Currently, idpf uses the following model for the header buffers: * buffers are allocated via dma_alloc_coherent(); * when receiving, napi_alloc_skb() is called and then the header is copied to the newly allocated linear part. This is far from optimal as DMA coherent zone is slow on many systems and memcpy() neutralizes the idea and benefits of the header split. Not speaking of that XDP can't be run on DMA coherent buffers, but at the same time the idea of allocating an skb to run XDP program is ill. Instead, use libeth to create page_pools for the header buffers, allocate them dynamically and then build an skb via napi_build_skb() around them with no memory copy. With one exception... When you enable header split, you expect you'll always have a separate header buffer, so that you could reserve headroom and tailroom only there and then use full buffers for the data. For example, this is how TCP zerocopy works -- you have to have the payload aligned to PAGE_SIZE. The current hardware running idpf does *not* guarantee that you'll always have headers placed separately. For example, on my setup, even ICMP packets are written as one piece to the data buffers. You can't build a valid skb around a data buffer in this case. To not complicate things and not lose TCP zerocopy etc., when such thing happens, use the empty header buffer and pull either full frame (if it's short) or the Ethernet header there and build an skb around it. GRO layer will pull more from the data buffer later. This W/A will hopefully be removed one day. Signed-off-by: Alexander Lobakin <aleksander.lobakin@intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
1134 lines
36 KiB
C
1134 lines
36 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/* Copyright (C) 2023 Intel Corporation */
|
|
|
|
#ifndef _IDPF_TXRX_H_
|
|
#define _IDPF_TXRX_H_
|
|
|
|
#include <linux/dim.h>
|
|
|
|
#include <net/libeth/cache.h>
|
|
#include <net/libeth/rx.h>
|
|
#include <net/tcp.h>
|
|
#include <net/netdev_queues.h>
|
|
|
|
#include "idpf_lan_txrx.h"
|
|
#include "virtchnl2_lan_desc.h"
|
|
|
|
#define IDPF_LARGE_MAX_Q 256
|
|
#define IDPF_MAX_Q 16
|
|
#define IDPF_MIN_Q 2
|
|
/* Mailbox Queue */
|
|
#define IDPF_MAX_MBXQ 1
|
|
|
|
#define IDPF_MIN_TXQ_DESC 64
|
|
#define IDPF_MIN_RXQ_DESC 64
|
|
#define IDPF_MIN_TXQ_COMPLQ_DESC 256
|
|
#define IDPF_MAX_QIDS 256
|
|
|
|
/* Number of descriptors in a queue should be a multiple of 32. RX queue
|
|
* descriptors alone should be a multiple of IDPF_REQ_RXQ_DESC_MULTIPLE
|
|
* to achieve BufQ descriptors aligned to 32
|
|
*/
|
|
#define IDPF_REQ_DESC_MULTIPLE 32
|
|
#define IDPF_REQ_RXQ_DESC_MULTIPLE (IDPF_MAX_BUFQS_PER_RXQ_GRP * 32)
|
|
#define IDPF_MIN_TX_DESC_NEEDED (MAX_SKB_FRAGS + 6)
|
|
#define IDPF_TX_WAKE_THRESH ((u16)IDPF_MIN_TX_DESC_NEEDED * 2)
|
|
|
|
#define IDPF_MAX_DESCS 8160
|
|
#define IDPF_MAX_TXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_DESC_MULTIPLE)
|
|
#define IDPF_MAX_RXQ_DESC ALIGN_DOWN(IDPF_MAX_DESCS, IDPF_REQ_RXQ_DESC_MULTIPLE)
|
|
#define MIN_SUPPORT_TXDID (\
|
|
VIRTCHNL2_TXDID_FLEX_FLOW_SCHED |\
|
|
VIRTCHNL2_TXDID_FLEX_TSO_CTX)
|
|
|
|
#define IDPF_DFLT_SINGLEQ_TX_Q_GROUPS 1
|
|
#define IDPF_DFLT_SINGLEQ_RX_Q_GROUPS 1
|
|
#define IDPF_DFLT_SINGLEQ_TXQ_PER_GROUP 4
|
|
#define IDPF_DFLT_SINGLEQ_RXQ_PER_GROUP 4
|
|
|
|
#define IDPF_COMPLQ_PER_GROUP 1
|
|
#define IDPF_SINGLE_BUFQ_PER_RXQ_GRP 1
|
|
#define IDPF_MAX_BUFQS_PER_RXQ_GRP 2
|
|
#define IDPF_BUFQ2_ENA 1
|
|
#define IDPF_NUMQ_PER_CHUNK 1
|
|
|
|
#define IDPF_DFLT_SPLITQ_TXQ_PER_GROUP 1
|
|
#define IDPF_DFLT_SPLITQ_RXQ_PER_GROUP 1
|
|
|
|
/* Default vector sharing */
|
|
#define IDPF_MBX_Q_VEC 1
|
|
#define IDPF_MIN_Q_VEC 1
|
|
|
|
#define IDPF_DFLT_TX_Q_DESC_COUNT 512
|
|
#define IDPF_DFLT_TX_COMPLQ_DESC_COUNT 512
|
|
#define IDPF_DFLT_RX_Q_DESC_COUNT 512
|
|
|
|
/* IMPORTANT: We absolutely _cannot_ have more buffers in the system than a
|
|
* given RX completion queue has descriptors. This includes _ALL_ buffer
|
|
* queues. E.g.: If you have two buffer queues of 512 descriptors and buffers,
|
|
* you have a total of 1024 buffers so your RX queue _must_ have at least that
|
|
* many descriptors. This macro divides a given number of RX descriptors by
|
|
* number of buffer queues to calculate how many descriptors each buffer queue
|
|
* can have without overrunning the RX queue.
