1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c
Mika Kahola 619a06dba6 drm/i915/mtl: Reset only one lane in case of MFD
In case when only two or less transmit lanes are owned such as MFD
(DP-alt with x2 lanes) we need to reset only one data lane (lane0).
With only x2 lanes we don't need to poll for the phy current
status on both data lanes since only the owned data lane will respond.

v2: Find better naming for lanes and revise the commit message (Luca)

Reviewed-by: Arun R Murthy <arun.r.murthy@intel.com> (v1)
Signed-off-by: Mika Kahola <mika.kahola@intel.com>
Reviewed-by: Luca Coelho <luciano.coelho@intel.com> (v2)
Signed-off-by: Jouni Högander <jouni.hogander@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230601101314.332392-1-mika.kahola@intel.com
2023-06-05 12:35:29 +03:00

3046 lines
90 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2023 Intel Corporation
*/
#include <linux/log2.h>
#include <linux/math64.h>
#include "i915_reg.h"
#include "intel_cx0_phy.h"
#include "intel_cx0_phy_regs.h"
#include "intel_ddi.h"
#include "intel_ddi_buf_trans.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_hdmi.h"
#include "intel_panel.h"
#include "intel_psr.h"
#include "intel_tc.h"
#define MB_WRITE_COMMITTED true
#define MB_WRITE_UNCOMMITTED false
#define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
for ((__lane) = 0; (__lane) < 2; (__lane)++) \
for_each_if((__lane_mask) & BIT(__lane))
#define INTEL_CX0_LANE0 BIT(0)
#define INTEL_CX0_LANE1 BIT(1)
#define INTEL_CX0_BOTH_LANES (INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
bool intel_is_c10phy(struct drm_i915_private *i915, enum phy phy)
{
if (IS_METEORLAKE(i915) && (phy < PHY_C))
return true;
return false;
}
static int lane_mask_to_lane(u8 lane_mask)
{
if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
hweight8(lane_mask) != 1))
return 0;
return ilog2(lane_mask);
}
static void
assert_dc_off(struct drm_i915_private *i915)
{
bool enabled;
enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF);
drm_WARN_ON(&i915->drm, !enabled);
}
/*
* Prepare HW for CX0 phy transactions.
*
* It is required that PSR and DC5/6 are disabled before any CX0 message
* bus transaction is executed.
*/
static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_psr_pause(intel_dp);
return intel_display_power_get(i915, POWER_DOMAIN_DC_OFF);
}
static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_psr_resume(intel_dp);
intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref);
}
static void intel_clear_response_ready_flag(struct drm_i915_private *i915,
enum port port, int lane)
{
intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane),
0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
}
static void intel_cx0_bus_reset(struct drm_i915_private *i915, enum port port, int lane)
{
enum phy phy = intel_port_to_phy(i915, port);
intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_RESET);
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_RESET,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy));
return;
}
intel_clear_response_ready_flag(i915, port, lane);
}
static int intel_cx0_wait_for_ack(struct drm_i915_private *i915, enum port port,
int command, int lane, u32 *val)
{
enum phy phy = intel_port_to_phy(i915, port);
if (__intel_de_wait_for_register(i915,
XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane),
XELPDP_PORT_P2M_RESPONSE_READY,
XELPDP_PORT_P2M_RESPONSE_READY,
XELPDP_MSGBUS_TIMEOUT_FAST_US,
XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
phy_name(phy), *val);
return -ETIMEDOUT;
}
if (*val & XELPDP_PORT_P2M_ERROR_SET) {
drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy),
command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
intel_cx0_bus_reset(i915, port, lane);
return -EINVAL;
}
if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy),
command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
intel_cx0_bus_reset(i915, port, lane);
return -EINVAL;
}
return 0;
}
static int __intel_cx0_read_once(struct drm_i915_private *i915, enum port port,
int lane, u16 addr)
{
enum phy phy = intel_port_to_phy(i915, port);
int ack;
u32 val;
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
intel_cx0_bus_reset(i915, port, lane);
return -ETIMEDOUT;
}
intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING |
XELPDP_PORT_M2P_COMMAND_READ |
XELPDP_PORT_M2P_ADDRESS(addr));
ack = intel_cx0_wait_for_ack(i915, port, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
if (ack < 0) {
intel_cx0_bus_reset(i915, port, lane);
return ack;
}
intel_clear_response_ready_flag(i915, port, lane);
return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
}
static u8 __intel_cx0_read(struct drm_i915_private *i915, enum port port,
int lane, u16 addr)
{
enum phy phy = intel_port_to_phy(i915, port);
int i, status;
assert_dc_off(i915);
/* 3 tries is assumed to be enough to read successfully */
for (i = 0; i < 3; i++) {
status = __intel_cx0_read_once(i915, port, lane, addr);
if (status >= 0)
return status;
}
drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n",
phy_name(phy), addr, i);
return 0;
}
static u8 intel_cx0_read(struct drm_i915_private *i915, enum port port,
u8 lane_mask, u16 addr)
{
int lane = lane_mask_to_lane(lane_mask);
return __intel_cx0_read(i915, port, lane, addr);
}
static int __intel_cx0_write_once(struct drm_i915_private *i915, enum port port,
int lane, u16 addr, u8 data, bool committed)
{
enum phy phy = intel_port_to_phy(i915, port);
u32 val;
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
intel_cx0_bus_reset(i915, port, lane);
return -ETIMEDOUT;
}
intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING |
(committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
XELPDP_PORT_M2P_DATA(data) |
XELPDP_PORT_M2P_ADDRESS(addr));
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
intel_cx0_bus_reset(i915, port, lane);
return -ETIMEDOUT;
}
if (committed) {
if (intel_cx0_wait_for_ack(i915, port, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val) < 0) {
intel_cx0_bus_reset(i915, port, lane);
return -EINVAL;
}
} else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(port, lane)) &
XELPDP_PORT_P2M_ERROR_SET)) {
drm_dbg_kms(&i915->drm,
"PHY %c Error occurred during write command.\n", phy_name(phy));
intel_cx0_bus_reset(i915, port, lane);
return -EINVAL;
}
intel_clear_response_ready_flag(i915, port, lane);
return 0;
}
static void __intel_cx0_write(struct drm_i915_private *i915, enum port port,
int lane, u16 addr, u8 data, bool committed)
{
enum phy phy = intel_port_to_phy(i915, port);
int i, status;
assert_dc_off(i915);
/* 3 tries is assumed to be enough to write successfully */
for (i = 0; i < 3; i++) {
status = __intel_cx0_write_once(i915, port, lane, addr, data, committed);
if (status == 0)
return;
}
drm_err_once(&i915->drm,
"PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
}
static void intel_cx0_write(struct drm_i915_private *i915, enum port port,
u8 lane_mask, u16 addr, u8 data, bool committed)
{
int lane;
for_each_cx0_lane_in_mask(lane_mask, lane)
__intel_cx0_write(i915, port, lane, addr, data, committed);
}
