Adds a wrapper around `kuid_t` called `Kuid`. This allows us to define various operations on kuids such as equality and current_euid. It also lets us provide conversions from kuid into userspace values. Rust Binder needs these operations because it needs to compare kuids for equality, and it needs to tell userspace about the pid and uid of incoming transactions. To read kuids from a `struct task_struct`, you must currently use various #defines that perform the appropriate field access under an RCU read lock. Currently, we do not have a Rust wrapper for rcu_read_lock, which means that for this patch, there are two ways forward: 1. Inline the methods into Rust code, and use __rcu_read_lock directly rather than the rcu_read_lock wrapper. This gives up lockdep for these usages of RCU. 2. Wrap the various #defines in helpers and call the helpers from Rust. This patch uses the second option. One possible disadvantage of the second option is the possible introduction of speculation gadgets, but as discussed in [1], the risk appears to be acceptable. Of course, once a wrapper for rcu_read_lock is available, it is preferable to use that over either of the two above approaches. Link: https://lore.kernel.org/all/202312080947.674CD2DC7@keescook/ [1] Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Trevor Gross <tmgross@umich.edu> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/r/20240915-alice-file-v10-7-88484f7a3dcf@google.com Signed-off-by: Christian Brauner <brauner@kernel.org>
252 lines
8.3 KiB
Rust
252 lines
8.3 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Tasks (threads and processes).
|
|
//!
|
|
//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
|
|
|
|
use crate::{
|
|
bindings,
|
|
types::{NotThreadSafe, Opaque},
|
|
};
|
|
use core::{
|
|
cmp::{Eq, PartialEq},
|
|
ffi::{c_int, c_long, c_uint},
|
|
ops::Deref,
|
|
ptr,
|
|
};
|
|
|
|
/// A sentinel value used for infinite timeouts.
|
|
pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
|
|
|
|
/// Bitmask for tasks that are sleeping in an interruptible state.
|
|
pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
|
|
/// Bitmask for tasks that are sleeping in an uninterruptible state.
|
|
pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
|
|
/// Convenience constant for waking up tasks regardless of whether they are in interruptible or
|
|
/// uninterruptible sleep.
|
|
pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
|
|
|
|
/// Returns the currently running task.
|
|
#[macro_export]
|
|
macro_rules! current {
|
|
() => {
|
|
// SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
|
|
// caller.
|
|
unsafe { &*$crate::task::Task::current() }
|
|
};
|
|
}
|
|
|
|
/// Wraps the kernel's `struct task_struct`.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// All instances are valid tasks created by the C portion of the kernel.
|
|
///
|
|
/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
|
|
/// that the allocation remains valid at least until the matching call to `put_task_struct`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// The following is an example of getting the PID of the current thread with zero additional cost
|
|
/// when compared to the C version:
|
|
///
|
|
/// ```
|
|
/// let pid = current!().pid();
|
|
/// ```
|
|
///
|
|
/// Getting the PID of the current process, also zero additional cost:
|
|
///
|
|
/// ```
|
|
/// let pid = current!().group_leader().pid();
|
|
/// ```
|
|
///
|
|
/// Getting the current task and storing it in some struct. The reference count is automatically
|
|
/// incremented when creating `State` and decremented when it is dropped:
|
|
///
|
|
/// ```
|
|
/// use kernel::{task::Task, types::ARef};
|
|
///
|
|
/// struct State {
|
|
/// creator: ARef<Task>,
|
|
/// index: u32,
|
|
/// }
|
|
///
|
|
/// impl State {
|
|
/// fn new() -> Self {
|
|
/// Self {
|
|
/// creator: current!().into(),
|
|
/// index: 0,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
#[repr(transparent)]
|
|
pub struct Task(pub(crate) Opaque<bindings::task_struct>);
|
|
|
|
// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
|
|
// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
|
|
// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
|
|
// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
|
|
unsafe impl Send for Task {}
|
|
|
|
// SAFETY: It's OK to access `Task` through shared references from other threads because we're
|
|
// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
|
|
// synchronised by C code (e.g., `signal_pending`).
|
|
unsafe impl Sync for Task {}
|
|
|
|
/// The type of process identifiers (PIDs).
|
|
type Pid = bindings::pid_t;
|
|
|
|
/// The type of user identifiers (UIDs).
|
|
#[derive(Copy, Clone)]
|
|
pub struct Kuid {
|
|
kuid: bindings::kuid_t,
|
|
}
|
|
|
|
impl Task {
|
|
/// Returns a raw pointer to the current task.
|
|
///
|
|
/// It is up to the user to use the pointer correctly.
|
|
#[inline]
|
|
pub fn current_raw() -> *mut bindings::task_struct {
|
|
// SAFETY: Getting the current pointer is always safe.
|
|
unsafe { bindings::get_current() }
|
|
}
|
|
|
|
/// Returns a task reference for the currently executing task/thread.