|
|
*
|
|
* If you give hardware more buffers than completion descriptors what will
|
|
* happen is that if hardware gets a chance to post more than ring wrap of
|
|
* descriptors before SW gets an interrupt and overwrites SW head, the gen bit
|
|
* in the descriptor will be wrong. Any overwritten descriptors' buffers will
|
|
* be gone forever and SW has no reasonable way to tell that this has happened.
|
|
* From SW perspective, when we finally get an interrupt, it looks like we're
|
|
* still waiting for descriptor to be done, stalling forever.
|
|
*/
|
|
#define IDPF_RX_BUFQ_DESC_COUNT(RXD, NUM_BUFQ) ((RXD) / (NUM_BUFQ))
|
|
|
|
#define IDPF_RX_BUFQ_WORKING_SET(rxq) ((rxq)->desc_count - 1)
|
|
|
|
#define IDPF_RX_BUMP_NTC(rxq, ntc) \
|
|
do { \
|
|
if (unlikely(++(ntc) == (rxq)->desc_count)) { \
|
|
ntc = 0; \
|
|
idpf_queue_change(GEN_CHK, rxq); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define IDPF_SINGLEQ_BUMP_RING_IDX(q, idx) \
|
|
do { \
|
|
if (unlikely(++(idx) == (q)->desc_count)) \
|
|
idx = 0; \
|
|
} while (0)
|
|
|
|
#define IDPF_RX_HDR_SIZE 256
|
|
#define IDPF_RX_BUF_2048 2048
|
|
#define IDPF_RX_BUF_4096 4096
|
|
#define IDPF_RX_BUF_STRIDE 32
|
|
#define IDPF_RX_BUF_POST_STRIDE 16
|
|
#define IDPF_LOW_WATERMARK 64
|
|
#define IDPF_PACKET_HDR_PAD \
|
|
(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN * 2)
|
|
#define IDPF_TX_TSO_MIN_MSS 88
|
|
|
|
/* Minimum number of descriptors between 2 descriptors with the RE bit set;
|
|
* only relevant in flow scheduling mode
|
|
*/
|
|
#define IDPF_TX_SPLITQ_RE_MIN_GAP 64
|
|
|
|
#define IDPF_RX_BI_GEN_M BIT(16)
|
|
#define IDPF_RX_BI_BUFID_M GENMASK(15, 0)
|
|
|
|
#define IDPF_RXD_EOF_SPLITQ VIRTCHNL2_RX_FLEX_DESC_ADV_STATUS0_EOF_M
|
|
#define IDPF_RXD_EOF_SINGLEQ VIRTCHNL2_RX_BASE_DESC_STATUS_EOF_M
|
|
|
|
#define IDPF_DESC_UNUSED(txq) \
|
|
((((txq)->next_to_clean > (txq)->next_to_use) ? 0 : (txq)->desc_count) + \
|
|
(txq)->next_to_clean - (txq)->next_to_use - 1)
|
|
|
|
#define IDPF_TX_BUF_RSV_UNUSED(txq) ((txq)->stash->buf_stack.top)
|
|
#define IDPF_TX_BUF_RSV_LOW(txq) (IDPF_TX_BUF_RSV_UNUSED(txq) < \
|
|
(txq)->desc_count >> 2)
|
|
|
|
#define IDPF_TX_COMPLQ_OVERFLOW_THRESH(txcq) ((txcq)->desc_count >> 1)
|
|
/* Determine the absolute number of completions pending, i.e. the number of
|
|
* completions that are expected to arrive on the TX completion queue.
