1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/net/ethernet/intel/idpf/idpf_singleq_txrx.c
Alexander Lobakin 90912f9f4f idpf: convert header split mode to libeth + napi_build_skb()
Currently, idpf uses the following model for the header buffers:

* buffers are allocated via dma_alloc_coherent();
* when receiving, napi_alloc_skb() is called and then the header is
  copied to the newly allocated linear part.

This is far from optimal as DMA coherent zone is slow on many systems
and memcpy() neutralizes the idea and benefits of the header split. Not
speaking of that XDP can't be run on DMA coherent buffers, but at the
same time the idea of allocating an skb to run XDP program is ill.
Instead, use libeth to create page_pools for the header buffers, allocate
them dynamically and then build an skb via napi_build_skb() around them
with no memory copy. With one exception...

When you enable header split, you expect you'll always have a separate
header buffer, so that you could reserve headroom and tailroom only
there and then use full buffers for the data. For example, this is how
TCP zerocopy works -- you have to have the payload aligned to PAGE_SIZE.
The current hardware running idpf does *not* guarantee that you'll
always have headers placed separately. For example, on my setup, even
ICMP packets are written as one piece to the data buffers. You can't
build a valid skb around a data buffer in this case.
To not complicate things and not lose TCP zerocopy etc., when such thing
happens, use the empty header buffer and pull either full frame (if it's
short) or the Ethernet header there and build an skb around it. GRO
layer will pull more from the data buffer later. This W/A will hopefully
be removed one day.

Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2024-07-10 10:47:45 -07:00

1148 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2023 Intel Corporation */
#include <net/libeth/rx.h>
#include "idpf.h"
/**
* idpf_tx_singleq_csum - Enable tx checksum offloads
* @skb: pointer to skb
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if checksum offload cannot be executed, 1
* otherwise.
*/
static int idpf_tx_singleq_csum(struct sk_buff *skb,
struct idpf_tx_offload_params *off)
{
u32 l4_len, l3_len, l2_len;
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
union {
struct tcphdr *tcp;
unsigned char *hdr;
} l4;
u32 offset, cmd = 0;
u8 l4_proto = 0;
__be16 frag_off;
bool is_tso;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
ip.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* compute outer L2 header size */
l2_len = ip.hdr - skb->data;
offset = FIELD_PREP(0x3F << IDPF_TX_DESC_LEN_MACLEN_S, l2_len / 2);
is_tso = !!(off->tx_flags & IDPF_TX_FLAGS_TSO);
if (skb->encapsulation) {
u32 tunnel = 0;
/* define outer network header type */
if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
/* The stack computes the IP header already, the only
* time we need the hardware to recompute it is in the
* case of TSO.
*/
tunnel |= is_tso ?
IDPF_TX_CTX_EXT_IP_IPV4 :
IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
l4_proto = ip.v4->protocol;
} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
tunnel |= IDPF_TX_CTX_EXT_IP_IPV6;
l4_proto = ip.v6->nexthdr;
if (ipv6_ext_hdr(l4_proto))
ipv6_skip_exthdr(skb, skb_network_offset(skb) +
sizeof(*ip.v6),
&l4_proto, &frag_off);
}
/* define outer transport */
switch (l4_proto) {
case IPPROTO_UDP:
tunnel |= IDPF_TXD_CTX_UDP_TUNNELING;
break;
case IPPROTO_GRE:
tunnel |= IDPF_TXD_CTX_GRE_TUNNELING;
break;
case IPPROTO_IPIP:
case IPPROTO_IPV6:
l4.hdr = skb_inner_network_header(skb);
break;
default:
if (is_tso)
return -1;
skb_checksum_help(skb);
return 0;
}
off->tx_flags |= IDPF_TX_FLAGS_TUNNEL;
/* compute outer L3 header size */
tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_EXT_IPLEN_M,
(l4.hdr - ip.hdr) / 4);
/* switch IP header pointer from outer to inner header */
ip.hdr = skb_inner_network_header(skb);
/* compute tunnel header size */
tunnel |= FIELD_PREP(IDPF_TXD_CTX_QW0_TUNN_NATLEN_M,
(ip.hdr - l4.hdr) / 2);
/* indicate if we need to offload outer UDP header */
if (is_tso &&
!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
tunnel |= IDPF_TXD_CTX_QW0_TUNN_L4T_CS_M;
/* record tunnel offload values */
off->cd_tunneling |= tunnel;
/* switch L4 header pointer from outer to inner */
l4.hdr = skb_inner_transport_header(skb);
l4_proto = 0;
/* reset type as we transition from outer to inner headers */
off->tx_flags &= ~(IDPF_TX_FLAGS_IPV4 | IDPF_TX_FLAGS_IPV6);
if (ip.v4->version == 4)
off->tx_flags |= IDPF_TX_FLAGS_IPV4;
if (ip.v6->version == 6)
off->tx_flags |= IDPF_TX_FLAGS_IPV6;
}
/* Enable IP checksum offloads */
if (off->tx_flags & IDPF_TX_FLAGS_IPV4) {
l4_proto = ip.v4->protocol;
/* See comment above regarding need for HW to recompute IP
* header checksum in the case of TSO.