|
|
///
|
|
/// The recommended way to get the current task/thread is to use the
|
|
/// [`current`] macro because it is safe.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers must ensure that the returned object doesn't outlive the current task/thread.
|
|
pub unsafe fn current() -> impl Deref<Target = Task> {
|
|
struct TaskRef<'a> {
|
|
task: &'a Task,
|
|
_not_send: NotThreadSafe,
|
|
}
|
|
|
|
impl Deref for TaskRef<'_> {
|
|
type Target = Task;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
self.task
|
|
}
|
|
}
|
|
|
|
let current = Task::current_raw();
|
|
TaskRef {
|
|
// SAFETY: If the current thread is still running, the current task is valid. Given
|
|
// that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
|
|
// (where it could potentially outlive the caller).
|
|
task: unsafe { &*current.cast() },
|
|
_not_send: NotThreadSafe,
|
|
}
|
|
}
|
|
|
|
/// Returns the group leader of the given task.
|
|
pub fn group_leader(&self) -> &Task {
|
|
// SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
|
|
// have a valid `group_leader`.
|
|
let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) };
|
|
|
|
// SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
|
|
// and given that a task has a reference to its group leader, we know it must be valid for
|
|
// the lifetime of the returned task reference.
|
|
unsafe { &*ptr.cast() }
|
|
}
|
|
|
|
/// Returns the PID of the given task.
|
|
pub fn pid(&self) -> Pid {
|
|
// SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
|
|
// have a valid pid.
|
|
unsafe { *ptr::addr_of!((*self.0.get()).pid) }
|
|
}
|
|
|
|
/// Returns the UID of the given task.
|
|
pub fn uid(&self) -> Kuid {
|
|
// SAFETY: By the type invariant, we know that `self.0` is valid.
|
|
Kuid::from_raw(unsafe { bindings::task_uid(self.0.get()) })
|
|
}
|
|
|
|
/// Returns the effective UID of the given task.
|
|
pub fn euid(&self) -> Kuid {
|
|
// SAFETY: By the type invariant, we know that `self.0` is valid.
|
|
Kuid::from_raw(unsafe { bindings::task_euid(self.0.get()) })
|
|
}
|
|
|
|
/// Determines whether the given task has pending signals.
|
|
pub fn signal_pending(&self) -> bool {
|
|
// SAFETY: By the type invariant, we know that `self.0` is valid.
|
|
unsafe { bindings::signal_pending(self.0.get()) != 0 }
|
|
}
|
|
|
|
/// Returns the given task's pid in the current pid namespace.
|
|
pub fn pid_in_current_ns(&self) -> Pid {
|
|
// SAFETY: We know that `self.0.get()` is valid by the type invariant, and passing a null
|
|
// pointer as the namespace is correct for using the current namespace.
|
|
unsafe { bindings::task_tgid_nr_ns(self.0.get(), ptr::null_mut()) }
|
|
}
|
|
|
|
/// Wakes up the task.
|
|
pub fn wake_up(&self) {
|
|
// SAFETY: By the type invariant, we know that `self.0.get()` is non-null and valid.
|
|
// And `wake_up_process` is safe to be called for any valid task, even if the task is
|
|
// running.
|
|
unsafe { bindings::wake_up_process(self.0.get()) };
|
|
}
|
|
}
|
|
|
|
// SAFETY: The type invariants guarantee that `Task` is always refcounted.
|
|
unsafe impl crate::types::AlwaysRefCounted for Task {
|
|
fn inc_ref(&self) {
|
|
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
|
|
unsafe { bindings::get_task_struct(self.0.get()) };
|
|
}
|
|
|
|
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
|
|
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
|
|
unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
|
|
}
|
|
}
|
|
|
|
impl Kuid {
|
|
/// Get the current euid.
|
|
#[inline]
|
|
pub fn current_euid() -> Kuid {
|
|
// SAFETY: Just an FFI call.
|
|
Self::from_raw(unsafe { bindings::current_euid() })
|
|
}
|
|
|
|
/// Create a `Kuid` given the raw C type.
|
|
#[inline]
|
|
pub fn from_raw(kuid: bindings::kuid_t) -> Self {
|
|
Self { kuid }
|
|
}
|
|
|
|
/// Turn this kuid into the raw C type.
|
|
#[inline]
|
|
pub fn into_raw(self) -> bindings::kuid_t {
|
|
self.kuid
|
|
}
|
|
|
|
/// Converts this kernel UID into a userspace UID.
|
|
///
|
|
/// Uses the namespace of the current task.
|
|
#[inline]
|
|
pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
|
|
// SAFETY: Just an FFI call.
|
|
unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
|
|
}
|
|
}
|
|
|
|
impl PartialEq for Kuid {
|
|
#[inline]
|
|
fn eq(&self, other: &Kuid) -> bool {
|
|
// SAFETY: Just an FFI call.
|
|
unsafe { bindings::uid_eq(self.kuid, other.kuid) }
|
|
}
|
|
}
|
|
|
|
impl Eq for Kuid {}
|