|
|
*/
|
|
#define IDPF_TX_COMPLQ_PENDING(txq) \
|
|
(((txq)->num_completions_pending >= (txq)->complq->num_completions ? \
|
|
0 : U64_MAX) + \
|
|
(txq)->num_completions_pending - (txq)->complq->num_completions)
|
|
|
|
#define IDPF_TX_SPLITQ_COMPL_TAG_WIDTH 16
|
|
#define IDPF_SPLITQ_TX_INVAL_COMPL_TAG -1
|
|
/* Adjust the generation for the completion tag and wrap if necessary */
|
|
#define IDPF_TX_ADJ_COMPL_TAG_GEN(txq) \
|
|
((++(txq)->compl_tag_cur_gen) >= (txq)->compl_tag_gen_max ? \
|
|
0 : (txq)->compl_tag_cur_gen)
|
|
|
|
#define IDPF_TXD_LAST_DESC_CMD (IDPF_TX_DESC_CMD_EOP | IDPF_TX_DESC_CMD_RS)
|
|
|
|
#define IDPF_TX_FLAGS_TSO BIT(0)
|
|
#define IDPF_TX_FLAGS_IPV4 BIT(1)
|
|
#define IDPF_TX_FLAGS_IPV6 BIT(2)
|
|
#define IDPF_TX_FLAGS_TUNNEL BIT(3)
|
|
|
|
union idpf_tx_flex_desc {
|
|
struct idpf_flex_tx_desc q; /* queue based scheduling */
|
|
struct idpf_flex_tx_sched_desc flow; /* flow based scheduling */
|
|
};
|
|
|
|
/**
|
|
* struct idpf_tx_buf
|
|
* @next_to_watch: Next descriptor to clean
|
|
* @skb: Pointer to the skb
|
|
* @dma: DMA address
|
|
* @len: DMA length
|
|
* @bytecount: Number of bytes
|
|
* @gso_segs: Number of GSO segments
|
|
* @compl_tag: Splitq only, unique identifier for a buffer. Used to compare
|
|
* with completion tag returned in buffer completion event.
|
|
* Because the completion tag is expected to be the same in all
|
|
* data descriptors for a given packet, and a single packet can
|
|
* span multiple buffers, we need this field to track all
|
|
* buffers associated with this completion tag independently of
|
|
* the buf_id. The tag consists of a N bit buf_id and M upper
|
|
* order "generation bits". See compl_tag_bufid_m and
|
|
* compl_tag_gen_s in struct idpf_queue. We'll use a value of -1
|
|
* to indicate the tag is not valid.
|
|
* @ctx_entry: Singleq only. Used to indicate the corresponding entry
|
|
* in the descriptor ring was used for a context descriptor and
|
|
* this buffer entry should be skipped.
|
|
*/
|
|
struct idpf_tx_buf {
|
|
void *next_to_watch;
|
|
struct sk_buff *skb;
|
|
DEFINE_DMA_UNMAP_ADDR(dma);
|
|
DEFINE_DMA_UNMAP_LEN(len);
|
|
unsigned int bytecount;
|
|
unsigned short gso_segs;
|
|
|
|
union {
|
|
int compl_tag;
|
|
|
|
bool ctx_entry;
|
|
};
|
|
};
|
|
|
|
struct idpf_tx_stash {
|
|
struct hlist_node hlist;
|
|
struct idpf_tx_buf buf;
|
|
};
|
|
|
|
/**
|
|
* struct idpf_buf_lifo - LIFO for managing OOO completions
|
|
* @top: Used to know how many buffers are left
|
|
* @size: Total size of LIFO
|
|
* @bufs: Backing array
|
|
*/
|
|
struct idpf_buf_lifo {
|
|
u16 top;
|
|
u16 size;
|
|
struct idpf_tx_stash **bufs;
|
|
};
|
|
|
|
/**
|
|
* struct idpf_tx_offload_params - Offload parameters for a given packet
|
|
* @tx_flags: Feature flags enabled for this packet
|
|
* @hdr_offsets: Offset parameter for single queue model
|
|
* @cd_tunneling: Type of tunneling enabled for single queue model
|
|
* @tso_len: Total length of payload to segment
|
|
* @mss: Segment size
|
|
* @tso_segs: Number of segments to be sent
|
|
* @tso_hdr_len: Length of headers to be duplicated
|
|
* @td_cmd: Command field to be inserted into descriptor
|
|
*/
|
|
struct idpf_tx_offload_params {
|
|
u32 tx_flags;
|
|
|
|
u32 hdr_offsets;
|
|
u32 cd_tunneling;
|
|
|
|
u32 tso_len;
|
|
u16 mss;
|
|
u16 tso_segs;
|
|
u16 tso_hdr_len;
|
|
|
|
u16 td_cmd;
|
|
};
|
|
|
|
/**
|
|
* struct idpf_tx_splitq_params
|
|
* @dtype: General descriptor info
|
|
* @eop_cmd: Type of EOP
|
|
* @compl_tag: Associated tag for completion
|
|
* @td_tag: Descriptor tunneling tag