*/
if (is_tso)
cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4_CSUM;
else
cmd |= IDPF_TX_DESC_CMD_IIPT_IPV4;
} else if (off->tx_flags & IDPF_TX_FLAGS_IPV6) {
cmd |= IDPF_TX_DESC_CMD_IIPT_IPV6;
l4_proto = ip.v6->nexthdr;
if (ipv6_ext_hdr(l4_proto))
ipv6_skip_exthdr(skb, skb_network_offset(skb) +
sizeof(*ip.v6), &l4_proto,
&frag_off);
} else {
return -1;
}
/* compute inner L3 header size */
l3_len = l4.hdr - ip.hdr;
offset |= (l3_len / 4) << IDPF_TX_DESC_LEN_IPLEN_S;
/* Enable L4 checksum offloads */
switch (l4_proto) {
case IPPROTO_TCP:
/* enable checksum offloads */
cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_TCP;
l4_len = l4.tcp->doff;
break;
case IPPROTO_UDP:
/* enable UDP checksum offload */
cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_UDP;
l4_len = sizeof(struct udphdr) >> 2;
break;
case IPPROTO_SCTP:
/* enable SCTP checksum offload */
cmd |= IDPF_TX_DESC_CMD_L4T_EOFT_SCTP;
l4_len = sizeof(struct sctphdr) >> 2;
break;
default:
if (is_tso)
return -1;
skb_checksum_help(skb);
return 0;
}
offset |= l4_len << IDPF_TX_DESC_LEN_L4_LEN_S;
off->td_cmd |= cmd;
off->hdr_offsets |= offset;
return 1;
}
/**
* idpf_tx_singleq_map - Build the Tx base descriptor
* @tx_q: queue to send buffer on
* @first: first buffer info buffer to use
* @offloads: pointer to struct that holds offload parameters
*
* This function loops over the skb data pointed to by *first
* and gets a physical address for each memory location and programs
* it and the length into the transmit base mode descriptor.
*/
static void idpf_tx_singleq_map(struct idpf_tx_queue *tx_q,
struct idpf_tx_buf *first,
struct idpf_tx_offload_params *offloads)
{
u32 offsets = offloads->hdr_offsets;
struct idpf_tx_buf *tx_buf = first;
struct idpf_base_tx_desc *tx_desc;
struct sk_buff *skb = first->skb;
u64 td_cmd = offloads->td_cmd;
unsigned int data_len, size;
u16 i = tx_q->next_to_use;
struct netdev_queue *nq;
skb_frag_t *frag;
dma_addr_t dma;
u64 td_tag = 0;
data_len = skb->data_len;
size = skb_headlen(skb);
tx_desc = &tx_q->base_tx[i];
dma = dma_map_single(tx_q->dev, skb->data, size, DMA_TO_DEVICE);
/* write each descriptor with CRC bit */
if (idpf_queue_has(CRC_EN, tx_q))
td_cmd |= IDPF_TX_DESC_CMD_ICRC;
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
unsigned int max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
if (dma_mapping_error(tx_q->dev, dma))
return idpf_tx_dma_map_error(tx_q, skb, first, i);
/* record length, and DMA address */
dma_unmap_len_set(tx_buf, len, size);
dma_unmap_addr_set(tx_buf, dma, dma);
/* align size to end of page */
max_data += -dma & (IDPF_TX_MAX_READ_REQ_SIZE - 1);
tx_desc->buf_addr = cpu_to_le64(dma);
/* account for data chunks larger than the hardware
* can handle
*/
while (unlikely(size > IDPF_TX_MAX_DESC_DATA)) {
tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd,
offsets,
max_data,
td_tag);
tx_desc++;
i++;
if (i == tx_q->desc_count) {
tx_desc = &tx_q->base_tx[0];
i = 0;
}
dma += max_data;
size -= max_data;
max_data = IDPF_TX_MAX_DESC_DATA_ALIGNED;
tx_desc->buf_addr = cpu_to_le64(dma);
}
if (!data_len)
break;
tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
size, td_tag);
tx_desc++;
i++;
if (i == tx_q->desc_count) {
tx_desc = &tx_q->base_tx[0];
i = 0;
}
size = skb_frag_size(frag);
data_len -= size;
dma = skb_frag_dma_map(tx_q->dev, frag, 0, size,
DMA_TO_DEVICE);
tx_buf = &tx_q->tx_buf[i];
}
skb_tx_timestamp(first->skb);
/* write last descriptor with RS and EOP bits */
td_cmd |= (u64)(IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS);
tx_desc->qw1 = idpf_tx_singleq_build_ctob(td_cmd, offsets,
