1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/net/ethernet/marvell/octeontx2/af/ptp.c
Hariprasad Kelam 35293cb392 octeontx2-pf: Enable PTP PPS output support
PTP block supports generating PPS output signal on GPIO pin. This patch
adds the support in the PTP PHC driver using standard periodic output
interface.

User can enable/disable/configure PPS by writing to the below sysfs entry

echo perout.index start.sec start.nsec period.sec period.nsec >
/sys/class/ptp/ptp0/period

Example to generate 50% duty cycle PPS signal:
echo 0 0 0 0 500000000 >  /sys/class/ptp/ptp0/period

Signed-off-by: Hariprasad Kelam <hkelam@marvell.com>
Signed-off-by: Sunil Kovvuri Goutham <sgoutham@marvell.com>
Signed-off-by: Sai Krishna <saikrishnag@marvell.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-15 10:35:07 +01:00

677 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Marvell PTP driver
*
* Copyright (C) 2020 Marvell.
*
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/hrtimer.h>
#include <linux/ktime.h>
#include "mbox.h"
#include "ptp.h"
#include "rvu.h"
#define DRV_NAME "Marvell PTP Driver"
#define PCI_DEVID_OCTEONTX2_PTP 0xA00C
#define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100
#define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200
#define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300
#define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400
#define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500
#define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600
#define PCI_DEVID_OCTEONTX2_RST 0xA085
#define PCI_DEVID_CN10K_PTP 0xA09E
#define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900
#define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00
#define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00
#define PCI_PTP_BAR_NO 0
#define PTP_CLOCK_CFG 0xF00ULL
#define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0)
#define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1)
#define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2)
#define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9)
#define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8)
#define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10)
#define PTP_CLOCK_CFG_ATOMIC_OP_MASK GENMASK_ULL(28, 26)
#define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30)
#define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31)
#define PTP_PPS_HI_INCR 0xF60ULL
#define PTP_PPS_LO_INCR 0xF68ULL
#define PTP_PPS_THRESH_LO 0xF50ULL
#define PTP_PPS_THRESH_HI 0xF58ULL
#define PTP_CLOCK_LO 0xF08ULL
#define PTP_CLOCK_HI 0xF10ULL
#define PTP_CLOCK_COMP 0xF18ULL
#define PTP_TIMESTAMP 0xF20ULL
#define PTP_CLOCK_SEC 0xFD0ULL
#define PTP_SEC_ROLLOVER 0xFD8ULL
/* Atomic update related CSRs */
#define PTP_FRNS_TIMESTAMP 0xFE0ULL
#define PTP_NXT_ROLLOVER_SET 0xFE8ULL
#define PTP_CURR_ROLLOVER_SET 0xFF0ULL
#define PTP_NANO_TIMESTAMP 0xFF8ULL
#define PTP_SEC_TIMESTAMP 0x1000ULL
#define CYCLE_MULT 1000
#define is_rev_A0(ptp) (((ptp)->pdev->revision & 0x0F) == 0x0)
#define is_rev_A1(ptp) (((ptp)->pdev->revision & 0x0F) == 0x1)
/* PTP atomic update operation type */
enum atomic_opcode {
ATOMIC_SET = 1,
ATOMIC_INC = 3,
ATOMIC_DEC = 4
};
static struct ptp *first_ptp_block;
static const struct pci_device_id ptp_id_table[];
static bool is_ptp_dev_cnf10ka(struct ptp *ptp)
{
return ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP;
}
static bool is_ptp_dev_cn10ka(struct ptp *ptp)
{
return ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP;
}
static bool cn10k_ptp_errata(struct ptp *ptp)
{
if ((is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) &&
(is_rev_A0(ptp) || is_rev_A1(ptp)))
return true;
return false;
}
static bool is_tstmp_atomic_update_supported(struct rvu *rvu)
{
struct ptp *ptp = rvu->ptp;
if (is_rvu_otx2(rvu))
return false;
/* On older silicon variants of CN10K, atomic update feature
* is not available.
*/
if ((is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) &&
(is_rev_A0(ptp) || is_rev_A1(ptp)))
return false;
return true;
}
static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer)
{
struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer);
ktime_t curr_ts = ktime_get();
ktime_t delta_ns, period_ns;
u64 ptp_clock_hi;
/* calculate the elapsed time since last restart */
delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts));
/* if the ptp clock value has crossed 0.5 seconds,
* its too late to update pps threshold value, so
* update threshold after 1 second.
