1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Linux kernel source tree
Find a file
Darrick J. Wong 7dd73802f9 xfs, iomap: fix data corruption due to stale cached iomaps
This patch series fixes a data corruption that occurs in a specific
 multi-threaded write workload. The workload combined
 racing unaligned adjacent buffered writes with low memory conditions
 that caused both writeback and memory reclaim to race with the
 writes.
 
 The result of this was random partial blocks containing zeroes
 instead of the correct data.  The underlying problem is that iomap
 caches the write iomap for the duration of the write() operation,
 but it fails to take into account that the extent underlying the
 iomap can change whilst the write is in progress.
 
 The short story is that an iomap can span mutliple folios, and so
 under low memory writeback can be cleaning folios the write()
 overlaps. Whilst the overlapping data is cached in memory, this
 isn't a problem, but because the folios are now clean they can be
 reclaimed. Once reclaimed, the write() does the wrong thing when
 re-instantiating partial folios because the iomap no longer reflects
 the underlying state of the extent. e.g. it thinks the extent is
 unwritten, so it zeroes the partial range, when in fact the
 underlying extent is now written and so it should have read the data
 from disk.  This is how we get random zero ranges in the file
 instead of the correct data.
 
 The gory details of the race condition can be found here:
 
 https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/
 
 Fixing the problem has two aspects. The first aspect of the problem
 is ensuring that iomap can detect a stale cached iomap during a
 write in a race-free manner. We already do this stale iomap
 detection in the writeback path, so we have a mechanism for
 detecting that the iomap backing the data range may have changed
 and needs to be remapped.
 
 In the case of the write() path, we have to ensure that the iomap is
 validated at a point in time when the page cache is stable and
 cannot be reclaimed from under us. We also need to validate the
 extent before we start performing any modifications to the folio
 state or contents. Combine these two requirements together, and the
 only "safe" place to validate the iomap is after we have looked up
 and locked the folio we are going to copy the data into, but before
 we've performed any initialisation operations on that folio.
 
 If the iomap fails validation, we then mark it stale, unlock the
 folio and end the write. This effectively means a stale iomap
 results in a short write. Filesystems should already be able to
 handle this, as write operations can end short for many reasons and
 need to iterate through another mapping cycle to be completed. Hence
 the iomap changes needed to detect and handle stale iomaps during
 write() operations is relatively simple...
 
 However, the assumption is that filesystems should already be able
 to handle write failures safely, and that's where the second
 (first?) part of the problem exists. That is, handling a partial
 write is harder than just "punching out the unused delayed
 allocation extent". This is because mmap() based faults can race
 with writes, and if they land in the delalloc region that the write
 allocated, then punching out the delalloc region can cause data
 corruption.
 
 This data corruption problem is exposed by generic/346 when iomap is
 converted to detect stale iomaps during write() operations. Hence
 write failure in the filesytems needs to handle the fact that the
 write() in progress doesn't necessarily own the data in the page
 cache over the range of the delalloc extent it just allocated.
 
 As a result, we can't just truncate the page cache over the range
 the write() didn't reach and punch all the delalloc extent. We have
 to walk the page cache over the untouched range and skip over any
 dirty data region in the cache in that range. Which is ....
 non-trivial.
 
 That is, iterating the page cache has to handle partially populated
 folios (i.e. block size < page size) that contain data. The data
 might be discontiguous within a folio. Indeed, there might be
 *multiple* discontiguous data regions within a single folio. And to
 make matters more complex, multi-page folios mean we just don't know
 how many sub-folio regions we might have to iterate to find all
 these regions. All the corner cases between the conversions and
 rounding between filesystem block size, folio size and multi-page
 folio size combined with unaligned write offsets kept breaking my
 brain.
 