size, td_tag);
IDPF_SINGLEQ_BUMP_RING_IDX(tx_q, i);
/* set next_to_watch value indicating a packet is present */
first->next_to_watch = tx_desc;
nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
netdev_tx_sent_queue(nq, first->bytecount);
idpf_tx_buf_hw_update(tx_q, i, netdev_xmit_more());
}
/**
* idpf_tx_singleq_get_ctx_desc - grab next desc and update buffer ring
* @txq: queue to put context descriptor on
*
* Since the TX buffer rings mimics the descriptor ring, update the tx buffer
* ring entry to reflect that this index is a context descriptor
*/
static struct idpf_base_tx_ctx_desc *
idpf_tx_singleq_get_ctx_desc(struct idpf_tx_queue *txq)
{
struct idpf_base_tx_ctx_desc *ctx_desc;
int ntu = txq->next_to_use;
memset(&txq->tx_buf[ntu], 0, sizeof(struct idpf_tx_buf));
txq->tx_buf[ntu].ctx_entry = true;
ctx_desc = &txq->base_ctx[ntu];
IDPF_SINGLEQ_BUMP_RING_IDX(txq, ntu);
txq->next_to_use = ntu;
return ctx_desc;
}
/**
* idpf_tx_singleq_build_ctx_desc - populate context descriptor
* @txq: queue to send buffer on
* @offload: offload parameter structure
**/
static void idpf_tx_singleq_build_ctx_desc(struct idpf_tx_queue *txq,
struct idpf_tx_offload_params *offload)
{
struct idpf_base_tx_ctx_desc *desc = idpf_tx_singleq_get_ctx_desc(txq);
u64 qw1 = (u64)IDPF_TX_DESC_DTYPE_CTX;
if (offload->tso_segs) {
qw1 |= IDPF_TX_CTX_DESC_TSO << IDPF_TXD_CTX_QW1_CMD_S;
qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_TSO_LEN_M,
offload->tso_len);
qw1 |= FIELD_PREP(IDPF_TXD_CTX_QW1_MSS_M, offload->mss);
u64_stats_update_begin(&txq->stats_sync);
u64_stats_inc(&txq->q_stats.lso_pkts);
u64_stats_update_end(&txq->stats_sync);
}
desc->qw0.tunneling_params = cpu_to_le32(offload->cd_tunneling);
desc->qw0.l2tag2 = 0;
desc->qw0.rsvd1 = 0;
desc->qw1 = cpu_to_le64(qw1);
}
/**
* idpf_tx_singleq_frame - Sends buffer on Tx ring using base descriptors
* @skb: send buffer
* @tx_q: queue to send buffer on
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
struct idpf_tx_queue *tx_q)
{
struct idpf_tx_offload_params offload = { };
struct idpf_tx_buf *first;
unsigned int count;
__be16 protocol;
int csum, tso;
count = idpf_tx_desc_count_required(tx_q, skb);
if (unlikely(!count))
return idpf_tx_drop_skb(tx_q, skb);
if (idpf_tx_maybe_stop_common(tx_q,
count + IDPF_TX_DESCS_PER_CACHE_LINE +
IDPF_TX_DESCS_FOR_CTX)) {
idpf_tx_buf_hw_update(tx_q, tx_q->next_to_use, false);
return NETDEV_TX_BUSY;
}
protocol = vlan_get_protocol(skb);
if (protocol == htons(ETH_P_IP))
offload.tx_flags |= IDPF_TX_FLAGS_IPV4;
else if (protocol == htons(ETH_P_IPV6))
offload.tx_flags |= IDPF_TX_FLAGS_IPV6;
tso = idpf_tso(skb, &offload);
if (tso < 0)
goto out_drop;
csum = idpf_tx_singleq_csum(skb, &offload);
if (csum < 0)
goto out_drop;
if (tso || offload.cd_tunneling)
idpf_tx_singleq_build_ctx_desc(tx_q, &offload);
/* record the location of the first descriptor for this packet */
first = &tx_q->tx_buf[tx_q->next_to_use];
first->skb = skb;
if (tso) {
first->gso_segs = offload.tso_segs;
first->bytecount = skb->len + ((first->gso_segs - 1) * offload.tso_hdr_len);
} else {
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
first->gso_segs = 1;
}
idpf_tx_singleq_map(tx_q, first, &offload);
return NETDEV_TX_OK;
out_drop:
return idpf_tx_drop_skb(tx_q, skb);
}
/**
* idpf_tx_singleq_clean - Reclaim resources from queue
* @tx_q: Tx queue to clean
* @napi_budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
*/
static bool idpf_tx_singleq_clean(struct idpf_tx_queue *tx_q, int napi_budget,
int *cleaned)
{
unsigned int total_bytes = 0, total_pkts = 0;