*/
ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
if (ptp_clock_hi > 500000000) {
period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi));
} else {
writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI);
period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns));
}
hrtimer_forward_now(hrtimer, period_ns);
ptp->last_ts = curr_ts;
return HRTIMER_RESTART;
}
static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns)
{
ktime_t period_ns;
period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns));
hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL);
ptp->last_ts = ktime_get();
}
static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp)
{
u64 sec, sec1, nsec;
unsigned long flags;
spin_lock_irqsave(&ptp->ptp_lock, flags);
sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL;
/* check nsec rollover */
if (sec1 > sec) {
nsec = readq(ptp->reg_base + PTP_CLOCK_HI);
sec = sec1;
}
spin_unlock_irqrestore(&ptp->ptp_lock, flags);
return sec * NSEC_PER_SEC + nsec;
}
static u64 read_ptp_tstmp_nsec(struct ptp *ptp)
{
return readq(ptp->reg_base + PTP_CLOCK_HI);
}
static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq)
{
u64 comp, adj = 0, cycles_per_sec, ns_drift = 0;
u32 ptp_clock_nsec, cycle_time;
int cycle;
/* Errata:
* Issue #1: At the time of 1 sec rollover of the nano-second counter,
* the nano-second counter is set to 0. However, it should be set to
* (existing counter_value - 10^9).
*
* Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF.
* It should roll over at 0x3B9A_CA00.
*/
/* calculate ptp_clock_comp value */
comp = ((u64)1000000000ULL << 32) / ptp_clock_freq;
/* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */
cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq;
/* cycles per sec */
cycles_per_sec = ptp_clock_freq;
/* check whether ptp nanosecond counter rolls over early */
cycle = cycles_per_sec - 1;
ptp_clock_nsec = (cycle * comp) >> 32;
while (ptp_clock_nsec < NSEC_PER_SEC) {
if (ptp_clock_nsec == 0x3B9AC9FF)
goto calc_adj_comp;
cycle++;
ptp_clock_nsec = (cycle * comp) >> 32;
}
/* compute nanoseconds lost per second when nsec counter rolls over */
ns_drift = ptp_clock_nsec - NSEC_PER_SEC;
/* calculate ptp_clock_comp adjustment */
if (ns_drift > 0) {
adj = comp * ns_drift;
adj = adj / 1000000000ULL;
}
/* speed up the ptp clock to account for nanoseconds lost */
comp += adj;
return comp;
calc_adj_comp:
/* slow down the ptp clock to not rollover early */
adj = comp * cycle_time;
adj = adj / 1000000000ULL;
adj = adj / CYCLE_MULT;
comp -= adj;
return comp;
}
struct ptp *ptp_get(void)
{
struct ptp *ptp = first_ptp_block;
/* Check PTP block is present in hardware */
if (!pci_dev_present(ptp_id_table))
return ERR_PTR(-ENODEV);
/* Check driver is bound to PTP block */
if (!ptp)
ptp = ERR_PTR(-EPROBE_DEFER);
else if (!IS_ERR(ptp))
pci_dev_get(ptp->pdev);
return ptp;
}
void ptp_put(struct ptp *ptp)
{
if (!ptp)
return;
pci_dev_put(ptp->pdev);
}
static void ptp_atomic_update(struct ptp *ptp, u64 timestamp)
{
u64 regval, curr_rollover_set, nxt_rollover_set;
/* First setup NSECs and SECs */
writeq(timestamp, ptp->reg_base + PTP_NANO_TIMESTAMP);
writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP);
writeq(timestamp / NSEC_PER_SEC,
ptp->reg_base + PTP_SEC_TIMESTAMP);
nxt_rollover_set = roundup(timestamp, NSEC_PER_SEC);
curr_rollover_set = nxt_rollover_set - NSEC_PER_SEC;
writeq(nxt_rollover_set, ptp->reg_base + PTP_NXT_ROLLOVER_SET);
writeq(curr_rollover_set, ptp->reg_base + PTP_CURR_ROLLOVER_SET);
/* Now, initiate atomic update */
regval = readq(ptp->reg_base + PTP_CLOCK_CFG);
regval &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK;
regval |= (ATOMIC_SET << 26);
writeq(regval, ptp->reg_base + PTP_CLOCK_CFG);
}
static void ptp_atomic_adjtime(struct ptp *ptp, s64 delta)
{
bool neg_adj = false, atomic_inc_dec = false;
u64 regval, ptp_clock_hi;
if (delta < 0) {
delta = -delta;
neg_adj = true;
}
/* use atomic inc/dec when delta < 1 second */
if (delta < NSEC_PER_SEC)
atomic_inc_dec = true;
if (!atomic_inc_dec) {
ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
if (neg_adj) {
if (ptp_clock_hi > delta)
ptp_clock_hi -= delta;
else
ptp_clock_hi = delta - ptp_clock_hi;
} else {
ptp_clock_hi += delta;
}
ptp_atomic_update(ptp, ptp_clock_hi);
} else {
writeq(delta, ptp->reg_base + PTP_NANO_TIMESTAMP);
writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP);
/* initiate atomic inc/dec */
regval = readq(ptp->reg_base + PTP_CLOCK_CFG);
regval &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK;
regval |= neg_adj ? (ATOMIC_DEC << 26) : (ATOMIC_INC << 26);
writeq(regval, ptp->reg_base + PTP_CLOCK_CFG);
}
}
static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
{
bool neg_adj = false;
u32 freq, freq_adj;
u64 comp, adj;
s64 ppb;
if (scaled_ppm < 0) {
neg_adj = true;
scaled_ppm = -scaled_ppm;
}
/* The hardware adds the clock compensation value to the PTP clock
* on every coprocessor clock cycle. Typical convention is that it
* represent number of nanosecond betwen each cycle. In this
* convention compensation value is in 64 bit fixed-point
* representation where upper 32 bits are number of nanoseconds
* and lower is fractions of nanosecond.
