1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/crypto/intel/qat/qat_common/adf_isr.c
Adam Guerin ff39134514 crypto: qat - remove unnecessary description from comment
Remove extra description from comments as it is not required.

This is to fix the following warning when compiling the QAT driver
using the clang compiler with CC=clang W=2:
    drivers/crypto/intel/qat/qat_common/adf_dev_mgr.c:65: warning: contents before sections
    drivers/crypto/intel/qat/qat_common/adf_isr.c:380: warning: contents before sections
    drivers/crypto/intel/qat/qat_common/adf_vf_isr.c:298: warning: contents before sections

Signed-off-by: Adam Guerin <adam.guerin@intel.com>
Reviewed-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2024-02-24 08:41:20 +08:00

409 lines
11 KiB
C

// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2014 - 2020 Intel Corporation */
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include "adf_accel_devices.h"
#include "adf_common_drv.h"
#include "adf_cfg.h"
#include "adf_cfg_strings.h"
#include "adf_cfg_common.h"
#include "adf_transport_access_macros.h"
#include "adf_transport_internal.h"
#define ADF_MAX_NUM_VFS 32
static struct workqueue_struct *adf_misc_wq;
static int adf_enable_msix(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 msix_num_entries = hw_data->num_banks + 1;
int ret;
if (hw_data->set_msix_rttable)
hw_data->set_msix_rttable(accel_dev);
ret = pci_alloc_irq_vectors(pci_dev_info->pci_dev, msix_num_entries,
msix_num_entries, PCI_IRQ_MSIX);
if (unlikely(ret < 0)) {
dev_err(&GET_DEV(accel_dev),
"Failed to allocate %d MSI-X vectors\n",
msix_num_entries);
return ret;
}
return 0;
}
static void adf_disable_msix(struct adf_accel_pci *pci_dev_info)
{
pci_free_irq_vectors(pci_dev_info->pci_dev);
}
static irqreturn_t adf_msix_isr_bundle(int irq, void *bank_ptr)
{
struct adf_etr_bank_data *bank = bank_ptr;
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(bank->accel_dev);
csr_ops->write_csr_int_flag_and_col(bank->csr_addr, bank->bank_number,
0);
tasklet_hi_schedule(&bank->resp_handler);
return IRQ_HANDLED;
}
#ifdef CONFIG_PCI_IOV
void adf_enable_vf2pf_interrupts(struct adf_accel_dev *accel_dev, u32 vf_mask)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
unsigned long flags;
spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags);
GET_PFVF_OPS(accel_dev)->enable_vf2pf_interrupts(pmisc_addr, vf_mask);
spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags);
}
void adf_disable_all_vf2pf_interrupts(struct adf_accel_dev *accel_dev)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
unsigned long flags;
spin_lock_irqsave(&accel_dev->pf.vf2pf_ints_lock, flags);
GET_PFVF_OPS(accel_dev)->disable_all_vf2pf_interrupts(pmisc_addr);
spin_unlock_irqrestore(&accel_dev->pf.vf2pf_ints_lock, flags);
}
static u32 adf_disable_pending_vf2pf_interrupts(struct adf_accel_dev *accel_dev)
{
void __iomem *pmisc_addr = adf_get_pmisc_base(accel_dev);
u32 pending;
spin_lock(&accel_dev->pf.vf2pf_ints_lock);
pending = GET_PFVF_OPS(accel_dev)->disable_pending_vf2pf_interrupts(pmisc_addr);
spin_unlock(&accel_dev->pf.vf2pf_ints_lock);
return pending;
}
static bool adf_handle_vf2pf_int(struct adf_accel_dev *accel_dev)
{
bool irq_handled = false;
unsigned long vf_mask;
/* Get the interrupt sources triggered by VFs, except for those already disabled */
vf_mask = adf_disable_pending_vf2pf_interrupts(accel_dev);
if (vf_mask) {
struct adf_accel_vf_info *vf_info;
int i;
/*
* Handle VF2PF interrupt unless the VF is malicious and
* is attempting to flood the host OS with VF2PF interrupts.