|
|
* @offload: Offload parameters
|
|
*/
|
|
struct idpf_tx_splitq_params {
|
|
enum idpf_tx_desc_dtype_value dtype;
|
|
u16 eop_cmd;
|
|
union {
|
|
u16 compl_tag;
|
|
u16 td_tag;
|
|
};
|
|
|
|
struct idpf_tx_offload_params offload;
|
|
};
|
|
|
|
enum idpf_tx_ctx_desc_eipt_offload {
|
|
IDPF_TX_CTX_EXT_IP_NONE = 0x0,
|
|
IDPF_TX_CTX_EXT_IP_IPV6 = 0x1,
|
|
IDPF_TX_CTX_EXT_IP_IPV4_NO_CSUM = 0x2,
|
|
IDPF_TX_CTX_EXT_IP_IPV4 = 0x3
|
|
};
|
|
|
|
/* Checksum offload bits decoded from the receive descriptor. */
|
|
struct idpf_rx_csum_decoded {
|
|
u32 l3l4p : 1;
|
|
u32 ipe : 1;
|
|
u32 eipe : 1;
|
|
u32 eudpe : 1;
|
|
u32 ipv6exadd : 1;
|
|
u32 l4e : 1;
|
|
u32 pprs : 1;
|
|
u32 nat : 1;
|
|
u32 raw_csum_inv : 1;
|
|
u32 raw_csum : 16;
|
|
};
|
|
|
|
struct idpf_rx_extracted {
|
|
unsigned int size;
|
|
u16 rx_ptype;
|
|
};
|
|
|
|
#define IDPF_TX_COMPLQ_CLEAN_BUDGET 256
|
|
#define IDPF_TX_MIN_PKT_LEN 17
|
|
#define IDPF_TX_DESCS_FOR_SKB_DATA_PTR 1
|
|
#define IDPF_TX_DESCS_PER_CACHE_LINE (L1_CACHE_BYTES / \
|
|
sizeof(struct idpf_flex_tx_desc))
|
|
#define IDPF_TX_DESCS_FOR_CTX 1
|
|
/* TX descriptors needed, worst case */
|
|
#define IDPF_TX_DESC_NEEDED (MAX_SKB_FRAGS + IDPF_TX_DESCS_FOR_CTX + \
|
|
IDPF_TX_DESCS_PER_CACHE_LINE + \
|
|
IDPF_TX_DESCS_FOR_SKB_DATA_PTR)
|
|
|
|
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
|
|
* In order to align with the read requests we will align the value to
|
|
* the nearest 4K which represents our maximum read request size.
|
|
*/
|
|
#define IDPF_TX_MAX_READ_REQ_SIZE SZ_4K
|
|
#define IDPF_TX_MAX_DESC_DATA (SZ_16K - 1)
|
|
#define IDPF_TX_MAX_DESC_DATA_ALIGNED \
|
|
ALIGN_DOWN(IDPF_TX_MAX_DESC_DATA, IDPF_TX_MAX_READ_REQ_SIZE)
|
|
|
|
#define idpf_rx_buf libeth_fqe
|
|
|
|
#define IDPF_RX_MAX_PTYPE_PROTO_IDS 32
|
|
#define IDPF_RX_MAX_PTYPE_SZ (sizeof(struct virtchnl2_ptype) + \
|
|
(sizeof(u16) * IDPF_RX_MAX_PTYPE_PROTO_IDS))
|
|
#define IDPF_RX_PTYPE_HDR_SZ sizeof(struct virtchnl2_get_ptype_info)
|
|
#define IDPF_RX_MAX_PTYPES_PER_BUF \
|
|
DIV_ROUND_DOWN_ULL((IDPF_CTLQ_MAX_BUF_LEN - IDPF_RX_PTYPE_HDR_SZ), \
|
|
IDPF_RX_MAX_PTYPE_SZ)
|
|
|
|
#define IDPF_GET_PTYPE_SIZE(p) struct_size((p), proto_id, (p)->proto_id_count)
|
|
|
|
#define IDPF_TUN_IP_GRE (\
|
|
IDPF_PTYPE_TUNNEL_IP |\
|
|
IDPF_PTYPE_TUNNEL_IP_GRENAT)
|
|
|
|
#define IDPF_TUN_IP_GRE_MAC (\
|
|
IDPF_TUN_IP_GRE |\
|
|
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC)
|
|
|
|
#define IDPF_RX_MAX_PTYPE 1024
|
|
#define IDPF_RX_MAX_BASE_PTYPE 256
|
|
#define IDPF_INVALID_PTYPE_ID 0xFFFF
|
|
|
|
enum idpf_tunnel_state {
|
|
IDPF_PTYPE_TUNNEL_IP = BIT(0),
|
|
IDPF_PTYPE_TUNNEL_IP_GRENAT = BIT(1),
|
|
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC = BIT(2),
|
|
};
|
|
|
|
struct idpf_ptype_state {
|
|
bool outer_ip:1;
|
|
bool outer_frag:1;
|
|
u8 tunnel_state:6;
|
|
};
|
|
|
|
/**
|
|
* enum idpf_queue_flags_t
|
|
* @__IDPF_Q_GEN_CHK: Queues operating in splitq mode use a generation bit to
|
|
* identify new descriptor writebacks on the ring. HW sets
|
|
* the gen bit to 1 on the first writeback of any given
|
|
* descriptor. After the ring wraps, HW sets the gen bit of
|
|
* those descriptors to 0, and continues flipping
|
|
* 0->1 or 1->0 on each ring wrap. SW maintains its own
|
|
* gen bit to know what value will indicate writebacks on
|
|
* the next pass around the ring. E.g. it is initialized
|
|
* to 1 and knows that reading a gen bit of 1 in any
|
|
* descriptor on the initial pass of the ring indicates a
|
|
* writeback. It also flips on every ring wrap.