* The scaled_ppm represent the ratio in "parts per million" by which
* the compensation value should be corrected.
* To calculate new compenstation value we use 64bit fixed point
* arithmetic on following formula
* comp = tbase + tbase * scaled_ppm / (1M * 2^16)
* where tbase is the basic compensation value calculated
* initialy in the probe function.
*/
/* convert scaled_ppm to ppb */
ppb = 1 + scaled_ppm;
ppb *= 125;
ppb >>= 13;
if (cn10k_ptp_errata(ptp)) {
/* calculate the new frequency based on ppb */
freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL;
freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj;
comp = ptp_calc_adjusted_comp(freq);
} else {
comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
adj = comp * ppb;
adj = div_u64(adj, 1000000000ull);
comp = neg_adj ? comp - adj : comp + adj;
}
writeq(comp, ptp->reg_base + PTP_CLOCK_COMP);
return 0;
}
static int ptp_get_clock(struct ptp *ptp, u64 *clk)
{
/* Return the current PTP clock */
*clk = ptp->read_ptp_tstmp(ptp);
return 0;
}
void ptp_start(struct rvu *rvu, u64 sclk, u32 ext_clk_freq, u32 extts)
{
struct ptp *ptp = rvu->ptp;
struct pci_dev *pdev;
u64 clock_comp;
u64 clock_cfg;
if (!ptp)
return;
pdev = ptp->pdev;
if (!sclk) {
dev_err(&pdev->dev, "PTP input clock cannot be zero\n");
return;
}
/* sclk is in MHz */
ptp->clock_rate = sclk * 1000000;
/* Program the seconds rollover value to 1 second */
if (is_tstmp_atomic_update_supported(rvu)) {
writeq(0, ptp->reg_base + PTP_NANO_TIMESTAMP);
writeq(0, ptp->reg_base + PTP_FRNS_TIMESTAMP);
writeq(0, ptp->reg_base + PTP_SEC_TIMESTAMP);
writeq(0, ptp->reg_base + PTP_CURR_ROLLOVER_SET);
writeq(0x3b9aca00, ptp->reg_base + PTP_NXT_ROLLOVER_SET);
writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER);
}
/* Enable PTP clock */
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
if (ext_clk_freq) {
ptp->clock_rate = ext_clk_freq;
/* Set GPIO as PTP clock source */
clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK;
clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN;
}
if (extts) {
clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE;
/* Set GPIO as timestamping source */
clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK;
clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN;
}
clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
clock_cfg &= ~PTP_CLOCK_CFG_ATOMIC_OP_MASK;
clock_cfg |= (ATOMIC_SET << 26);
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
if (cn10k_ptp_errata(ptp))
clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate);
else
clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
/* Initial compensation value to start the nanosecs counter */
writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
}
static int ptp_get_tstmp(struct ptp *ptp, u64 *clk)
{
u64 timestamp;
if (is_ptp_dev_cn10ka(ptp) || is_ptp_dev_cnf10ka(ptp)) {
timestamp = readq(ptp->reg_base + PTP_TIMESTAMP);
*clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF);
} else {
*clk = readq(ptp->reg_base + PTP_TIMESTAMP);
}
return 0;
}
static int ptp_set_thresh(struct ptp *ptp, u64 thresh)
{
if (!cn10k_ptp_errata(ptp))
writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI);
return 0;
}
static int ptp_config_hrtimer(struct ptp *ptp, int on)
{
u64 ptp_clock_hi;
if (on) {
ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI);
ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi);
} else {
if (hrtimer_active(&ptp->hrtimer))
hrtimer_cancel(&ptp->hrtimer);
}
return 0;
}
static int ptp_pps_on(struct ptp *ptp, int on, u64 period)
{
u64 clock_cfg;
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
if (on) {
if (cn10k_ptp_errata(ptp) && period != NSEC_PER_SEC) {
dev_err(&ptp->pdev->dev, "Supports max period value as 1 second\n");
return -EINVAL;
}
if (period > (8 * NSEC_PER_SEC)) {
dev_err(&ptp->pdev->dev, "Supports max period as 8 seconds\n");
return -EINVAL;
}
clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV;
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
writeq(0, ptp->reg_base + PTP_PPS_THRESH_HI);
writeq(0, ptp->reg_base + PTP_PPS_THRESH_LO);
/* Configure high/low phase time */
period = period / 2;
writeq(((u64)period << 32), ptp->reg_base + PTP_PPS_HI_INCR);
writeq(((u64)period << 32), ptp->reg_base + PTP_PPS_LO_INCR);
} else {
clock_cfg &= ~(PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV);
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
}
if (on && cn10k_ptp_errata(ptp)) {
/* The ptp_clock_hi rollsover to zero once clock cycle before it
* reaches one second boundary. so, program the pps_lo_incr in
* such a way that the pps threshold value comparison at one
* second boundary will succeed and pps edge changes. After each
* one second boundary, the hrtimer handler will be invoked and
* reprograms the pps threshold value.