static void intel_c20_sram_write(struct drm_i915_private *i915, enum port port,
int lane, u16 addr, u16 data)
{
assert_dc_off(i915);
intel_cx0_write(i915, port, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
intel_cx0_write(i915, port, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
intel_cx0_write(i915, port, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
intel_cx0_write(i915, port, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
}
static u16 intel_c20_sram_read(struct drm_i915_private *i915, enum port port,
int lane, u16 addr)
{
u16 val;
assert_dc_off(i915);
intel_cx0_write(i915, port, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
intel_cx0_write(i915, port, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
val = intel_cx0_read(i915, port, lane, PHY_C20_RD_DATA_H);
val <<= 8;
val |= intel_cx0_read(i915, port, lane, PHY_C20_RD_DATA_L);
return val;
}
static void __intel_cx0_rmw(struct drm_i915_private *i915, enum port port,
int lane, u16 addr, u8 clear, u8 set, bool committed)
{
u8 old, val;
old = __intel_cx0_read(i915, port, lane, addr);
val = (old & ~clear) | set;
if (val != old)
__intel_cx0_write(i915, port, lane, addr, val, committed);
}
static void intel_cx0_rmw(struct drm_i915_private *i915, enum port port,
u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
{
u8 lane;
for_each_cx0_lane_in_mask(lane_mask, lane)
__intel_cx0_rmw(i915, port, lane, addr, clear, set, committed);
}
static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
(crtc_state->port_clock == 540000 ||
crtc_state->port_clock == 810000))
return 5;
else
return 4;
} else {
return 5;
}
}
static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
{
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
(crtc_state->port_clock == 540000 ||
crtc_state->port_clock == 810000))
return 5;
else
return 2;
} else {
return 6;
}
}
void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
const struct intel_ddi_buf_trans *trans;
enum phy phy = intel_port_to_phy(i915, encoder->port);
intel_wakeref_t wakeref;
int n_entries, ln;
wakeref = intel_cx0_phy_transaction_begin(encoder);
trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
if (drm_WARN_ON_ONCE(&i915->drm, !trans)) {
intel_cx0_phy_transaction_end(encoder, wakeref);
return;
}
if (intel_is_c10phy(i915, phy)) {
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CMN(3),
C10_CMN3_TXVBOOST_MASK,
C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
MB_WRITE_UNCOMMITTED);
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_TX(1),
C10_TX1_TERMCTL_MASK,
C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
MB_WRITE_COMMITTED);
}
for (ln = 0; ln < crtc_state->lane_count; ln++) {
int level = intel_ddi_level(encoder, crtc_state, ln);
int lane, tx;
lane = ln / 2;
tx = ln % 2;
intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 0),
C10_PHY_OVRD_LEVEL_MASK,
C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
MB_WRITE_COMMITTED);
intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 1),
C10_PHY_OVRD_LEVEL_MASK,
C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
MB_WRITE_COMMITTED);
intel_cx0_rmw(i915, encoder->port, BIT(lane), PHY_CX0_VDROVRD_CTL(lane, tx, 2),
C10_PHY_OVRD_LEVEL_MASK,
C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
MB_WRITE_COMMITTED);
}
/* Write Override enables in 0xD71 */
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_OVRD,
0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
MB_WRITE_COMMITTED);
if (intel_is_c10phy(i915, phy))
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
intel_cx0_phy_transaction_end(encoder, wakeref);
}
/*
* Basic DP link rates with 38.4 MHz reference clock.
* Note: The tables below are with SSC. In non-ssc
* registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
* programmed 0.
*/
static const struct intel_c10pll_state mtl_c10_dp_rbr = {
.clock = 162000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xB4,
.pll[1] = 0,
.pll[2] = 0x30,
.pll[3] = 0x1,
.pll[4] = 0x26,
.pll[5] = 0x0C,
.pll[6] = 0x98,
.pll[7] = 0x46,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xC0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x2,
.pll[16] = 0x84,
.pll[17] = 0x4F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r216 = {
.clock = 216000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x4,
.pll[1] = 0,
.pll[2] = 0xA2,
.pll[3] = 0x1,
.pll[4] = 0x33,
.pll[5] = 0x10,
.pll[6] = 0x75,
.pll[7] = 0xB3,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x2,
.pll[16] = 0x85,
.pll[17] = 0x0F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r243 = {
.clock = 243000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x34,
.pll[1] = 0,
.pll[2] = 0xDA,
.pll[3] = 0x1,
.pll[4] = 0x39,
.pll[5] = 0x12,
.pll[6] = 0xE3,
.pll[7] = 0xE9,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x20,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x2,
.pll[16] = 0x85,
.pll[17] = 0x8F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
.clock = 270000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0xF8,
.pll[3] = 0x0,
.pll[4] = 0x20,
.pll[5] = 0x0A,
.pll[6] = 0x29,
.pll[7] = 0x10,
.pll[8] = 0x1, /* Verify */
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xA0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x1,
.pll[16] = 0x84,
.pll[17] = 0x4F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r324 = {
.clock = 324000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xB4,
.pll[1] = 0,
.pll[2] = 0x30,
.pll[3] = 0x1,
.pll[4] = 0x26,
.pll[5] = 0x0C,
.pll[6] = 0x98,
.pll[7] = 0x46,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xC0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x1,
.pll[16] = 0x85,
.pll[17] = 0x4F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r432 = {
.clock = 432000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x4,
.pll[1] = 0,
.pll[2] = 0xA2,
.pll[3] = 0x1,
.pll[4] = 0x33,
.pll[5] = 0x10,
.pll[6] = 0x75,
.pll[7] = 0xB3,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x1,
.pll[16] = 0x85,
.pll[17] = 0x0F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
.clock = 540000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0xF8,
.pll[3] = 0,
.pll[4] = 0x20,
.pll[5] = 0x0A,
.pll[6] = 0x29,
.pll[7] = 0x10,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xA0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0,
.pll[16] = 0x84,
.pll[17] = 0x4F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_edp_r675 = {
.clock = 675000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0xB4,
.pll[1] = 0,
.pll[2] = 0x3E,
.pll[3] = 0x1,
.pll[4] = 0xA8,
.pll[5] = 0x0C,
.pll[6] = 0x33,
.pll[7] = 0x54,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xC8,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0,
.pll[16] = 0x85,
.pll[17] = 0x8F,
.pll[18] = 0xE6,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
.clock = 810000,
.tx = 0x10,
.cmn = 0x21,
.pll[0] = 0x34,
.pll[1] = 0,
.pll[2] = 0x84,
.pll[3] = 0x1,
.pll[4] = 0x30,
.pll[5] = 0x0F,
.pll[6] = 0x3D,
.pll[7] = 0x98,
.pll[8] = 0x1,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0xF0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0,
.pll[16] = 0x84,
.pll[17] = 0x0F,