|
|
* @__IDPF_Q_RFL_GEN_CHK: Refill queues are SW only, so Q_GEN acts as the HW
|
|
* bit and Q_RFL_GEN is the SW bit.
|
|
* @__IDPF_Q_FLOW_SCH_EN: Enable flow scheduling
|
|
* @__IDPF_Q_SW_MARKER: Used to indicate TX queue marker completions
|
|
* @__IDPF_Q_POLL_MODE: Enable poll mode
|
|
* @__IDPF_Q_CRC_EN: enable CRC offload in singleq mode
|
|
* @__IDPF_Q_HSPLIT_EN: enable header split on Rx (splitq)
|
|
* @__IDPF_Q_FLAGS_NBITS: Must be last
|
|
*/
|
|
enum idpf_queue_flags_t {
|
|
__IDPF_Q_GEN_CHK,
|
|
__IDPF_Q_RFL_GEN_CHK,
|
|
__IDPF_Q_FLOW_SCH_EN,
|
|
__IDPF_Q_SW_MARKER,
|
|
__IDPF_Q_POLL_MODE,
|
|
__IDPF_Q_CRC_EN,
|
|
__IDPF_Q_HSPLIT_EN,
|
|
|
|
__IDPF_Q_FLAGS_NBITS,
|
|
};
|
|
|
|
#define idpf_queue_set(f, q) __set_bit(__IDPF_Q_##f, (q)->flags)
|
|
#define idpf_queue_clear(f, q) __clear_bit(__IDPF_Q_##f, (q)->flags)
|
|
#define idpf_queue_change(f, q) __change_bit(__IDPF_Q_##f, (q)->flags)
|
|
#define idpf_queue_has(f, q) test_bit(__IDPF_Q_##f, (q)->flags)
|
|
|
|
#define idpf_queue_has_clear(f, q) \
|
|
__test_and_clear_bit(__IDPF_Q_##f, (q)->flags)
|
|
#define idpf_queue_assign(f, q, v) \
|
|
__assign_bit(__IDPF_Q_##f, (q)->flags, v)
|
|
|
|
/**
|
|
* struct idpf_vec_regs
|
|
* @dyn_ctl_reg: Dynamic control interrupt register offset
|
|
* @itrn_reg: Interrupt Throttling Rate register offset
|
|
* @itrn_index_spacing: Register spacing between ITR registers of the same
|
|
* vector
|
|
*/
|
|
struct idpf_vec_regs {
|
|
u32 dyn_ctl_reg;
|
|
u32 itrn_reg;
|
|
u32 itrn_index_spacing;
|
|
};
|
|
|
|
/**
|
|
* struct idpf_intr_reg
|
|
* @dyn_ctl: Dynamic control interrupt register
|
|
* @dyn_ctl_intena_m: Mask for dyn_ctl interrupt enable
|
|
* @dyn_ctl_itridx_s: Register bit offset for ITR index
|
|
* @dyn_ctl_itridx_m: Mask for ITR index
|
|
* @dyn_ctl_intrvl_s: Register bit offset for ITR interval
|
|
* @rx_itr: RX ITR register
|
|
* @tx_itr: TX ITR register
|
|
* @icr_ena: Interrupt cause register offset
|
|
* @icr_ena_ctlq_m: Mask for ICR
|
|
*/
|
|
struct idpf_intr_reg {
|
|
void __iomem *dyn_ctl;
|
|
u32 dyn_ctl_intena_m;
|
|
u32 dyn_ctl_itridx_s;
|
|
u32 dyn_ctl_itridx_m;
|
|
u32 dyn_ctl_intrvl_s;
|
|
void __iomem *rx_itr;
|
|
void __iomem *tx_itr;
|
|
void __iomem *icr_ena;
|
|
u32 icr_ena_ctlq_m;
|
|
};
|
|
|
|
/**
|
|
* struct idpf_q_vector
|
|
* @vport: Vport back pointer
|
|
* @num_rxq: Number of RX queues
|
|
* @num_txq: Number of TX queues
|
|
* @num_bufq: Number of buffer queues
|
|
* @num_complq: number of completion queues
|
|
* @rx: Array of RX queues to service
|
|
* @tx: Array of TX queues to service
|
|
* @bufq: Array of buffer queues to service
|
|
* @complq: array of completion queues
|
|
* @intr_reg: See struct idpf_intr_reg
|
|
* @napi: napi handler
|
|
* @total_events: Number of interrupts processed
|
|
* @tx_dim: Data for TX net_dim algorithm
|
|
* @tx_itr_value: TX interrupt throttling rate
|
|
* @tx_intr_mode: Dynamic ITR or not
|
|
* @tx_itr_idx: TX ITR index
|
|
* @rx_dim: Data for RX net_dim algorithm
|
|
* @rx_itr_value: RX interrupt throttling rate
|
|
* @rx_intr_mode: Dynamic ITR or not
|
|
* @rx_itr_idx: RX ITR index
|
|
* @v_idx: Vector index
|
|
* @affinity_mask: CPU affinity mask
|
|
*/
|