*/
ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate;
writeq((0x1dcd6500ULL - ptp->clock_period) << 32,
ptp->reg_base + PTP_PPS_LO_INCR);
}
if (cn10k_ptp_errata(ptp))
ptp_config_hrtimer(ptp, on);
return 0;
}
static int ptp_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct ptp *ptp;
int err;
ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
if (!ptp) {
err = -ENOMEM;
goto error;
}
ptp->pdev = pdev;
err = pcim_enable_device(pdev);
if (err)
goto error_free;
err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
if (err)
goto error_free;
ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
pci_set_drvdata(pdev, ptp);
if (!first_ptp_block)
first_ptp_block = ptp;
spin_lock_init(&ptp->ptp_lock);
if (cn10k_ptp_errata(ptp)) {
ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec;
hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
ptp->hrtimer.function = ptp_reset_thresh;
} else {
ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec;
}
return 0;
error_free:
kfree(ptp);
error:
/* For `ptp_get()` we need to differentiate between the case
* when the core has not tried to probe this device and the case when
* the probe failed. In the later case we keep the error in
* `dev->driver_data`.
*/
pci_set_drvdata(pdev, ERR_PTR(err));
if (!first_ptp_block)
first_ptp_block = ERR_PTR(err);
return err;
}
static void ptp_remove(struct pci_dev *pdev)
{
struct ptp *ptp = pci_get_drvdata(pdev);
u64 clock_cfg;
if (IS_ERR_OR_NULL(ptp))
return;
if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer))
hrtimer_cancel(&ptp->hrtimer);
/* Disable PTP clock */
clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
kfree(ptp);
}
static const struct pci_device_id ptp_id_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) },
{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) },
{ 0, }
};
struct pci_driver ptp_driver = {
.name = DRV_NAME,
.id_table = ptp_id_table,
.probe = ptp_probe,
.remove = ptp_remove,
};
int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
struct ptp_rsp *rsp)
{
int err = 0;
/* This function is the PTP mailbox handler invoked when
* called by AF consumers/netdev drivers via mailbox mechanism.
* It is used by netdev driver to get the PTP clock and to set
* frequency adjustments. Since mailbox can be called without
* notion of whether the driver is bound to ptp device below
* validation is needed as first step.
*/
if (!rvu->ptp)
return -ENODEV;
switch (req->op) {
case PTP_OP_ADJFINE:
err = ptp_adjfine(rvu->ptp, req->scaled_ppm);
break;
case PTP_OP_GET_CLOCK:
err = ptp_get_clock(rvu->ptp, &rsp->clk);
break;
case PTP_OP_GET_TSTMP:
err = ptp_get_tstmp(rvu->ptp, &rsp->clk);
break;
case PTP_OP_SET_THRESH:
err = ptp_set_thresh(rvu->ptp, req->thresh);
break;
case PTP_OP_PPS_ON:
err = ptp_pps_on(rvu->ptp, req->pps_on, req->period);
break;
case PTP_OP_ADJTIME:
ptp_atomic_adjtime(rvu->ptp, req->delta);
break;
case PTP_OP_SET_CLOCK:
ptp_atomic_update(rvu->ptp, (u64)req->clk);
break;
default:
err = -EINVAL;
break;
}
return err;
}
int rvu_mbox_handler_ptp_get_cap(struct rvu *rvu, struct msg_req *req,
struct ptp_get_cap_rsp *rsp)
{
if (!rvu->ptp)
return -ENODEV;
if (is_tstmp_atomic_update_supported(rvu))
rsp->cap |= PTP_CAP_HW_ATOMIC_UPDATE;
else
rsp->cap &= ~BIT_ULL_MASK(0);
return 0;
}