struct idpf_base_tx_desc *tx_desc;
u32 budget = tx_q->clean_budget;
s16 ntc = tx_q->next_to_clean;
struct idpf_netdev_priv *np;
struct idpf_tx_buf *tx_buf;
struct netdev_queue *nq;
bool dont_wake;
tx_desc = &tx_q->base_tx[ntc];
tx_buf = &tx_q->tx_buf[ntc];
ntc -= tx_q->desc_count;
do {
struct idpf_base_tx_desc *eop_desc;
/* If this entry in the ring was used as a context descriptor,
* it's corresponding entry in the buffer ring will indicate as
* such. We can skip this descriptor since there is no buffer
* to clean.
*/
if (tx_buf->ctx_entry) {
/* Clear this flag here to avoid stale flag values when
* this buffer is used for actual data in the future.
* There are cases where the tx_buf struct / the flags
* field will not be cleared before being reused.
*/
tx_buf->ctx_entry = false;
goto fetch_next_txq_desc;
}
/* if next_to_watch is not set then no work pending */
eop_desc = (struct idpf_base_tx_desc *)tx_buf->next_to_watch;
if (!eop_desc)
break;
/* prevent any other reads prior to eop_desc */
smp_rmb();
/* if the descriptor isn't done, no work yet to do */
if (!(eop_desc->qw1 &
cpu_to_le64(IDPF_TX_DESC_DTYPE_DESC_DONE)))
break;
/* clear next_to_watch to prevent false hangs */
tx_buf->next_to_watch = NULL;
/* update the statistics for this packet */
total_bytes += tx_buf->bytecount;
total_pkts += tx_buf->gso_segs;
napi_consume_skb(tx_buf->skb, napi_budget);
/* unmap skb header data */
dma_unmap_single(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
/* clear tx_buf data */
tx_buf->skb = NULL;
dma_unmap_len_set(tx_buf, len, 0);
/* unmap remaining buffers */
while (tx_desc != eop_desc) {
tx_buf++;
tx_desc++;
ntc++;
if (unlikely(!ntc)) {
ntc -= tx_q->desc_count;
tx_buf = tx_q->tx_buf;
tx_desc = &tx_q->base_tx[0];
}
/* unmap any remaining paged data */
if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(tx_q->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
}
/* update budget only if we did something */
budget--;
fetch_next_txq_desc:
tx_buf++;
tx_desc++;
ntc++;
if (unlikely(!ntc)) {
ntc -= tx_q->desc_count;
tx_buf = tx_q->tx_buf;
tx_desc = &tx_q->base_tx[0];
}
} while (likely(budget));
ntc += tx_q->desc_count;
tx_q->next_to_clean = ntc;
*cleaned += total_pkts;
u64_stats_update_begin(&tx_q->stats_sync);
u64_stats_add(&tx_q->q_stats.packets, total_pkts);
u64_stats_add(&tx_q->q_stats.bytes, total_bytes);
u64_stats_update_end(&tx_q->stats_sync);
np = netdev_priv(tx_q->netdev);
nq = netdev_get_tx_queue(tx_q->netdev, tx_q->idx);
dont_wake = np->state != __IDPF_VPORT_UP ||
!netif_carrier_ok(tx_q->netdev);
__netif_txq_completed_wake(nq, total_pkts, total_bytes,
IDPF_DESC_UNUSED(tx_q), IDPF_TX_WAKE_THRESH,
dont_wake);
return !!budget;
}
/**
* idpf_tx_singleq_clean_all - Clean all Tx queues
* @q_vec: queue vector
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns false if clean is not complete else returns true
*/
static bool idpf_tx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
int *cleaned)
{
u16 num_txq = q_vec->num_txq;
bool clean_complete = true;
int i, budget_per_q;
budget_per_q = num_txq ? max(budget / num_txq, 1) : 0;
for (i = 0; i < num_txq; i++) {
struct idpf_tx_queue *q;
q = q_vec->tx[i];
clean_complete &= idpf_tx_singleq_clean(q, budget_per_q,
cleaned);
}
return clean_complete;
}
/**
* idpf_rx_singleq_test_staterr - tests bits in Rx descriptor
* status and error fields
* @rx_desc: pointer to receive descriptor (in le64 format)
* @stat_err_bits: value to mask
*
* This function does some fast chicanery in order to return the
* value of the mask which is really only used for boolean tests.
