock);
}
static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
{
struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
struct xe_device *xe = coredump_to_xe(coredump);
unsigned int fw_ref;
/*
* NB: Despite passing a GFP_ flags parameter here, more allocations are done
* internally using GFP_KERNEL expliictly. Hence this call must be in the worker
* thread and not in the initial capture call.
*/
dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
xe_devcoredump_read, xe_devcoredump_free,
XE_COREDUMP_TIMEOUT_JIFFIES);
xe_pm_runtime_get(xe);
/* keep going if fw fails as we still want to save the memory and SW data */
fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
xe_vm_snapshot_capture_delayed(ss->vm);
xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
xe_pm_runtime_put(xe);
/* Calculate devcoredump size */
ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);
ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
if (!ss->read.buffer)
return;
__xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
xe_devcoredump_snapshot_free(ss);
}
static void devcoredump_snapshot(struct xe_devcoredump *coredump,
struct xe_exec_queue *q,
struct xe_sched_job *job)
{
struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
struct xe_guc *guc = exec_queue_to_guc(q);
u32 adj_logical_mask = q->logical_mask;
u32 width_mask = (0x1 << q->width) - 1;
const char *process_name = "no process";
unsigned int fw_ref;
bool cookie;
int i;
ss->snapshot_time = ktime_get_real();
ss->boot_time = ktime_get_boottime();
if (q->vm && q->vm->xef) {
process_name = q->vm->xef->process_name;
ss->pid = q->vm->xef->pid;
}
strscpy(ss->process_name, process_name);
ss->gt = q->gt;
INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
cookie = dma_fence_begin_signalling();
for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
if (adj_logical_mask & BIT(i)) {
adj_logical_mask |= width_mask << i;
i += q->width;
} else {
++i;
}
}
/* keep going if fw fails as we still want to save the memory and SW data */
fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
ss->ge = xe_guc_exec_queue_snapshot_capture(q);
if (job)
ss->job = xe_sched_job_snapshot_capture(job);
ss->vm = xe_vm_snapshot_capture(q->vm);
xe_engine_snapshot_capture_for_queue(q);
queue_work(system_unbound_wq, &ss->work);
xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
dma_fence_end_signalling(cookie);
}
/**
* xe_devcoredump - Take the required snapshots and initialize coredump device.
* @q: The faulty xe_exec_queue, where the issue was detected.
* @job: The faulty xe_sched_job, where the issue was detected.
* @fmt: Printf format + args to describe the reason for the core dump
*
* This function should be called at the crash time within the serialized
* gt_reset. It is skipped if we still have the core dump device available
* with the information of the 'first' snapshot.
*/
__printf(3, 4)
void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...)
{
struct xe_device *xe = gt_to_xe(q->gt);
struct xe_devcoredump *coredump = &xe->devcoredump;
va_list varg;
mutex_lock(&coredump->lock);
if (coredump->captured) {
drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
mutex_unlock(&coredump->lock);
return;
}
coredump->captured = true;
va_start(varg, fmt);
coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg);
va_end(varg);
devcoredump_snapshot(coredump, q, job);
drm_info(&xe->drm, "Xe device coredump has been created\n");
drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
xe->drm.primary->index);
mutex_unlock(&coredump->lock);
}
static void xe_driver_devcoredump_fini(void *arg)
{
struct drm_device *drm = arg;
dev_coredump_put(drm->dev);
}
int xe_devcoredump_init(struct xe_device *xe)
{
int err;
err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock);
if (err)
return err;
if (IS_ENABLED(CONFIG_LOCKDEP)) {
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&xe->devcoredump.lock);
fs_reclaim_release(GFP_KERNEL);
}
return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
}
#endif
/**
* xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
*
* The output is split to multiple lines because some print targets, e.g. dmesg
* cannot handle arbitrarily long lines. Note also that printing to dmesg in
* piece-meal fashion is not possible, each separate call to drm_puts() has a
* line-feed automatically added! Therefore, the entire output line must be
* constructed in a local buffer first, then printed in one atomic output call.
*
* There is also a scheduler yield call to prevent the 'task has been stuck for
* 120s' kernel hang check feature from firing when printing to a slow target
* such as dmesg over a serial port.
*
* TODO: Add compression prior to the ASCII85 encoding to shrink huge buffers down.
*
* @p: the printer object to output to
* @prefix: optional prefix to add to output string
* @blob: the Binary Large OBject to dump out
* @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
* @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
*/
void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix,
const void *blob, size_t offset, size_t size)
{
const u32 *blob32 = (const u32 *)blob;
char buff[ASCII85_BUFSZ], *line_buff;
size_t line_pos = 0;
/*
* Splitting blobs across multiple lines is not compatible with the mesa
* debug decoder tool. Note that even dropping the explicit '\n' below
* doesn't help because the GuC log is so big some underlying implementation
* still splits the lines at 512K characters. So just bail completely for
* the moment.
*/
return;
#define DMESG_MAX_LINE_LEN 800
#define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "\n\0" */
if (size & 3)
drm_printf(p, "Size not word aligned: %zu", size);
if (offset & 3)
drm_printf(p, "Offset not word aligned: %zu", size);
line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
if (IS_ERR_OR_NULL(line_buff)) {
drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
return;
}
blob32 += offset / sizeof(*blob32);
size /= sizeof(*blob32);
if (prefix) {
strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
line_pos = strlen(line_buff);
line_buff[line_pos++] = ':';
line_buff[line_pos++] = ' ';
}
while (size--) {
u32 val = *(blob32++);
strscpy(line_buff + line_pos, ascii85_encode(val, buff),
DMESG_MAX_LINE_LEN - line_pos);
line_pos += strlen(line_buff + line_pos);
if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
line_buff[line_pos++] = '\n';
line_buff[line_pos++] = 0;
drm_puts(p, line_buff);
line_pos = 0;
/* Prevent 'stuck thread' time out errors */
cond_resched();
}
}
if (line_pos) {
line_buff[line_pos++] = '\n';
line_buff[line_pos++] = 0;
drm_puts(p, line_buff);
}
kfree(line_buff);
#undef MIN_SPACE
#undef DMESG_MAX_LINE_LEN
}