.pll[18] = 0xE5,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
&mtl_c10_dp_rbr,
&mtl_c10_dp_hbr1,
&mtl_c10_dp_hbr2,
&mtl_c10_dp_hbr3,
NULL,
};
static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
&mtl_c10_dp_rbr,
&mtl_c10_edp_r216,
&mtl_c10_edp_r243,
&mtl_c10_dp_hbr1,
&mtl_c10_edp_r324,
&mtl_c10_edp_r432,
&mtl_c10_dp_hbr2,
&mtl_c10_edp_r675,
&mtl_c10_dp_hbr3,
NULL,
};
/* C20 basic DP 1.4 tables */
static const struct intel_c20pll_state mtl_c20_dp_rbr = {
.link_bit_rate = 162000,
.clock = 162000,
.tx = { 0xbe88, /* tx cfg0 */
0x5800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x50a8, /* mpllb cfg0 */
0x2120, /* mpllb cfg1 */
0xcd9a, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x5ab8, /* mpllb cfg4 */
0x4c34, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x6000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
.link_bit_rate = 270000,
.clock = 270000,
.tx = { 0xbe88, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x308c, /* mpllb cfg0 */
0x2110, /* mpllb cfg1 */
0xcc9c, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x4b9a, /* mpllb cfg4 */
0x3f81, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
.link_bit_rate = 540000,
.clock = 540000,
.tx = { 0xbe88, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x108c, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0xcc9c, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x4b9a, /* mpllb cfg4 */
0x3f81, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
.link_bit_rate = 810000,
.clock = 810000,
.tx = { 0xbe88, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x10d2, /* mpllb cfg0 */
0x2108, /* mpllb cfg1 */
0x8d98, /* mpllb cfg2 */
0xbfc1, /* mpllb cfg3 */
0x7166, /* mpllb cfg4 */
0x5f42, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x7800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
/* C20 basic DP 2.0 tables */
static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
.link_bit_rate = 1000000, /* 10 Gbps */
.clock = 312500,
.tx = { 0xbe21, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mplla = { 0x3104, /* mplla cfg0 */
0xd105, /* mplla cfg1 */
0xc025, /* mplla cfg2 */
0xc025, /* mplla cfg3 */
0x8c00, /* mplla cfg4 */
0x759a, /* mplla cfg5 */
0x4000, /* mplla cfg6 */
0x0003, /* mplla cfg7 */
0x3555, /* mplla cfg8 */
0x0001, /* mplla cfg9 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
.link_bit_rate = 1350000, /* 13.5 Gbps */
.clock = 421875,
.tx = { 0xbea0, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x015f, /* mpllb cfg0 */
0x2205, /* mpllb cfg1 */
0x1b17, /* mpllb cfg2 */
0xffc1, /* mpllb cfg3 */
0xe100, /* mpllb cfg4 */
0xbd00, /* mpllb cfg5 */
0x2000, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x4800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0000, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
.link_bit_rate = 2000000, /* 20 Gbps */
.clock = 625000,
.tx = { 0xbe20, /* tx cfg0 */
0x4800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = {0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mplla = { 0x3104, /* mplla cfg0 */
0xd105, /* mplla cfg1 */
0xc025, /* mplla cfg2 */
0xc025, /* mplla cfg3 */
0xa6ab, /* mplla cfg4 */
0x8c00, /* mplla cfg5 */
0x4000, /* mplla cfg6 */
0x0003, /* mplla cfg7 */
0x3555, /* mplla cfg8 */
0x0001, /* mplla cfg9 */
},
};
static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
&mtl_c20_dp_rbr,
&mtl_c20_dp_hbr1,
&mtl_c20_dp_hbr2,
&mtl_c20_dp_hbr3,
&mtl_c20_dp_uhbr10,
&mtl_c20_dp_uhbr13_5,
&mtl_c20_dp_uhbr20,
NULL,
};
/*
* HDMI link rates with 38.4 MHz reference clock.
*/
static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
.clock = 25200,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x4,
.pll[1] = 0,
.pll[2] = 0xB2,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xD,
.pll[16] = 0x6,
.pll[17] = 0x8F,
.pll[18] = 0x84,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
.clock = 27000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34,
.pll[1] = 0,
.pll[2] = 0xC0,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x80,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xD,
.pll[16] = 0x6,
.pll[17] = 0xCF,
.pll[18] = 0x84,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
.clock = 74250,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0x7A,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x58,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xB,
.pll[16] = 0x6,
.pll[17] = 0xF,
.pll[18] = 0x85,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
.clock = 148500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0x7A,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x58,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0xA,
.pll[16] = 0x6,
.pll[17] = 0xF,
.pll[18] = 0x85,
.pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
.clock = 594000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4,
.pll[1] = 0,
.pll[2] = 0x7A,
.pll[3] = 0,
.pll[4] = 0,
.pll[5] = 0,
.pll[6] = 0,
.pll[7] = 0,
.pll[8] = 0x20,
.pll[9] = 0x1,
.pll[10] = 0,
.pll[11] = 0,
.pll[12] = 0x58,
.pll[13] = 0,
.pll[14] = 0,
.pll[15] = 0x8,
.pll[16] = 0x6,
.pll[17] = 0xF,
.pll[18] = 0x85,
.pll[19] = 0x23,
};
/* Precomputed C10 HDMI PLL tables */
static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
.clock = 27027,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
.clock = 28320,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
.clock = 30240,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
.clock = 31500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
.clock = 36000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
.clock = 40000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
.clock = 49500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
.clock = 50000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
.clock = 57284,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
.clock = 58000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
.clock = 65000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
.clock = 71000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
.clock = 74176,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
.clock = 75000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
.clock = 78750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
.clock = 85500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
.clock = 88750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
.clock = 106500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
.clock = 108000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
.clock = 115500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
.clock = 119000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
.clock = 135000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
.clock = 138500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
.clock = 147160,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
.clock = 148352,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
.clock = 154000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
.clock = 162000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