|
struct idpf_q_vector {
|
|
__cacheline_group_begin_aligned(read_mostly);
|
|
struct idpf_vport *vport;
|
|
|
|
u16 num_rxq;
|
|
u16 num_txq;
|
|
u16 num_bufq;
|
|
u16 num_complq;
|
|
struct idpf_rx_queue **rx;
|
|
struct idpf_tx_queue **tx;
|
|
struct idpf_buf_queue **bufq;
|
|
struct idpf_compl_queue **complq;
|
|
|
|
struct idpf_intr_reg intr_reg;
|
|
__cacheline_group_end_aligned(read_mostly);
|
|
|
|
__cacheline_group_begin_aligned(read_write);
|
|
struct napi_struct napi;
|
|
u16 total_events;
|
|
|
|
struct dim tx_dim;
|
|
u16 tx_itr_value;
|
|
bool tx_intr_mode;
|
|
u32 tx_itr_idx;
|
|
|
|
struct dim rx_dim;
|
|
u16 rx_itr_value;
|
|
bool rx_intr_mode;
|
|
u32 rx_itr_idx;
|
|
__cacheline_group_end_aligned(read_write);
|
|
|
|
__cacheline_group_begin_aligned(cold);
|
|
u16 v_idx;
|
|
|
|
cpumask_var_t affinity_mask;
|
|
__cacheline_group_end_aligned(cold);
|
|
};
|
|
libeth_cacheline_set_assert(struct idpf_q_vector, 104,
|
|
424 + 2 * sizeof(struct dim),
|
|
8 + sizeof(cpumask_var_t));
|
|
|
|
struct idpf_rx_queue_stats {
|
|
u64_stats_t packets;
|
|
u64_stats_t bytes;
|
|
u64_stats_t rsc_pkts;
|
|
u64_stats_t hw_csum_err;
|
|
u64_stats_t hsplit_pkts;
|
|
u64_stats_t hsplit_buf_ovf;
|
|
u64_stats_t bad_descs;
|
|
};
|
|
|
|
struct idpf_tx_queue_stats {
|
|
u64_stats_t packets;
|
|
u64_stats_t bytes;
|
|
u64_stats_t lso_pkts;
|
|
u64_stats_t linearize;
|
|
u64_stats_t q_busy;
|
|
u64_stats_t skb_drops;
|
|
u64_stats_t dma_map_errs;
|
|
};
|
|
|
|
struct idpf_cleaned_stats {
|
|
u32 packets;
|
|
u32 bytes;
|
|
};
|
|
|
|
#define IDPF_ITR_DYNAMIC 1
|
|
#define IDPF_ITR_MAX 0x1FE0
|
|
#define IDPF_ITR_20K 0x0032
|
|
#define IDPF_ITR_GRAN_S 1 /* Assume ITR granularity is 2us */
|
|
#define IDPF_ITR_MASK 0x1FFE /* ITR register value alignment mask */
|
|
#define ITR_REG_ALIGN(setting) ((setting) & IDPF_ITR_MASK)
|
|
#define IDPF_ITR_IS_DYNAMIC(itr_mode) (itr_mode)
|
|
#define IDPF_ITR_TX_DEF IDPF_ITR_20K
|
|
#define IDPF_ITR_RX_DEF IDPF_ITR_20K
|
|
/* Index used for 'No ITR' update in DYN_CTL register */
|
|
#define IDPF_NO_ITR_UPDATE_IDX 3
|
|
#define IDPF_ITR_IDX_SPACING(spacing, dflt) (spacing ? spacing : dflt)
|
|
#define IDPF_DIM_DEFAULT_PROFILE_IX 1
|
|
|
|
/**
|
|
* struct idpf_txq_stash - Tx buffer stash for Flow-based scheduling mode
|
|
* @buf_stack: Stack of empty buffers to store buffer info for out of order
|
|
* buffer completions. See struct idpf_buf_lifo
|
|
* @sched_buf_hash: Hash table to store buffers
|
|
*/
|
|
struct idpf_txq_stash {
|
|
struct idpf_buf_lifo buf_stack;
|
|
DECLARE_HASHTABLE(sched_buf_hash, 12);
|
|
} ____cacheline_aligned;
|
|
|
|
/**
|
|
* struct idpf_rx_queue - software structure representing a receive queue
|
|
* @rx: universal receive descriptor array
|
|
* @single_buf: buffer descriptor array in singleq
|
|
* @desc_ring: virtual descriptor ring address
|
|
* @bufq_sets: Pointer to the array of buffer queues in splitq mode
|
|
* @napi: NAPI instance corresponding to this queue (splitq)
|
|
* @rx_buf: See struct idpf_rx_buf
|
|
* @pp: Page pool pointer in singleq mode
|
|
* @netdev: &net_device corresponding to this queue
|
|
* @tail: Tail offset. Used for both queue models single and split.