 However, if we convert the code to track the processed
 write regions by byte ranges instead of fileystem block or page
 cache index, we could simply use mapping_seek_hole_data() to find
 the start and end of each discrete data region within the range we
 needed to scan. SEEK_DATA finds the start of the cached data region,
 SEEK_HOLE finds the end of the region. These are byte based
 interfaces that understand partially uptodate folio regions, and so
 can iterate discrete sub-folio data regions directly. This largely
 solved the problem of discovering the dirty regions we need to keep
 the delalloc extent over.
 
 However, to use mapping_seek_hole_data() without needing to export
 it, we have to move all the delalloc extent cleanup to the iomap
 core and so now the iomap core can clean up delayed allocation
 extents in a safe, sane and filesystem neutral manner.
 
 With all this done, the original data corruption never occurs
 anymore, and we now have a generic mechanism for ensuring that page
 cache writes do not do the wrong thing when writeback and reclaim
 change the state of the physical extent and/or page cache contents
 whilst the write is in progress.
 
 Signed-off-by: Dave Chinner <dchinner@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmOFSzwUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h3djhAAwOf9VeLO7TW/0B1XfE3ktWGiDmEG
 ekB8mkB7CAHB9SBq7TZMHjktJIJxY81q5+Iq9qHGiW3asoVbmWvkeRSJgXljhTby
 D2KsUIT1NK/X6DhC9FhNjv/Q2GJ0nY6s65RLudUEkelYBFhGMM0kdXX+fZmtZ4yT
 T/lRYk/KBFpeQCaGRcFXK55TnB/B9muOI9FyKvh2DNWe6r0Xu3Obb3a9k+snZA9R
 EeUpAosDSrXzP4c2w2ovpU2eutUdo4eYTHIzXKGkhktbRhmCRLn4NlxvFCanoe8h
 eSS85sb8DHUh2iyaaB8yrJ6LL3MuBytOi24rNBeyd1KAyEtT21+cTUK/QAahzble
 pL8l6TA7ZXbhYcbk5uQvFEIAInR+0ffjde61uE14N55awq0Vdrym7C7D2ri60iw6
 ts45AVYKYeF61coAbwvmaJyvqvQ0tUlmVZXI4lQzN2O17Lr6004gJFMjDRsXXU7H
 eHLUt496Geq39rglw85y8G0vmxxGZ9iIGkeC1kUSSCmlvx/JfuJlbWBgyMGtNRBI
 qzv0jmk67Ft1seQSMWQJttxCZs4uOF2gwERYGAF7iUR8F4PGob/N1e2/hpg75G8q
 0S8u1N1p8Cv5u/jwybqy8FnSC2MlUZl6SQURaVQDy2DLMKHb4T1diu0jrCbiSPiF
 JKfQ7aNQxaEZIJw=
 =cv9i
 -----END PGP SIGNATURE-----

Merge tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-6.2-mergeB

xfs, iomap: fix data corruption due to stale cached iomaps

This patch series fixes a data corruption that occurs in a specific
multi-threaded write workload. The workload combined
racing unaligned adjacent buffered writes with low memory conditions
that caused both writeback and memory reclaim to race with the
writes.

The result of this was random partial blocks containing zeroes
instead of the correct data.  The underlying problem is that iomap
caches the write iomap for the duration of the write() operation,
but it fails to take into account that the extent underlying the
iomap can change whilst the write is in progress.

The short story is that an iomap can span mutliple folios, and so
under low memory writeback can be cleaning folios the write()
overlaps. Whilst the overlapping data is cached in memory, this
isn't a problem, but because the folios are now clean they can be
reclaimed. Once reclaimed, the write() does the wrong thing when
re-instantiating partial folios because the iomap no longer reflects
the underlying state of the extent. e.g. it thinks the extent is
unwritten, so it zeroes the partial range, when in fact the
underlying extent is now written and so it should have read the data
from disk.  This is how we get random zero ranges in the file
instead of the correct data.