* The status_error_ptype_len doesn't need to be shifted because it begins
* at offset zero.
*/
static bool idpf_rx_singleq_test_staterr(const union virtchnl2_rx_desc *rx_desc,
const u64 stat_err_bits)
{
return !!(rx_desc->base_wb.qword1.status_error_ptype_len &
cpu_to_le64(stat_err_bits));
}
/**
* idpf_rx_singleq_is_non_eop - process handling of non-EOP buffers
* @rx_desc: Rx descriptor for current buffer
*/
static bool idpf_rx_singleq_is_non_eop(const union virtchnl2_rx_desc *rx_desc)
{
/* if we are the last buffer then there is nothing else to do */
if (likely(idpf_rx_singleq_test_staterr(rx_desc, IDPF_RXD_EOF_SINGLEQ)))
return false;
return true;
}
/**
* idpf_rx_singleq_csum - Indicate in skb if checksum is good
* @rxq: Rx ring being processed
* @skb: skb currently being received and modified
* @csum_bits: checksum bits from descriptor
* @decoded: the packet type decoded by hardware
*
* skb->protocol must be set before this function is called
*/
static void idpf_rx_singleq_csum(struct idpf_rx_queue *rxq,
struct sk_buff *skb,
struct idpf_rx_csum_decoded csum_bits,
struct libeth_rx_pt decoded)
{
bool ipv4, ipv6;
/* check if Rx checksum is enabled */
if (!libeth_rx_pt_has_checksum(rxq->netdev, decoded))
return;
/* check if HW has decoded the packet and checksum */
if (unlikely(!csum_bits.l3l4p))
return;
ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
/* Check if there were any checksum errors */
if (unlikely(ipv4 && (csum_bits.ipe || csum_bits.eipe)))
goto checksum_fail;
/* Device could not do any checksum offload for certain extension
* headers as indicated by setting IPV6EXADD bit
*/
if (unlikely(ipv6 && csum_bits.ipv6exadd))
return;
/* check for L4 errors and handle packets that were not able to be
* checksummed due to arrival speed
*/
if (unlikely(csum_bits.l4e))
goto checksum_fail;
if (unlikely(csum_bits.nat && csum_bits.eudpe))
goto checksum_fail;
/* Handle packets that were not able to be checksummed due to arrival
* speed, in this case the stack can compute the csum.
*/
if (unlikely(csum_bits.pprs))
return;
/* If there is an outer header present that might contain a checksum
* we need to bump the checksum level by 1 to reflect the fact that
* we are indicating we validated the inner checksum.
*/
if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
skb->csum_level = 1;
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
checksum_fail:
u64_stats_update_begin(&rxq->stats_sync);
u64_stats_inc(&rxq->q_stats.hw_csum_err);
u64_stats_update_end(&rxq->stats_sync);
}
/**
* idpf_rx_singleq_base_csum - Indicate in skb if hw indicated a good cksum
* @rx_desc: the receive descriptor
*
* This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
* descriptor writeback format.
*
* Return: parsed checksum status.
**/
static struct idpf_rx_csum_decoded
idpf_rx_singleq_base_csum(const union virtchnl2_rx_desc *rx_desc)
{
struct idpf_rx_csum_decoded csum_bits = { };
u32 rx_error, rx_status;
u64 qword;
qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
rx_status = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_STATUS_M, qword);
rx_error = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, qword);
csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_IPE_M, rx_error);
csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_EIPE_M,
rx_error);
csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_L4E_M, rx_error);
csum_bits.pprs = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_ERROR_PPRS_M,
rx_error);
csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_L3L4P_M,
rx_status);
csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_STATUS_IPV6EXADD_M,
rx_status);
return csum_bits;
}
/**
* idpf_rx_singleq_flex_csum - Indicate in skb if hw indicated a good cksum
* @rx_desc: the receive descriptor
*
* This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
* descriptor writeback format.
*
* Return: parsed checksum status.