|
|
* @flags: See enum idpf_queue_flags_t
|
|
* @idx: For RX queue, it is used to index to total RX queue across groups and
|
|
* used for skb reporting.
|
|
* @desc_count: Number of descriptors
|
|
* @rxdids: Supported RX descriptor ids
|
|
* @rx_ptype_lkup: LUT of Rx ptypes
|
|
* @next_to_use: Next descriptor to use
|
|
* @next_to_clean: Next descriptor to clean
|
|
* @next_to_alloc: RX buffer to allocate at
|
|
* @skb: Pointer to the skb
|
|
* @stats_sync: See struct u64_stats_sync
|
|
* @q_stats: See union idpf_rx_queue_stats
|
|
* @q_id: Queue id
|
|
* @size: Length of descriptor ring in bytes
|
|
* @dma: Physical address of ring
|
|
* @q_vector: Backreference to associated vector
|
|
* @rx_buffer_low_watermark: RX buffer low watermark
|
|
* @rx_hbuf_size: Header buffer size
|
|
* @rx_buf_size: Buffer size
|
|
* @rx_max_pkt_size: RX max packet size
|
|
*/
|
|
struct idpf_rx_queue {
|
|
__cacheline_group_begin_aligned(read_mostly);
|
|
union {
|
|
union virtchnl2_rx_desc *rx;
|
|
struct virtchnl2_singleq_rx_buf_desc *single_buf;
|
|
|
|
void *desc_ring;
|
|
};
|
|
union {
|
|
struct {
|
|
struct idpf_bufq_set *bufq_sets;
|
|
struct napi_struct *napi;
|
|
};
|
|
struct {
|
|
struct idpf_rx_buf *rx_buf;
|
|
struct page_pool *pp;
|
|
};
|
|
};
|
|
struct net_device *netdev;
|
|
void __iomem *tail;
|
|
|
|
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
|
|
u16 idx;
|
|
u16 desc_count;
|
|
|
|
u32 rxdids;
|
|
const struct libeth_rx_pt *rx_ptype_lkup;
|
|
__cacheline_group_end_aligned(read_mostly);
|
|
|
|
__cacheline_group_begin_aligned(read_write);
|
|
u16 next_to_use;
|
|
u16 next_to_clean;
|
|
u16 next_to_alloc;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
struct u64_stats_sync stats_sync;
|
|
struct idpf_rx_queue_stats q_stats;
|
|
__cacheline_group_end_aligned(read_write);
|
|
|
|
__cacheline_group_begin_aligned(cold);
|
|
u32 q_id;
|
|
u32 size;
|
|
dma_addr_t dma;
|
|
|
|
struct idpf_q_vector *q_vector;
|
|
|
|
u16 rx_buffer_low_watermark;
|
|
u16 rx_hbuf_size;
|
|
u16 rx_buf_size;
|
|
u16 rx_max_pkt_size;
|
|
__cacheline_group_end_aligned(cold);
|
|
};
|
|
libeth_cacheline_set_assert(struct idpf_rx_queue, 64,
|
|
72 + sizeof(struct u64_stats_sync),
|
|
32);
|
|
|
|
/**
|
|
* struct idpf_tx_queue - software structure representing a transmit queue
|
|
* @base_tx: base Tx descriptor array
|
|
* @base_ctx: base Tx context descriptor array
|
|
* @flex_tx: flex Tx descriptor array
|
|
* @flex_ctx: flex Tx context descriptor array
|
|
* @desc_ring: virtual descriptor ring address
|
|
* @tx_buf: See struct idpf_tx_buf
|
|
* @txq_grp: See struct idpf_txq_group
|
|
* @dev: Device back pointer for DMA mapping
|
|
* @tail: Tail offset. Used for both queue models single and split
|
|
* @flags: See enum idpf_queue_flags_t
|
|
* @idx: For TX queue, it is used as index to map between TX queue group and
|
|
* hot path TX pointers stored in vport. Used in both singleq/splitq.
|
|
* @desc_count: Number of descriptors
|
|
* @tx_min_pkt_len: Min supported packet length
|
|
* @compl_tag_gen_s: Completion tag generation bit
|
|
* The format of the completion tag will change based on the TXQ
|
|
* descriptor ring size so that we can maintain roughly the same level
|
|
* of "uniqueness" across all descriptor sizes. For example, if the
|
|
* TXQ descriptor ring size is 64 (the minimum size supported), the
|
|
* completion tag will be formatted as below:
|
|
* 15 6 5 0
|
|
* --------------------------------
|
|
* | GEN=0-1023 |IDX = 0-63|
|
|
* --------------------------------
|
|
*
|
|
* This gives us 64*1024 = 65536 possible unique values. Similarly, if
|
|
* the TXQ descriptor ring size is 8160 (the maximum size supported),
|
|
* the completion tag will be formatted as below:
|
|
* 15 13 12 0
|
|
* --------------------------------
|
|
* |GEN | IDX = 0-8159 |
|
|
* --------------------------------
|
|
*
|
|
* This gives us 8*8160 = 65280 possible unique values.