The gory details of the race condition can be found here:

https://lore.kernel.org/linux-xfs/20220817093627.GZ3600936@dread.disaster.area/

Fixing the problem has two aspects. The first aspect of the problem
is ensuring that iomap can detect a stale cached iomap during a
write in a race-free manner. We already do this stale iomap
detection in the writeback path, so we have a mechanism for
detecting that the iomap backing the data range may have changed
and needs to be remapped.

In the case of the write() path, we have to ensure that the iomap is
validated at a point in time when the page cache is stable and
cannot be reclaimed from under us. We also need to validate the
extent before we start performing any modifications to the folio
state or contents. Combine these two requirements together, and the
only "safe" place to validate the iomap is after we have looked up
and locked the folio we are going to copy the data into, but before
we've performed any initialisation operations on that folio.

If the iomap fails validation, we then mark it stale, unlock the
folio and end the write. This effectively means a stale iomap
results in a short write. Filesystems should already be able to
handle this, as write operations can end short for many reasons and
need to iterate through another mapping cycle to be completed. Hence
the iomap changes needed to detect and handle stale iomaps during
write() operations is relatively simple...

However, the assumption is that filesystems should already be able
to handle write failures safely, and that's where the second
(first?) part of the problem exists. That is, handling a partial
write is harder than just "punching out the unused delayed
allocation extent". This is because mmap() based faults can race
with writes, and if they land in the delalloc region that the write
allocated, then punching out the delalloc region can cause data
corruption.

This data corruption problem is exposed by generic/346 when iomap is
converted to detect stale iomaps during write() operations. Hence
write failure in the filesytems needs to handle the fact that the
write() in progress doesn't necessarily own the data in the page
cache over the range of the delalloc extent it just allocated.

As a result, we can't just truncate the page cache over the range
the write() didn't reach and punch all the delalloc extent. We have
to walk the page cache over the untouched range and skip over any
dirty data region in the cache in that range. Which is ....
non-trivial.

That is, iterating the page cache has to handle partially populated
folios (i.e. block size < page size) that contain data. The data
might be discontiguous within a folio. Indeed, there might be
*multiple* discontiguous data regions within a single folio. And to
make matters more complex, multi-page folios mean we just don't know
how many sub-folio regions we might have to iterate to find all
these regions. All the corner cases between the conversions and
rounding between filesystem block size, folio size and multi-page
folio size combined with unaligned write offsets kept breaking my
brain.

However, if we convert the code to track the processed
write regions by byte ranges instead of fileystem block or page
cache index, we could simply use mapping_seek_hole_data() to find
the start and end of each discrete data region within the range we
needed to scan. SEEK_DATA finds the start of the cached data region,
SEEK_HOLE finds the end of the region. These are byte based
interfaces that understand partially uptodate folio regions, and so
can iterate discrete sub-folio data regions directly. This largely
solved the problem of discovering the dirty regions we need to keep
the delalloc extent over.

However, to use mapping_seek_hole_data() without needing to export
it, we have to move all the delalloc extent cleanup to the iomap
core and so now the iomap core can clean up delayed allocation
extents in a safe, sane and filesystem neutral manner.