**/
static struct idpf_rx_csum_decoded
idpf_rx_singleq_flex_csum(const union virtchnl2_rx_desc *rx_desc)
{
struct idpf_rx_csum_decoded csum_bits = { };
u16 rx_status0, rx_status1;
rx_status0 = le16_to_cpu(rx_desc->flex_nic_wb.status_error0);
rx_status1 = le16_to_cpu(rx_desc->flex_nic_wb.status_error1);
csum_bits.ipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_IPE_M,
rx_status0);
csum_bits.eipe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EIPE_M,
rx_status0);
csum_bits.l4e = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_L4E_M,
rx_status0);
csum_bits.eudpe = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_M,
rx_status0);
csum_bits.l3l4p = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_L3L4P_M,
rx_status0);
csum_bits.ipv6exadd = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_IPV6EXADD_M,
rx_status0);
csum_bits.nat = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS1_NAT_M,
rx_status1);
return csum_bits;
}
/**
* idpf_rx_singleq_base_hash - set the hash value in the skb
* @rx_q: Rx completion queue
* @skb: skb currently being received and modified
* @rx_desc: specific descriptor
* @decoded: Decoded Rx packet type related fields
*
* This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
* descriptor writeback format.
**/
static void idpf_rx_singleq_base_hash(struct idpf_rx_queue *rx_q,
struct sk_buff *skb,
const union virtchnl2_rx_desc *rx_desc,
struct libeth_rx_pt decoded)
{
u64 mask, qw1;
if (!libeth_rx_pt_has_hash(rx_q->netdev, decoded))
return;
mask = VIRTCHNL2_RX_BASE_DESC_FLTSTAT_RSS_HASH_M;
qw1 = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
if (FIELD_GET(mask, qw1) == mask) {
u32 hash = le32_to_cpu(rx_desc->base_wb.qword0.hi_dword.rss);
libeth_rx_pt_set_hash(skb, hash, decoded);
}
}
/**
* idpf_rx_singleq_flex_hash - set the hash value in the skb
* @rx_q: Rx completion queue
* @skb: skb currently being received and modified
* @rx_desc: specific descriptor
* @decoded: Decoded Rx packet type related fields
*
* This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
* descriptor writeback format.
**/
static void idpf_rx_singleq_flex_hash(struct idpf_rx_queue *rx_q,
struct sk_buff *skb,
const union virtchnl2_rx_desc *rx_desc,
struct libeth_rx_pt decoded)
{
if (!libeth_rx_pt_has_hash(rx_q->netdev, decoded))
return;
if (FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_STATUS0_RSS_VALID_M,
le16_to_cpu(rx_desc->flex_nic_wb.status_error0))) {
u32 hash = le32_to_cpu(rx_desc->flex_nic_wb.rss_hash);
libeth_rx_pt_set_hash(skb, hash, decoded);
}
}
/**
* idpf_rx_singleq_process_skb_fields - Populate skb header fields from Rx
* descriptor
* @rx_q: Rx ring being processed
* @skb: pointer to current skb being populated
* @rx_desc: descriptor for skb
* @ptype: packet type
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, protocol, and
* other fields within the skb.
*/
static void
idpf_rx_singleq_process_skb_fields(struct idpf_rx_queue *rx_q,
struct sk_buff *skb,
const union virtchnl2_rx_desc *rx_desc,
u16 ptype)
{
struct libeth_rx_pt decoded = rx_q->rx_ptype_lkup[ptype];
struct idpf_rx_csum_decoded csum_bits;
/* modifies the skb - consumes the enet header */
skb->protocol = eth_type_trans(skb, rx_q->netdev);
/* Check if we're using base mode descriptor IDs */
if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M) {
idpf_rx_singleq_base_hash(rx_q, skb, rx_desc, decoded);
csum_bits = idpf_rx_singleq_base_csum(rx_desc);
} else {
idpf_rx_singleq_flex_hash(rx_q, skb, rx_desc, decoded);
csum_bits = idpf_rx_singleq_flex_csum(rx_desc);
}
idpf_rx_singleq_csum(rx_q, skb, csum_bits, decoded);
skb_record_rx_queue(skb, rx_q->idx);
}
/**
* idpf_rx_buf_hw_update - Store the new tail and head values
* @rxq: queue to bump
* @val: new head index
*/
static void idpf_rx_buf_hw_update(struct idpf_rx_queue *rxq, u32 val)
{
rxq->next_to_use = val;