.clock = 167000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
.clock = 197802,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
.clock = 198000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
.clock = 209800,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
.clock = 241500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
.clock = 262750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
.clock = 268500,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
.clock = 296703,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
.clock = 297000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
.clock = 319750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
.clock = 497750,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
.clock = 592000,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
.clock = 593407,
.tx = 0x10,
.cmn = 0x1,
.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
};
static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
&mtl_c10_hdmi_25_2, /* Consolidated Table */
&mtl_c10_hdmi_27_0, /* Consolidated Table */
&mtl_c10_hdmi_27027,
&mtl_c10_hdmi_28320,
&mtl_c10_hdmi_30240,
&mtl_c10_hdmi_31500,
&mtl_c10_hdmi_36000,
&mtl_c10_hdmi_40000,
&mtl_c10_hdmi_49500,
&mtl_c10_hdmi_50000,
&mtl_c10_hdmi_57284,
&mtl_c10_hdmi_58000,
&mtl_c10_hdmi_65000,
&mtl_c10_hdmi_71000,
&mtl_c10_hdmi_74176,
&mtl_c10_hdmi_74_25, /* Consolidated Table */
&mtl_c10_hdmi_75000,
&mtl_c10_hdmi_78750,
&mtl_c10_hdmi_85500,
&mtl_c10_hdmi_88750,
&mtl_c10_hdmi_106500,
&mtl_c10_hdmi_108000,
&mtl_c10_hdmi_115500,
&mtl_c10_hdmi_119000,
&mtl_c10_hdmi_135000,
&mtl_c10_hdmi_138500,
&mtl_c10_hdmi_147160,
&mtl_c10_hdmi_148352,
&mtl_c10_hdmi_148_5, /* Consolidated Table */
&mtl_c10_hdmi_154000,
&mtl_c10_hdmi_162000,
&mtl_c10_hdmi_167000,
&mtl_c10_hdmi_197802,
&mtl_c10_hdmi_198000,
&mtl_c10_hdmi_209800,
&mtl_c10_hdmi_241500,
&mtl_c10_hdmi_262750,
&mtl_c10_hdmi_268500,
&mtl_c10_hdmi_296703,
&mtl_c10_hdmi_297000,
&mtl_c10_hdmi_319750,
&mtl_c10_hdmi_497750,
&mtl_c10_hdmi_592000,
&mtl_c10_hdmi_593407,
&mtl_c10_hdmi_594, /* Consolidated Table */
NULL,
};
static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
.link_bit_rate = 25175,
.clock = 25175,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0xa0d2, /* mpllb cfg0 */
0x7d80, /* mpllb cfg1 */
0x0906, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x0200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x0000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
.link_bit_rate = 27000,
.clock = 27000,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0xa0e0, /* mpllb cfg0 */
0x7d80, /* mpllb cfg1 */
0x0906, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x8000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
.link_bit_rate = 74250,
.clock = 74250,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x609a, /* mpllb cfg0 */
0x7d40, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
.link_bit_rate = 148500,
.clock = 148500,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x409a, /* mpllb cfg0 */
0x7d20, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
.link_bit_rate = 594000,
.clock = 594000,
.tx = { 0xbe88, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x009a, /* mpllb cfg0 */
0x7d08, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x5800, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0001, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
.link_bit_rate = 3000000,
.clock = 166670,
.tx = { 0xbe98, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x209c, /* mpllb cfg0 */
0x7d10, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x2000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
.link_bit_rate = 6000000,
.clock = 333330,
.tx = { 0xbe98, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x009c, /* mpllb cfg0 */
0x7d08, /* mpllb cfg1 */
0xca06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x2000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
.link_bit_rate = 8000000,
.clock = 444440,
.tx = { 0xbe98, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x00d0, /* mpllb cfg0 */
0x7d08, /* mpllb cfg1 */
0x4a06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0003, /* mpllb cfg7 */
0x2aaa, /* mpllb cfg8 */
0x0002, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
.link_bit_rate = 10000000,
.clock = 555560,
.tx = { 0xbe98, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x1104, /* mpllb cfg0 */
0x7d08, /* mpllb cfg1 */
0x0a06, /* mpllb cfg2 */
0xbe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0003, /* mpllb cfg7 */
0x3555, /* mpllb cfg8 */
0x0001, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
.link_bit_rate = 12000000,
.clock = 666670,
.tx = { 0xbe98, /* tx cfg0 */
0x9800, /* tx cfg1 */
0x0000, /* tx cfg2 */
},
.cmn = { 0x0500, /* cmn cfg0*/
0x0005, /* cmn cfg1 */
0x0000, /* cmn cfg2 */
0x0000, /* cmn cfg3 */
},
.mpllb = { 0x0138, /* mpllb cfg0 */
0x7d08, /* mpllb cfg1 */
0x5486, /* mpllb cfg2 */
0xfe40, /* mpllb cfg3 */
0x0000, /* mpllb cfg4 */
0x0000, /* mpllb cfg5 */
0x2200, /* mpllb cfg6 */
0x0001, /* mpllb cfg7 */
0x4000, /* mpllb cfg8 */
0x0000, /* mpllb cfg9 */
0x0004, /* mpllb cfg10 */
},
};
static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
&mtl_c20_hdmi_25_175,
&mtl_c20_hdmi_27_0,
&mtl_c20_hdmi_74_25,
&mtl_c20_hdmi_148_5,
&mtl_c20_hdmi_594,
&mtl_c20_hdmi_300,
&mtl_c20_hdmi_600,
&mtl_c20_hdmi_800,
&mtl_c20_hdmi_1000,
&mtl_c20_hdmi_1200,
NULL,
};
static int intel_c10_phy_check_hdmi_link_rate(int clock)
{
const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables;
int i;
for (i = 0; tables[i]; i++) {
if (clock == tables[i]->clock)
return MODE_OK;
}
return MODE_CLOCK_RANGE;
}
static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
return mtl_c10_edp_tables;
else
return mtl_c10_dp_tables;
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
return mtl_c10_hdmi_tables;
}
MISSING_CASE(encoder->type);
return NULL;
}
static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
struct intel_cx0pll_state *pll_state = &crtc_state->cx0pll_state;
int i;
if (intel_crtc_has_dp_encoder(crtc_state)) {
if (intel_panel_use_ssc(i915)) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
pll_state->ssc_enabled =
(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
}
}
if (pll_state->ssc_enabled)
return;
drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
for (i = 4; i < 9; i++)
pll_state->c10.pll[i] = 0;
}
static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c10pll_state * const *tables;
int i;
tables = intel_c10pll_tables_get(crtc_state, encoder);
if (!tables)
return -EINVAL;
for (i = 0; tables[i]; i++) {
if (crtc_state->port_clock == tables[i]->clock) {
crtc_state->cx0pll_state.c10 = *tables[i];
intel_c10pll_update_pll(crtc_state, encoder);
return 0;
}
}
return -EINVAL;
}
void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
struct intel_c10pll_state *pll_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u8 lane = INTEL_CX0_LANE0;
intel_wakeref_t wakeref;
int i;
wakeref = intel_cx0_phy_transaction_begin(encoder);
/*
* According to C10 VDR Register programming Sequence we need
* to do this to read PHY internal registers from MsgBus.