With all this done, the original data corruption never occurs
anymore, and we now have a generic mechanism for ensuring that page
cache writes do not do the wrong thing when writeback and reclaim
change the state of the physical extent and/or page cache contents
whilst the write is in progress.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'xfs-iomap-stale-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: drop write error injection is unfixable, remove it
  xfs: use iomap_valid method to detect stale cached iomaps
  iomap: write iomap validity checks
  xfs: xfs_bmap_punch_delalloc_range() should take a byte range
  iomap: buffered write failure should not truncate the page cache
  xfs,iomap: move delalloc punching to iomap
  xfs: use byte ranges for write cleanup ranges
  xfs: punching delalloc extents on write failure is racy
  xfs: write page faults in iomap are not buffered writes
2022-11-28 17:23:58 -08:00
arch - Add Cooper Lake's stepping to the PEBS guest/host events isolation 2022-11-06 12:41:32 -08:00
block block-6.1-2022-11-05 2022-11-05 09:02:28 -07:00
certs certs: make system keyring depend on built-in x509 parser 2022-09-24 04:31:18 +09:00
crypto treewide: use get_random_bytes() when possible 2022-10-11 17:42:58 -06:00
Documentation Kbuild fixes for v6.1 (2nd) 2022-11-06 12:23:10 -08:00
drivers cxl fixes for 6.1-rc4 2022-11-06 13:09:52 -08:00
fs xfs, iomap: fix data corruption due to stale cached iomaps 2022-11-28 17:23:58 -08:00
include iomap: write iomap validity checks 2022-11-29 09:09:17 +11:00
init init: Kconfig: fix spelling mistake "satify" -> "satisfy" 2022-10-20 21:27:22 -07:00
io_uring io_uring: unlock if __io_run_local_work locked inside 2022-10-27 09:52:12 -06:00
ipc ipc/msg.c: fix percpu_counter use after free 2022-10-28 13:37:22 -07:00
kernel - Add Cooper Lake's stepping to the PEBS guest/host events isolation 2022-11-06 12:41:32 -08:00
lib Networking fixes for 6.1-rc4, including fixes from bluetooth and 2022-11-03 10:51:59 -07:00
LICENSES LICENSES/LGPL-2.1: Add LGPL-2.1-or-later as valid identifiers 2021-12-16 14:33:10 +01:00
mm mmap: fix remap_file_pages() regression 2022-10-28 13:37:23 -07:00
net Networking fixes for 6.1-rc4, including fixes from bluetooth and 2022-11-03 10:51:59 -07:00
rust Kbuild: add Rust support 2022-09-28 09:02:20 +02:00
samples VFIO updates for v6.1-rc1 2022-10-12 14:46:48 -07:00
scripts kconfig: fix segmentation fault in menuconfig search 2022-11-02 17:32:05 +09:00
security lsm/stable-6.1 PR 20221031 2022-10-31 12:09:42 -07:00
sound ALSA: aoa: Fix I2S device accounting 2022-10-27 08:53:08 +02:00
tools cxl fixes for 6.1-rc4 2022-11-06 13:09:52 -08:00
usr usr/gen_init_cpio.c: remove unnecessary -1 values from int file 2022-10-03 14:21:44 -07:00
virt Merge tag 'kvmarm-fixes-6.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD 2022-11-06 03:30:49 -05:00
.clang-format PCI/DOE: Add DOE mailbox support functions 2022-07-19 15:38:04 -07:00
.cocciconfig scripts: add Linux .cocciconfig for coccinelle 2016-07-22 12:13:39 +02:00
.get_maintainer.ignore get_maintainer: add Alan to .get_maintainer.ignore 2022-08-20 15:17:44 -07:00
.gitattributes .gitattributes: use 'dts' diff driver for dts files 2019-12-04 19:44:11 -08:00
.gitignore Kbuild: add Rust support 2022-09-28 09:02:20 +02:00
.mailmap mailmap: update email for Qais Yousef 2022-10-20 21:27:21 -07:00
.rustfmt.toml rust: add .rustfmt.toml 2022-09-28 09:02:20 +02:00
COPYING COPYING: state that all contributions really are covered by this file 2020-02-10 13:32:20 -08:00
CREDITS drm for 5.20/6.0 2022-08-03 19:52:08 -07:00
Kbuild Kbuild updates for v6.1 2022-10-10 12:00:45 -07:00
Kconfig kbuild: ensure full rebuild when the compiler is updated 2020-05-12 13:28:33 +09:00
MAINTAINERS ARM: SoC fixes for 6.1, part 2 2022-11-04 14:13:12 -07:00
Makefile Linux 6.1-rc4 2022-11-06 15:07:11 -08:00
README Drop all 00-INDEX files from Documentation/ 2018-09-09 15:08:58 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.