if (unlikely(!rxq->tail))
return;
/* writel has an implicit memory barrier */
writel(val, rxq->tail);
}
/**
* idpf_rx_singleq_buf_hw_alloc_all - Replace used receive buffers
* @rx_q: queue for which the hw buffers are allocated
* @cleaned_count: number of buffers to replace
*
* Returns false if all allocations were successful, true if any fail
*/
bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rx_q,
u16 cleaned_count)
{
struct virtchnl2_singleq_rx_buf_desc *desc;
u16 nta = rx_q->next_to_alloc;
struct idpf_rx_buf *buf;
if (!cleaned_count)
return false;
desc = &rx_q->single_buf[nta];
buf = &rx_q->rx_buf[nta];
do {
dma_addr_t addr;
addr = idpf_alloc_page(rx_q->pp, buf, rx_q->rx_buf_size);
if (unlikely(addr == DMA_MAPPING_ERROR))
break;
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
desc->pkt_addr = cpu_to_le64(addr);
desc->hdr_addr = 0;
desc++;
buf++;
nta++;
if (unlikely(nta == rx_q->desc_count)) {
desc = &rx_q->single_buf[0];
buf = rx_q->rx_buf;
nta = 0;
}
cleaned_count--;
} while (cleaned_count);
if (rx_q->next_to_alloc != nta) {
idpf_rx_buf_hw_update(rx_q, nta);
rx_q->next_to_alloc = nta;
}
return !!cleaned_count;
}
/**
* idpf_rx_singleq_extract_base_fields - Extract fields from the Rx descriptor
* @rx_desc: the descriptor to process
* @fields: storage for extracted values
*
* Decode the Rx descriptor and extract relevant information including the
* size and Rx packet type.
*
* This function only operates on the VIRTCHNL2_RXDID_1_32B_BASE_M base 32byte
* descriptor writeback format.
*/
static void
idpf_rx_singleq_extract_base_fields(const union virtchnl2_rx_desc *rx_desc,
struct idpf_rx_extracted *fields)
{
u64 qword;
qword = le64_to_cpu(rx_desc->base_wb.qword1.status_error_ptype_len);
fields->size = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_LEN_PBUF_M, qword);
fields->rx_ptype = FIELD_GET(VIRTCHNL2_RX_BASE_DESC_QW1_PTYPE_M, qword);
}
/**
* idpf_rx_singleq_extract_flex_fields - Extract fields from the Rx descriptor
* @rx_desc: the descriptor to process
* @fields: storage for extracted values
*
* Decode the Rx descriptor and extract relevant information including the
* size and Rx packet type.
*
* This function only operates on the VIRTCHNL2_RXDID_2_FLEX_SQ_NIC flexible
* descriptor writeback format.
*/
static void
idpf_rx_singleq_extract_flex_fields(const union virtchnl2_rx_desc *rx_desc,
struct idpf_rx_extracted *fields)
{
fields->size = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PKT_LEN_M,
le16_to_cpu(rx_desc->flex_nic_wb.pkt_len));
fields->rx_ptype = FIELD_GET(VIRTCHNL2_RX_FLEX_DESC_PTYPE_M,
le16_to_cpu(rx_desc->flex_nic_wb.ptype_flex_flags0));
}
/**
* idpf_rx_singleq_extract_fields - Extract fields from the Rx descriptor
* @rx_q: Rx descriptor queue
* @rx_desc: the descriptor to process
* @fields: storage for extracted values
*
*/
static void
idpf_rx_singleq_extract_fields(const struct idpf_rx_queue *rx_q,
const union virtchnl2_rx_desc *rx_desc,
struct idpf_rx_extracted *fields)
{
if (rx_q->rxdids == VIRTCHNL2_RXDID_1_32B_BASE_M)
idpf_rx_singleq_extract_base_fields(rx_desc, fields);
else
idpf_rx_singleq_extract_flex_fields(rx_desc, fields);
}
/**
* idpf_rx_singleq_clean - Reclaim resources after receive completes
* @rx_q: rx queue to clean
* @budget: Total limit on number of packets to process
*
* Returns true if there's any budget left (e.g. the clean is finished)
*/
static int idpf_rx_singleq_clean(struct idpf_rx_queue *rx_q, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
struct sk_buff *skb = rx_q->skb;
u16 ntc = rx_q->next_to_clean;
u16 cleaned_count = 0;
bool failure = false;
/* Process Rx packets bounded by budget */
while (likely(total_rx_pkts < (unsigned int)budget)) {
struct idpf_rx_extracted fields = { };
union virtchnl2_rx_desc *rx_desc;
struct idpf_rx_buf *rx_buf;
/* get the Rx desc from Rx queue based on 'next_to_clean' */