*/
intel_cx0_rmw(i915, encoder->port, lane, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MSGBUS_ACCESS,
MB_WRITE_COMMITTED);
for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
pll_state->pll[i] = intel_cx0_read(i915, encoder->port, lane,
PHY_C10_VDR_PLL(i));
pll_state->cmn = intel_cx0_read(i915, encoder->port, lane, PHY_C10_VDR_CMN(0));
pll_state->tx = intel_cx0_read(i915, encoder->port, lane, PHY_C10_VDR_TX(0));
intel_cx0_phy_transaction_end(encoder, wakeref);
}
static void intel_c10_pll_program(struct drm_i915_private *i915,
const struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c10pll_state *pll_state = &crtc_state->cx0pll_state.c10;
int i;
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MSGBUS_ACCESS,
MB_WRITE_COMMITTED);
/* Custom width needs to be programmed to 0 for both the phy lanes */
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
MB_WRITE_COMMITTED);
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_UPDATE_CFG,
MB_WRITE_COMMITTED);
/* Program the pll values only for the master lane */
for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
pll_state->pll[i],
(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
intel_cx0_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
intel_cx0_rmw(i915, encoder->port, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
MB_WRITE_COMMITTED);
}
void intel_c10pll_dump_hw_state(struct drm_i915_private *i915,
const struct intel_c10pll_state *hw_state)
{
bool fracen;
int i;
unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
unsigned int multiplier, tx_clk_div;
fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ",
str_yes_no(fracen));
if (fracen) {
frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
frac_rem = hw_state->pll[14] << 8 | hw_state->pll[13];
frac_den = hw_state->pll[10] << 8 | hw_state->pll[9];
drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n",
frac_quot, frac_rem, frac_den);
}
multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
hw_state->pll[2]) / 2 + 16;
tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
drm_dbg_kms(&i915->drm,
"multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:");
drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn);
BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
}
static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state)
{
u64 datarate;
u64 mpll_tx_clk_div;
u64 vco_freq_shift;
u64 vco_freq;
u64 multiplier;
u64 mpll_multiplier;
u64 mpll_fracn_quot;
u64 mpll_fracn_rem;
u8 mpllb_ana_freq_vco;
u8 mpll_div_multiplier;
if (pixel_clock < 25175 || pixel_clock > 600000)
return -EINVAL;
datarate = ((u64)pixel_clock * 1000) * 10;
mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
vco_freq = (datarate << vco_freq_shift) >> 8;
multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
mpll_multiplier = 2 * (multiplier >> 32);
mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
mpll_fracn_rem = multiplier & 0xFFFF;
mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
datarate), 255);
if (vco_freq <= DATARATE_3000000000)
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
else if (vco_freq <= DATARATE_3500000000)
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
else if (vco_freq <= DATARATE_4000000000)
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
else
mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
pll_state->link_bit_rate = pixel_clock;
pll_state->clock = pixel_clock;
pll_state->tx[0] = 0xbe88;
pll_state->tx[1] = 0x9800;
pll_state->tx[2] = 0x0000;
pll_state->cmn[0] = 0x0500;
pll_state->cmn[1] = 0x0005;
pll_state->cmn[2] = 0x0000;
pll_state->cmn[3] = 0x0000;
pll_state->mpllb[0] = (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
MPLL_MULTIPLIER(mpll_multiplier));
pll_state->mpllb[1] = (CAL_DAC_CODE(CAL_DAC_CODE_31) |
WORD_CLK_DIV |
MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
pll_state->mpllb[2] = (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
CP_PROP(CP_PROP_20) |
CP_INT(CP_INT_6));
pll_state->mpllb[3] = (V2I(V2I_2) |
CP_PROP_GS(CP_PROP_GS_30) |
CP_INT_GS(CP_INT_GS_28));
pll_state->mpllb[4] = 0x0000;
pll_state->mpllb[5] = 0x0000;
pll_state->mpllb[6] = (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
pll_state->mpllb[7] = MPLL_FRACN_DEN;
pll_state->mpllb[8] = mpll_fracn_quot;
pll_state->mpllb[9] = mpll_fracn_rem;
pll_state->mpllb[10] = HDMI_DIV(HDMI_DIV_1);
return 0;
}
static int intel_c20_phy_check_hdmi_link_rate(int clock)
{
const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables;
int i;
for (i = 0; tables[i]; i++) {
if (clock == tables[i]->link_bit_rate)
return MODE_OK;
}
if (clock >= 25175 && clock <= 594000)
return MODE_OK;
return MODE_CLOCK_RANGE;
}
int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock)
{
struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi);
struct drm_i915_private *i915 = intel_hdmi_to_i915(hdmi);
enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
if (intel_is_c10phy(i915, phy))
return intel_c10_phy_check_hdmi_link_rate(clock);
return intel_c20_phy_check_hdmi_link_rate(clock);
}
static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
if (intel_crtc_has_dp_encoder(crtc_state))
return mtl_c20_dp_tables;
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
return mtl_c20_hdmi_tables;
MISSING_CASE(encoder->type);
return NULL;
}
static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c20pll_state * const *tables;
int i;
/* try computed C20 HDMI tables before using consolidated tables */
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock,
&crtc_state->cx0pll_state.c20) == 0)
return 0;
}
tables = intel_c20_pll_tables_get(crtc_state, encoder);
if (!tables)
return -EINVAL;
for (i = 0; tables[i]; i++) {
if (crtc_state->port_clock == tables[i]->link_bit_rate) {
crtc_state->cx0pll_state.c20 = *tables[i];
return 0;
}
}
return -EINVAL;
}
int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
if (intel_is_c10phy(i915, phy))
return intel_c10pll_calc_state(crtc_state, encoder);
return intel_c20pll_calc_state(crtc_state, encoder);
}
static bool intel_c20_use_mplla(u32 clock)
{
/* 10G and 20G rates use MPLLA */
if (clock == 312500 || clock == 625000)
return true;
return false;
}
void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
struct intel_c20pll_state *pll_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
bool cntx;
intel_wakeref_t wakeref;
int i;
wakeref = intel_cx0_phy_transaction_begin(encoder);
/* 1. Read current context selection */
cntx = intel_cx0_read(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
/* Read Tx configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
if (cntx)
pll_state->tx[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_B_TX_CNTX_CFG(i));
else
pll_state->tx[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_A_TX_CNTX_CFG(i));
}
/* Read common configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
if (cntx)
pll_state->cmn[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_B_CMN_CNTX_CFG(i));
else
pll_state->cmn[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_A_CMN_CNTX_CFG(i));
}
if (pll_state->tx[0] & C20_PHY_USE_MPLLB) {
/* MPLLB configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
if (cntx)
pll_state->mpllb[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_B_MPLLB_CNTX_CFG(i));
else
pll_state->mpllb[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_A_MPLLB_CNTX_CFG(i));
}
} else {
/* MPLLA configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
if (cntx)
pll_state->mplla[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_B_MPLLA_CNTX_CFG(i));
else
pll_state->mplla[i] = intel_c20_sram_read(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_A_MPLLA_CNTX_CFG(i));
}
}
intel_cx0_phy_transaction_end(encoder, wakeref);
}
void intel_c20pll_dump_hw_state(struct drm_i915_private *i915,
const struct intel_c20pll_state *hw_state)
{
int i;
drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n");
drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
if (intel_c20_use_mplla(hw_state->clock)) {
for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]);
} else {
for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]);
}
}
static u8 intel_c20_get_dp_rate(u32 clock)
{
switch (clock) {
case 162000: /* 1.62 Gbps DP1.4 */
return 0;
case 270000: /* 2.7 Gbps DP1.4 */
return 1;
case 540000: /* 5.4 Gbps DP 1.4 */
return 2;
case 810000: /* 8.1 Gbps DP1.4 */
return 3;
case 216000: /* 2.16 Gbps eDP */
return 4;
case 243000: /* 2.43 Gbps eDP */
return 5;
case 324000: /* 3.24 Gbps eDP */
return 6;
case 432000: /* 4.32 Gbps eDP */
return 7;
case 312500: /* 10 Gbps DP2.0 */
return 8;
case 421875: /* 13.5 Gbps DP2.0 */
return 9;
case 625000: /* 20 Gbps DP2.0*/