*/
for_each_set_bit(i, &vf_mask, ADF_MAX_NUM_VFS) {
vf_info = accel_dev->pf.vf_info + i;
if (!__ratelimit(&vf_info->vf2pf_ratelimit)) {
dev_info(&GET_DEV(accel_dev),
"Too many ints from VF%d\n",
vf_info->vf_nr);
continue;
}
adf_schedule_vf2pf_handler(vf_info);
irq_handled = true;
}
}
return irq_handled;
}
#endif /* CONFIG_PCI_IOV */
static bool adf_handle_pm_int(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
if (hw_data->handle_pm_interrupt &&
hw_data->handle_pm_interrupt(accel_dev))
return true;
return false;
}
static bool adf_handle_ras_int(struct adf_accel_dev *accel_dev)
{
struct adf_ras_ops *ras_ops = &accel_dev->hw_device->ras_ops;
bool reset_required;
if (ras_ops->handle_interrupt &&
ras_ops->handle_interrupt(accel_dev, &reset_required)) {
if (reset_required) {
dev_err(&GET_DEV(accel_dev), "Fatal error, reset required\n");
if (adf_notify_fatal_error(accel_dev))
dev_err(&GET_DEV(accel_dev),
"Failed to notify fatal error\n");
}
return true;
}
return false;
}
static irqreturn_t adf_msix_isr_ae(int irq, void *dev_ptr)
{
struct adf_accel_dev *accel_dev = dev_ptr;
#ifdef CONFIG_PCI_IOV
/* If SR-IOV is enabled (vf_info is non-NULL), check for VF->PF ints */
if (accel_dev->pf.vf_info && adf_handle_vf2pf_int(accel_dev))
return IRQ_HANDLED;
#endif /* CONFIG_PCI_IOV */
if (adf_handle_pm_int(accel_dev))
return IRQ_HANDLED;
if (adf_handle_ras_int(accel_dev))
return IRQ_HANDLED;
dev_dbg(&GET_DEV(accel_dev), "qat_dev%d spurious AE interrupt\n",
accel_dev->accel_id);
return IRQ_NONE;
}
static void adf_free_irqs(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_irq *irqs = pci_dev_info->msix_entries.irqs;
struct adf_etr_data *etr_data = accel_dev->transport;
int clust_irq = hw_data->num_banks;
int irq, i = 0;
if (pci_dev_info->msix_entries.num_entries > 1) {
for (i = 0; i < hw_data->num_banks; i++) {
if (irqs[i].enabled) {
irq = pci_irq_vector(pci_dev_info->pci_dev, i);
irq_set_affinity_hint(irq, NULL);
free_irq(irq, &etr_data->banks[i]);
}
}
}
if (irqs[i].enabled) {
irq = pci_irq_vector(pci_dev_info->pci_dev, clust_irq);
free_irq(irq, accel_dev);
}
}
static int adf_request_irqs(struct adf_accel_dev *accel_dev)
{
struct adf_accel_pci *pci_dev_info = &accel_dev->accel_pci_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_irq *irqs = pci_dev_info->msix_entries.irqs;
struct adf_etr_data *etr_data = accel_dev->transport;
int clust_irq = hw_data->num_banks;
int ret, irq, i = 0;
char *name;
/* Request msix irq for all banks unless SR-IOV enabled */
if (!accel_dev->pf.vf_info) {
for (i = 0; i < hw_data->num_banks; i++) {
struct adf_etr_bank_data *bank = &etr_data->banks[i];
unsigned int cpu, cpus = num_online_cpus();
name = irqs[i].name;
snprintf(name, ADF_MAX_MSIX_VECTOR_NAME,
"qat%d-bundle%d", accel_dev->accel_id, i);
irq = pci_irq_vector(pci_dev_info->pci_dev, i);
if (unlikely(irq < 0)) {
dev_err(&GET_DEV(accel_dev),
"Failed to get IRQ number of device vector %d - %s\n",
i, name);
ret = irq;
goto err;
}
ret = request_irq(irq, adf_msix_isr_bundle, 0,
&name[0], bank);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to allocate IRQ %d for %s\n",
irq, name);
goto err;
}
cpu = ((accel_dev->accel_id * hw_data->num_banks) +
i) % cpus;
irq_set_affinity_hint(irq, get_cpu_mask(cpu));
irqs[i].enabled = true;
}
}
/* Request msix irq for AE */
name = irqs[i].name;
snprintf(name, ADF_MAX_MSIX_VECTOR_NAME,
"qat%d-ae-cluster", accel_dev->accel_id);
irq = pci_irq_vector(pci_dev_info->pci_dev, clust_irq);
if (unlikely(irq < 0)) {
dev_err(&GET_DEV(accel_dev),
