1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/i915/display/intel_vrr.c
Ville Syrjälä 2ac5438ca9 drm/i915/vrr: Be more careful with the bits in TRANS_VRR_CTL
On mtl (at least) clearing the guardband bits in the same write
as the enable bit gets cleared seems to cause an immediate FIFO
underrun. Thus is seems that we need to first clear just the
enable bit, then wait for the VRR live status to indicate the
transcoder has exited VRR mode (this step is documented in Bspec
as well), and finally we can clear out the rest of the TRANS_VRR_CTL
for good measure.

I did this without any RMWs in case we want to toggle VRR on/off
via DSB in the future, and as we know DSB can't read registers.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20221202134412.21943-5-ville.syrjala@linux.intel.com
Reviewed-by: Manasi Navare <manasi.d.navare@intel.com>
2022-12-08 21:34:25 +02:00

264 lines
8.3 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_vrr.h"
bool intel_vrr_is_capable(struct intel_connector *connector)
{
const struct drm_display_info *info = &connector->base.display_info;
struct drm_i915_private *i915 = to_i915(connector->base.dev);
struct intel_dp *intel_dp;
/*
* DP Sink is capable of VRR video timings if
* Ignore MSA bit is set in DPCD.
* EDID monitor range also should be atleast 10 for reasonable
* Adaptive Sync or Variable Refresh Rate end user experience.
*/
switch (connector->base.connector_type) {
case DRM_MODE_CONNECTOR_eDP:
if (!connector->panel.vbt.vrr)
return false;
fallthrough;
case DRM_MODE_CONNECTOR_DisplayPort:
intel_dp = intel_attached_dp(connector);
if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
return false;
break;
default:
return false;
}
return HAS_VRR(i915) &&
info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}
void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
int i;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->uapi.vrr_enabled !=
old_crtc_state->uapi.vrr_enabled)
new_crtc_state->uapi.mode_changed = true;
}
}
/*
* Without VRR registers get latched at:
* vblank_start
*
* With VRR the earliest registers can get latched is:
* intel_vrr_vmin_vblank_start(), which if we want to maintain
* the correct min vtotal is >=vblank_start+1
*
* The latest point registers can get latched is the vmax decision boundary:
* intel_vrr_vmax_vblank_start()
*
* Between those two points the vblank exit starts (and hence registers get
* latched) ASAP after a push is sent.
*
* framestart_delay is programmable 1-4.
*/
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (DISPLAY_VER(i915) >= 13)
return crtc_state->vrr.guardband;
else
/* The hw imposes the extra scanline before frame start */
return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
}
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
/* Min vblank actually determined by flipline that is always >=vmin+1 */
return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
}
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
}
void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
const struct drm_display_info *info = &connector->base.display_info;
int vmin, vmax;
if (!intel_vrr_is_capable(connector))
return;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return;
if (!crtc_state->uapi.vrr_enabled)
return;
vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
vmax = adjusted_mode->crtc_clock * 1000 /
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
if (vmin >= vmax)
return;
/*
* flipline determines the min vblank length the hardware will
* generate, and flipline>=vmin+1, hence we reduce vmin by one
* to make sure we can get the actual min vblank length.
*/
crtc_state->vrr.vmin = vmin - 1;
crtc_state->vrr.vmax = vmax;
crtc_state->vrr.enable = true;
crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;
/*
* For XE_LPD+, we use guardband and pipeline override
* is deprecated.
*/
if (DISPLAY_VER(i915) >= 13) {
/*
* FIXME: Subtract Window2 delay from below value.
*
* Window2 specifies time required to program DSB (Window2) in
* number of scan lines. Assuming 0 for no DSB.
*/
crtc_state->vrr.guardband =
crtc_state->vrr.vmin + 1 - adjusted_mode->crtc_vdisplay;
} else {
crtc_state->vrr.pipeline_full =
min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay -
crtc_state->framestart_delay - 1);
}
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
if (DISPLAY_VER(i915) >= 13)
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
VRR_CTL_PIPELINE_FULL_OVERRIDE;
}
void intel_vrr_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1);
intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1);
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl(crtc_state));
intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1);
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN);
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder),
VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
}
void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder),
TRANS_PUSH_EN | TRANS_PUSH_SEND);
}
bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return false;
return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND;
}
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
if (!old_crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder),
trans_vrr_ctl(old_crtc_state));
intel_de_wait_for_clear(dev_priv, TRANS_VRR_STATUS(cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000);
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0);
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0);
}
void intel_vrr_get_config(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl;
trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder));
crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
if (!crtc_state->vrr.enable)
return;
if (DISPLAY_VER(dev_priv) >= 13)
crtc_state->vrr.guardband =
REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
else
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
crtc_state->vrr.pipeline_full =
REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN)
crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1;
crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1;
crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}