return 10;
case 648000: /* 6.48 Gbps eDP*/
return 11;
case 675000: /* 6.75 Gbps eDP*/
return 12;
default:
MISSING_CASE(clock);
return 0;
}
}
static u8 intel_c20_get_hdmi_rate(u32 clock)
{
if (clock >= 25175 && clock <= 600000)
return 0;
switch (clock) {
case 166670: /* 3 Gbps */
case 333330: /* 6 Gbps */
case 666670: /* 12 Gbps */
return 1;
case 444440: /* 8 Gbps */
return 2;
case 555560: /* 10 Gbps */
return 3;
default:
MISSING_CASE(clock);
return 0;
}
}
static bool is_dp2(u32 clock)
{
/* DP2.0 clock rates */
if (clock == 312500 || clock == 421875 || clock == 625000)
return true;
return false;
}
static bool is_hdmi_frl(u32 clock)
{
switch (clock) {
case 166670: /* 3 Gbps */
case 333330: /* 6 Gbps */
case 444440: /* 8 Gbps */
case 555560: /* 10 Gbps */
case 666670: /* 12 Gbps */
return true;
default:
return false;
}
}
static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
/* banks should not be cleared for DPALT/USB4/TBT modes */
/* TODO: optimize re-calibration in legacy mode */
return intel_tc_port_in_legacy_mode(intel_dig_port);
}
static int intel_get_c20_custom_width(u32 clock, bool dp)
{
if (dp && is_dp2(clock))
return 2;
else if (is_hdmi_frl(clock))
return 1;
else
return 0;
}
static void intel_c20_pll_program(struct drm_i915_private *i915,
const struct intel_crtc_state *crtc_state,
struct intel_encoder *encoder)
{
const struct intel_c20pll_state *pll_state = &crtc_state->cx0pll_state.c20;
bool dp = false;
int lane = crtc_state->lane_count > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
bool cntx;
int i;
if (intel_crtc_has_dp_encoder(crtc_state))
dp = true;
/* 1. Read current context selection */
cntx = intel_cx0_read(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
/*
* 2. If there is a protocol switch from HDMI to DP or vice versa, clear
* the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
* Protocol switch is only applicable for MPLLA
*/
if (intel_c20_protocol_switch_valid(encoder)) {
for (i = 0; i < 4; i++)
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
usleep_range(4000, 4100);
}
/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
/* 3.1 Tx configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
if (cntx)
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i), pll_state->tx[i]);
else
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i), pll_state->tx[i]);
}
/* 3.2 common configuration */
for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
if (cntx)
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i), pll_state->cmn[i]);
else
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i), pll_state->cmn[i]);
}
/* 3.3 mpllb or mplla configuration */
if (intel_c20_use_mplla(pll_state->clock)) {
for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
if (cntx)
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_A_MPLLA_CNTX_CFG(i),
pll_state->mplla[i]);
else
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_B_MPLLA_CNTX_CFG(i),
pll_state->mplla[i]);
}
} else {
for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
if (cntx)
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_A_MPLLB_CNTX_CFG(i),
pll_state->mpllb[i]);
else
intel_c20_sram_write(i915, encoder->port, INTEL_CX0_LANE0,
PHY_C20_B_MPLLB_CNTX_CFG(i),
pll_state->mpllb[i]);
}
}
/* 4. Program custom width to match the link protocol */
intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_WIDTH,
PHY_C20_CUSTOM_WIDTH_MASK,
PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(pll_state->clock, dp)),
MB_WRITE_COMMITTED);
/* 5. For DP or 6. For HDMI */
if (dp) {
intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(pll_state->clock)),
MB_WRITE_COMMITTED);
} else {
intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
is_hdmi_frl(pll_state->clock) ? BIT(7) : 0,
MB_WRITE_COMMITTED);
intel_cx0_write(i915, encoder->port, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
intel_c20_get_hdmi_rate(pll_state->clock),
MB_WRITE_COMMITTED);
}
/*
* 7. Write Vendor specific registers to toggle context setting to load
* the updated programming toggle context bit
*/
intel_cx0_rmw(i915, encoder->port, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE,
BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
}
int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
const struct intel_c10pll_state *pll_state)
{
unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
int tmpclk = 0;
if (pll_state->pll[0] & C10_PLL0_FRACEN) {
frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
frac_rem = pll_state->pll[14] << 8 | pll_state->pll[13];
frac_den = pll_state->pll[10] << 8 | pll_state->pll[9];
}
multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
pll_state->pll[2]) / 2 + 16;
tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
10 << (tx_clk_div + 16));
tmpclk *= (hdmi_div ? 2 : 1);
return tmpclk;
}
int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
const struct intel_c20pll_state *pll_state)
{
unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
unsigned int multiplier, refclk = 38400;
unsigned int tx_clk_div;
unsigned int ref_clk_mpllb_div;
unsigned int fb_clk_div4_en;
unsigned int ref, vco;
unsigned int tx_rate_mult;
unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
if (pll_state->tx[0] & C20_PHY_USE_MPLLB) {
tx_rate_mult = 1;
frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
frac_quot = pll_state->mpllb[8];
frac_rem = pll_state->mpllb[9];
frac_den = pll_state->mpllb[7];
multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
fb_clk_div4_en = 0;
} else {
tx_rate_mult = 2;
frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
frac_quot = pll_state->mplla[8];
frac_rem = pll_state->mplla[9];
frac_den = pll_state->mplla[7];
multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
}
if (frac_en)
frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
else
frac = 0;
ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
}
static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state,
bool lane_reversal)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u32 val = 0;
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(encoder->port), XELPDP_PORT_REVERSAL,
lane_reversal ? XELPDP_PORT_REVERSAL : 0);
if (lane_reversal)
val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
val |= XELPDP_FORWARD_CLOCK_UNGATE;
if (is_hdmi_frl(crtc_state->port_clock))
val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
else
val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
/* TODO: HDMI FRL */
/* DP2.0 10G and 20G rates enable MPLLA*/
if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000)
val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
else
val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLB, val);
}
static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
return val;
}
static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
return val;
}
static void intel_cx0_powerdown_change_sequence(struct drm_i915_private *i915,
enum port port,
u8 lane_mask, u8 state)
{
enum phy phy = intel_port_to_phy(i915, port);
int lane;
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
intel_cx0_get_powerdown_state(lane_mask, state));
/* Wait for pending transactions.*/
for_each_cx0_lane_in_mask(lane_mask, lane)
if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(port, lane),
XELPDP_PORT_M2P_TRANSACTION_PENDING,
XELPDP_MSGBUS_TIMEOUT_SLOW)) {
drm_dbg_kms(&i915->drm,
"PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
phy_name(phy));
intel_cx0_bus_reset(i915, port, lane);
}
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
intel_cx0_get_powerdown_update(lane_mask));
/* Update Timeout Value */
if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL2(port),
intel_cx0_get_powerdown_update(lane_mask), 0,
XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
}
static void intel_cx0_setup_powerdown(struct drm_i915_private *i915, enum port port)
{
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
XELPDP_POWER_STATE_READY_MASK,
XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(port),
XELPDP_POWER_STATE_ACTIVE_MASK |
XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
XELPDP_PLL_LANE_STAGGERING_DELAY(0));
}
static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
return val;
}
static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
return val;
}
static void intel_cx0_phy_lane_reset(struct drm_i915_private *i915,
struct intel_encoder *encoder,
bool lane_reversal)
{
enum port port = encoder->port;
enum phy phy = intel_port_to_phy(i915, port);
bool both_lanes = intel_tc_port_fia_max_lane_count(enc_to_dig_port(encoder)) > 2;
u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 :
INTEL_CX0_LANE0;
u32 lane_pipe_reset = both_lanes ?