rx_desc = &rx_q->rx[ntc];
/* status_error_ptype_len will always be zero for unused
* descriptors because it's cleared in cleanup, and overlaps
* with hdr_addr which is always zero because packet split
* isn't used, if the hardware wrote DD then the length will be
* non-zero
*/
#define IDPF_RXD_DD VIRTCHNL2_RX_BASE_DESC_STATUS_DD_M
if (!idpf_rx_singleq_test_staterr(rx_desc,
IDPF_RXD_DD))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc
*/
dma_rmb();
idpf_rx_singleq_extract_fields(rx_q, rx_desc, &fields);
rx_buf = &rx_q->rx_buf[ntc];
if (!fields.size) {
idpf_rx_put_page(rx_buf);
goto skip_data;
}
idpf_rx_sync_for_cpu(rx_buf, fields.size);
if (skb)
idpf_rx_add_frag(rx_buf, skb, fields.size);
else
skb = idpf_rx_construct_skb(rx_q, rx_buf, fields.size);
/* exit if we failed to retrieve a buffer */
if (!skb)
break;
skip_data:
IDPF_SINGLEQ_BUMP_RING_IDX(rx_q, ntc);
cleaned_count++;
/* skip if it is non EOP desc */
if (idpf_rx_singleq_is_non_eop(rx_desc))
continue;
#define IDPF_RXD_ERR_S FIELD_PREP(VIRTCHNL2_RX_BASE_DESC_QW1_ERROR_M, \
VIRTCHNL2_RX_BASE_DESC_ERROR_RXE_M)
if (unlikely(idpf_rx_singleq_test_staterr(rx_desc,
IDPF_RXD_ERR_S))) {
dev_kfree_skb_any(skb);
skb = NULL;
continue;
}
/* pad skb if needed (to make valid ethernet frame) */
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
/* protocol */
idpf_rx_singleq_process_skb_fields(rx_q, skb,
rx_desc, fields.rx_ptype);
/* send completed skb up the stack */
napi_gro_receive(rx_q->pp->p.napi, skb);
skb = NULL;
/* update budget accounting */
total_rx_pkts++;
}
rx_q->skb = skb;
rx_q->next_to_clean = ntc;
if (cleaned_count)
failure = idpf_rx_singleq_buf_hw_alloc_all(rx_q, cleaned_count);
u64_stats_update_begin(&rx_q->stats_sync);
u64_stats_add(&rx_q->q_stats.packets, total_rx_pkts);
u64_stats_add(&rx_q->q_stats.bytes, total_rx_bytes);
u64_stats_update_end(&rx_q->stats_sync);
/* guarantee a trip back through this routine if there was a failure */
return failure ? budget : (int)total_rx_pkts;
}
/**
* idpf_rx_singleq_clean_all - Clean all Rx queues
* @q_vec: queue vector
* @budget: Used to determine if we are in netpoll
* @cleaned: returns number of packets cleaned
*
* Returns false if clean is not complete else returns true
*/
static bool idpf_rx_singleq_clean_all(struct idpf_q_vector *q_vec, int budget,
int *cleaned)
{
u16 num_rxq = q_vec->num_rxq;
bool clean_complete = true;
int budget_per_q, i;
/* We attempt to distribute budget to each Rx queue fairly, but don't
* allow the budget to go below 1 because that would exit polling early.
*/
budget_per_q = num_rxq ? max(budget / num_rxq, 1) : 0;
for (i = 0; i < num_rxq; i++) {
struct idpf_rx_queue *rxq = q_vec->rx[i];
int pkts_cleaned_per_q;
pkts_cleaned_per_q = idpf_rx_singleq_clean(rxq, budget_per_q);
/* if we clean as many as budgeted, we must not be done */
if (pkts_cleaned_per_q >= budget_per_q)
clean_complete = false;
*cleaned += pkts_cleaned_per_q;
}
return clean_complete;
}
/**
* idpf_vport_singleq_napi_poll - NAPI handler
* @napi: struct from which you get q_vector
* @budget: budget provided by stack
*/
int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget)
{
struct idpf_q_vector *q_vector =
container_of(napi, struct idpf_q_vector, napi);
bool clean_complete;
int work_done = 0;
/* Handle case where we are called by netpoll with a budget of 0 */
if (budget <= 0) {
idpf_tx_singleq_clean_all(q_vector, budget, &work_done);
return budget;
}
clean_complete = idpf_rx_singleq_clean_all(q_vector, budget,
&work_done);
clean_complete &= idpf_tx_singleq_clean_all(q_vector, budget,
&work_done);
/* If work not completed, return budget and polling will return */
if (!clean_complete)
return budget;
work_done = min_t(int, work_done, budget - 1);
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
idpf_vport_intr_update_itr_ena_irq(q_vector);
return work_done;
}