"Failed to get IRQ number of device vector %d - %s\n",
i, name);
ret = irq;
goto err;
}
ret = request_irq(irq, adf_msix_isr_ae, 0, &name[0], accel_dev);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to allocate IRQ %d for %s\n", irq, name);
goto err;
}
irqs[i].enabled = true;
return ret;
err:
adf_free_irqs(accel_dev);
return ret;
}
static int adf_isr_alloc_msix_vectors_data(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 msix_num_entries = 1;
struct adf_irq *irqs;
/* If SR-IOV is disabled (vf_info is NULL), add entries for each bank */
if (!accel_dev->pf.vf_info)
msix_num_entries += hw_data->num_banks;
irqs = kcalloc_node(msix_num_entries, sizeof(*irqs),
GFP_KERNEL, dev_to_node(&GET_DEV(accel_dev)));
if (!irqs)
return -ENOMEM;
accel_dev->accel_pci_dev.msix_entries.num_entries = msix_num_entries;
accel_dev->accel_pci_dev.msix_entries.irqs = irqs;
return 0;
}
static void adf_isr_free_msix_vectors_data(struct adf_accel_dev *accel_dev)
{
kfree(accel_dev->accel_pci_dev.msix_entries.irqs);
accel_dev->accel_pci_dev.msix_entries.irqs = NULL;
}
static int adf_setup_bh(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *priv_data = accel_dev->transport;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
int i;
for (i = 0; i < hw_data->num_banks; i++)
tasklet_init(&priv_data->banks[i].resp_handler,
adf_response_handler,
(unsigned long)&priv_data->banks[i]);
return 0;
}
static void adf_cleanup_bh(struct adf_accel_dev *accel_dev)
{
struct adf_etr_data *priv_data = accel_dev->transport;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
int i;
for (i = 0; i < hw_data->num_banks; i++) {
tasklet_disable(&priv_data->banks[i].resp_handler);
tasklet_kill(&priv_data->banks[i].resp_handler);
}
}
/**
* adf_isr_resource_free() - Free IRQ for acceleration device
* @accel_dev: Pointer to acceleration device.
*
* Function frees interrupts for acceleration device.
*/
void adf_isr_resource_free(struct adf_accel_dev *accel_dev)
{
adf_free_irqs(accel_dev);
adf_cleanup_bh(accel_dev);
adf_disable_msix(&accel_dev->accel_pci_dev);
adf_isr_free_msix_vectors_data(accel_dev);
}
EXPORT_SYMBOL_GPL(adf_isr_resource_free);
/**
* adf_isr_resource_alloc() - Allocate IRQ for acceleration device
* @accel_dev: Pointer to acceleration device.
*
* Function allocates interrupts for acceleration device.
*
* Return: 0 on success, error code otherwise.
*/
int adf_isr_resource_alloc(struct adf_accel_dev *accel_dev)
{
int ret;
ret = adf_isr_alloc_msix_vectors_data(accel_dev);
if (ret)
goto err_out;
ret = adf_enable_msix(accel_dev);
if (ret)
goto err_free_msix_table;
ret = adf_setup_bh(accel_dev);
if (ret)
goto err_disable_msix;
ret = adf_request_irqs(accel_dev);
if (ret)
goto err_cleanup_bh;
return 0;
err_cleanup_bh:
adf_cleanup_bh(accel_dev);
err_disable_msix:
adf_disable_msix(&accel_dev->accel_pci_dev);
err_free_msix_table:
adf_isr_free_msix_vectors_data(accel_dev);
err_out:
return ret;
}
EXPORT_SYMBOL_GPL(adf_isr_resource_alloc);
/**
* adf_init_misc_wq() - Init misc workqueue
*
* Return: 0 on success, error code otherwise.
*/
int __init adf_init_misc_wq(void)
{
adf_misc_wq = alloc_workqueue("qat_misc_wq", WQ_MEM_RECLAIM, 0);
return !adf_misc_wq ? -ENOMEM : 0;
}
void adf_exit_misc_wq(void)
{
if (adf_misc_wq)
destroy_workqueue(adf_misc_wq);
adf_misc_wq = NULL;
}
bool adf_misc_wq_queue_work(struct work_struct *work)
{
return queue_work(adf_misc_wq, work);
}
bool adf_misc_wq_queue_delayed_work(struct delayed_work *work,
unsigned long delay)
{
return queue_delayed_work(adf_misc_wq, work, delay);
}