XELPDP_LANE_PIPE_RESET(0) |
XELPDP_LANE_PIPE_RESET(1) :
XELPDP_LANE_PIPE_RESET(0);
u32 lane_phy_current_status = both_lanes ?
XELPDP_LANE_PHY_CURRENT_STATUS(0) |
XELPDP_LANE_PHY_CURRENT_STATUS(1) :
XELPDP_LANE_PHY_CURRENT_STATUS(0);
if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL1(port),
XELPDP_PORT_BUF_SOC_PHY_READY,
XELPDP_PORT_BUF_SOC_PHY_READY,
XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n",
phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port),
XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1),
lane_pipe_reset);
if (__intel_de_wait_for_register(i915, XELPDP_PORT_BUF_CTL2(port),
lane_phy_current_status, lane_phy_current_status,
XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n",
phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(port),
intel_cx0_get_pclk_refclk_request(both_lanes ?
INTEL_CX0_BOTH_LANES :
INTEL_CX0_LANE0),
intel_cx0_get_pclk_refclk_request(lane_mask));
if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(port),
intel_cx0_get_pclk_refclk_ack(both_lanes ?
INTEL_CX0_BOTH_LANES :
INTEL_CX0_LANE0),
intel_cx0_get_pclk_refclk_ack(lane_mask),
XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n",
phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
intel_cx0_powerdown_change_sequence(i915, port, INTEL_CX0_BOTH_LANES,
CX0_P2_STATE_RESET);
intel_cx0_setup_powerdown(i915, port);
intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(port), lane_pipe_reset, 0);
if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(port), lane_phy_current_status,
XELPDP_PORT_RESET_END_TIMEOUT))
drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n",
phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
}
static void intel_cx0_program_phy_lane(struct drm_i915_private *i915,
struct intel_encoder *encoder, int lane_count,
bool lane_reversal)
{
u8 l0t1, l0t2, l1t1, l1t2;
bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
enum port port = encoder->port;
if (intel_is_c10phy(i915, intel_port_to_phy(i915, port)))
intel_cx0_rmw(i915, port, INTEL_CX0_BOTH_LANES,
PHY_C10_VDR_CONTROL(1), 0,
C10_VDR_CTRL_MSGBUS_ACCESS,
MB_WRITE_COMMITTED);
/* TODO: DP-alt MFD case where only one PHY lane should be programmed. */
l0t1 = intel_cx0_read(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(1, 2));
l0t2 = intel_cx0_read(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(2, 2));
l1t1 = intel_cx0_read(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(1, 2));
l1t2 = intel_cx0_read(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(2, 2));
l0t1 |= CONTROL2_DISABLE_SINGLE_TX;
l0t2 |= CONTROL2_DISABLE_SINGLE_TX;
l1t1 |= CONTROL2_DISABLE_SINGLE_TX;
l1t2 |= CONTROL2_DISABLE_SINGLE_TX;
if (lane_reversal) {
switch (lane_count) {
case 4:
l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
fallthrough;
case 3:
l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
fallthrough;
case 2:
l1t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
fallthrough;
case 1:
l1t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
break;
default:
MISSING_CASE(lane_count);
}
} else {
switch (lane_count) {
case 4:
l1t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
fallthrough;
case 3:
l1t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
fallthrough;
case 2:
l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
break;
case 1:
if (dp_alt_mode)
l0t2 &= ~CONTROL2_DISABLE_SINGLE_TX;
else
l0t1 &= ~CONTROL2_DISABLE_SINGLE_TX;
break;
default:
MISSING_CASE(lane_count);
}
}
/* disable MLs */
intel_cx0_write(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(1, 2),
l0t1, MB_WRITE_COMMITTED);
intel_cx0_write(i915, port, INTEL_CX0_LANE0, PHY_CX0_TX_CONTROL(2, 2),
l0t2, MB_WRITE_COMMITTED);
intel_cx0_write(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(1, 2),
l1t1, MB_WRITE_COMMITTED);
intel_cx0_write(i915, port, INTEL_CX0_LANE1, PHY_CX0_TX_CONTROL(2, 2),
l1t2, MB_WRITE_COMMITTED);
if (intel_is_c10phy(i915, intel_port_to_phy(i915, port)))
intel_cx0_rmw(i915, port, INTEL_CX0_BOTH_LANES,
PHY_C10_VDR_CONTROL(1), 0,
C10_VDR_CTRL_UPDATE_CFG,
MB_WRITE_COMMITTED);
}
static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
return val;
}
static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
{
u32 val = 0;
int lane = 0;
for_each_cx0_lane_in_mask(lane_mask, lane)
val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
return val;
}
static void intel_cx0pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL;
u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
INTEL_CX0_LANE0;
intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
/*
* 1. Program PORT_CLOCK_CTL REGISTER to configure
* clock muxes, gating and SSC
*/
intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal);
/* 2. Bring PHY out of reset. */
intel_cx0_phy_lane_reset(i915, encoder, lane_reversal);
/*
* 3. Change Phy power state to Ready.
* TODO: For DP alt mode use only one lane.
*/
intel_cx0_powerdown_change_sequence(i915, encoder->port, INTEL_CX0_BOTH_LANES,
CX0_P2_STATE_READY);
/* 4. Program PHY internal PLL internal registers. */
if (intel_is_c10phy(i915, phy))
intel_c10_pll_program(i915, crtc_state, encoder);
else
intel_c20_pll_program(i915, crtc_state, encoder);
/*
* 5. Program the enabled and disabled owned PHY lane
* transmitters over message bus
*/
intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal);
/*
* 6. Follow the Display Voltage Frequency Switching - Sequence
* Before Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 7. Program DDI_CLK_VALFREQ to match intended DDI
* clock frequency.
*/
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
crtc_state->port_clock);
/*
* 8. Set PORT_CLOCK_CTL register PCLK PLL Request
* LN<Lane for maxPCLK> to "1" to enable PLL.
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
intel_cx0_get_pclk_pll_request(maxpclk_lane));
/* 9. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
intel_cx0_get_pclk_pll_ack(maxpclk_lane),
XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n",
phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
/*
* 10. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/* TODO: enable TBT-ALT mode */
intel_cx0_phy_transaction_end(encoder, wakeref);
}
int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
u32 clock;
u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK));
switch (clock) {
case XELPDP_DDI_CLOCK_SELECT_TBT_162:
return 162000;
case XELPDP_DDI_CLOCK_SELECT_TBT_270:
return 270000;
case XELPDP_DDI_CLOCK_SELECT_TBT_540:
return 540000;
case XELPDP_DDI_CLOCK_SELECT_TBT_810:
return 810000;
default:
MISSING_CASE(clock);
return 162000;
}
}
static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock)
{
switch (clock) {
case 162000:
return XELPDP_DDI_CLOCK_SELECT_TBT_162;
case 270000:
return XELPDP_DDI_CLOCK_SELECT_TBT_270;
case 540000:
return XELPDP_DDI_CLOCK_SELECT_TBT_540;
case 810000:
return XELPDP_DDI_CLOCK_SELECT_TBT_810;
default:
MISSING_CASE(clock);
return XELPDP_DDI_CLOCK_SELECT_TBT_162;
}
}
static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
u32 val = 0;
/*
* 1. Program PORT_CLOCK_CTL REGISTER to configure
* clock muxes, gating and SSC
*/
val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock));
val |= XELPDP_FORWARD_CLOCK_UNGATE;
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val);
/* 2. Read back PORT_CLOCK_CTL REGISTER */
val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
/*
* 3. Follow the Display Voltage Frequency Switching - Sequence
* Before Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
*/
val |= XELPDP_TBT_CLOCK_REQUEST;
intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(encoder->port), val);
/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_TBT_CLOCK_ACK,
XELPDP_TBT_CLOCK_ACK,
100, 0, NULL))
drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
encoder->base.base.id, encoder->base.name, phy_name(phy));
/*
* 6. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 7. Program DDI_CLK_VALFREQ to match intended DDI
* clock frequency.
*/
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port),
crtc_state->port_clock);
}
void intel_mtl_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
intel_mtl_tbt_pll_enable(encoder, crtc_state);
else
intel_cx0pll_enable(encoder, crtc_state);
}
static void intel_cx0pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
bool is_c10 = intel_is_c10phy(i915, phy);
intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
/* 1. Change owned PHY lane power to Disable state. */
intel_cx0_powerdown_change_sequence(i915, encoder->port, INTEL_CX0_BOTH_LANES,
is_c10 ? CX0_P2PG_STATE_DISABLE :
CX0_P4PG_STATE_DISABLE);
/*
* 2. Follow the Display Voltage Frequency Switching Sequence Before
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
* to "0" to disable PLL.
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
/* 4. Program DDI_CLK_VALFREQ to 0. */
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
/*
* 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
*/
if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n",
phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
/*
* 6. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_DDI_CLOCK_SELECT_MASK, 0);
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_FORWARD_CLOCK_UNGATE, 0);
intel_cx0_phy_transaction_end(encoder, wakeref);
}
static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
enum phy phy = intel_port_to_phy(i915, encoder->port);
/*
* 1. Follow the Display Voltage Frequency Switching Sequence Before
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_TBT_CLOCK_REQUEST, 0);
/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
if (__intel_de_wait_for_register(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
encoder->base.base.id, encoder->base.name, phy_name(phy));
/*
* 4. Follow the Display Voltage Frequency Switching Sequence After
* Frequency Change. We handle this step in bxt_set_cdclk().
*/
/*
* 5. Program PORT CLOCK CTRL register to disable and gate clocks
*/
intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(encoder->port),
XELPDP_DDI_CLOCK_SELECT_MASK |
XELPDP_FORWARD_CLOCK_UNGATE, 0);
/* 6. Program DDI_CLK_VALFREQ to 0. */
intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0);
}
void intel_mtl_pll_disable(struct intel_encoder *encoder)
{
struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
if (intel_tc_port_in_tbt_alt_mode(dig_port))
intel_mtl_tbt_pll_disable(encoder);
else
intel_cx0pll_disable(encoder);
}
enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *i915 = to_i915(encoder->base.dev);
/*
* TODO: Determine the PLL type from the SW state, once MTL PLL
* handling is done via the standard shared DPLL framework.
*/
u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(encoder->port));
u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val);
if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
return ICL_PORT_DPLL_MG_PHY;
else
return ICL_PORT_DPLL_DEFAULT;
}
void intel_c10pll_state_verify(struct intel_atomic_state *state,
struct intel_crtc_state *new_crtc_state)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_c10pll_state mpllb_hw_state = { 0 };
struct intel_c10pll_state *mpllb_sw_state = &new_crtc_state->cx0pll_state.c10;
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct intel_encoder *encoder;
enum phy phy;
int i;
if (DISPLAY_VER(i915) < 14)
return;
if (!new_crtc_state->hw.active)
return;
/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
if (!intel_crtc_needs_modeset(new_crtc_state) &&
!intel_crtc_needs_fastset(new_crtc_state))
return;
encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
phy = intel_port_to_phy(i915, encoder->port);
if (!intel_is_c10phy(i915, phy))
return;
intel_c10pll_readout_hw_state(encoder, &mpllb_hw_state);
for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
u8 expected = mpllb_sw_state->pll[i];
I915_STATE_WARN(i915, mpllb_hw_state.pll[i] != expected,
"[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
crtc->base.base.id, crtc->base.name, i,
expected, mpllb_hw_state.pll[i]);
}
I915_STATE_WARN(i915, mpllb_hw_state.tx != mpllb_sw_state->tx,
"[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
crtc->base.base.id, crtc->base.name,
mpllb_sw_state->tx, mpllb_hw_state.tx);
I915_STATE_WARN(i915, mpllb_hw_state.cmn != mpllb_sw_state->cmn,
"[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
crtc->base.base.id, crtc->base.name,
mpllb_sw_state->cmn, mpllb_hw_state.cmn);
}