|
|
* @netdev: &net_device corresponding to this queue
|
|
* @next_to_use: Next descriptor to use
|
|
* @next_to_clean: Next descriptor to clean
|
|
* @cleaned_bytes: Splitq only, TXQ only: When a TX completion is received on
|
|
* the TX completion queue, it can be for any TXQ associated
|
|
* with that completion queue. This means we can clean up to
|
|
* N TXQs during a single call to clean the completion queue.
|
|
* cleaned_bytes|pkts tracks the clean stats per TXQ during
|
|
* that single call to clean the completion queue. By doing so,
|
|
* we can update BQL with aggregate cleaned stats for each TXQ
|
|
* only once at the end of the cleaning routine.
|
|
* @clean_budget: singleq only, queue cleaning budget
|
|
* @cleaned_pkts: Number of packets cleaned for the above said case
|
|
* @tx_max_bufs: Max buffers that can be transmitted with scatter-gather
|
|
* @stash: Tx buffer stash for Flow-based scheduling mode
|
|
* @compl_tag_bufid_m: Completion tag buffer id mask
|
|
* @compl_tag_cur_gen: Used to keep track of current completion tag generation
|
|
* @compl_tag_gen_max: To determine when compl_tag_cur_gen should be reset
|
|
* @stats_sync: See struct u64_stats_sync
|
|
* @q_stats: See union idpf_tx_queue_stats
|
|
* @q_id: Queue id
|
|
* @size: Length of descriptor ring in bytes
|
|
* @dma: Physical address of ring
|
|
* @q_vector: Backreference to associated vector
|
|
*/
|
|
struct idpf_tx_queue {
|
|
__cacheline_group_begin_aligned(read_mostly);
|
|
union {
|
|
struct idpf_base_tx_desc *base_tx;
|
|
struct idpf_base_tx_ctx_desc *base_ctx;
|
|
union idpf_tx_flex_desc *flex_tx;
|
|
struct idpf_flex_tx_ctx_desc *flex_ctx;
|
|
|
|
void *desc_ring;
|
|
};
|
|
struct idpf_tx_buf *tx_buf;
|
|
struct idpf_txq_group *txq_grp;
|
|
struct device *dev;
|
|
void __iomem *tail;
|
|
|
|
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
|
|
u16 idx;
|
|
u16 desc_count;
|
|
|
|
u16 tx_min_pkt_len;
|
|
u16 compl_tag_gen_s;
|
|
|
|
struct net_device *netdev;
|
|
__cacheline_group_end_aligned(read_mostly);
|
|
|
|
__cacheline_group_begin_aligned(read_write);
|
|
u16 next_to_use;
|
|
u16 next_to_clean;
|
|
|
|
union {
|
|
u32 cleaned_bytes;
|
|
u32 clean_budget;
|
|
};
|
|
u16 cleaned_pkts;
|
|
|
|
u16 tx_max_bufs;
|
|
struct idpf_txq_stash *stash;
|
|
|
|
u16 compl_tag_bufid_m;
|
|
u16 compl_tag_cur_gen;
|
|
u16 compl_tag_gen_max;
|
|
|
|
struct u64_stats_sync stats_sync;
|
|
struct idpf_tx_queue_stats q_stats;
|
|
__cacheline_group_end_aligned(read_write);
|
|
|
|
__cacheline_group_begin_aligned(cold);
|
|
u32 q_id;
|
|
u32 size;
|
|
dma_addr_t dma;
|
|
|
|
struct idpf_q_vector *q_vector;
|
|
__cacheline_group_end_aligned(cold);
|
|
};
|
|
libeth_cacheline_set_assert(struct idpf_tx_queue, 64,
|
|
88 + sizeof(struct u64_stats_sync),
|
|
24);
|
|
|
|
/**
|
|
* struct idpf_buf_queue - software structure representing a buffer queue
|
|
* @split_buf: buffer descriptor array
|
|
* @hdr_buf: &libeth_fqe for header buffers
|
|
* @hdr_pp: &page_pool for header buffers
|
|
* @buf: &idpf_rx_buf for data buffers
|
|
* @pp: &page_pool for data buffers
|
|
* @tail: Tail offset
|
|
* @flags: See enum idpf_queue_flags_t
|
|
* @desc_count: Number of descriptors
|
|
* @hdr_truesize: truesize for buffer headers
|
|
* @next_to_use: Next descriptor to use
|
|
* @next_to_clean: Next descriptor to clean
|
|
* @next_to_alloc: RX buffer to allocate at
|
|
* @q_id: Queue id
|
|
* @size: Length of descriptor ring in bytes
|
|
* @dma: Physical address of ring
|
|
* @q_vector: Backreference to associated vector
|
|
* @rx_buffer_low_watermark: RX buffer low watermark
|
|
* @rx_hbuf_size: Header buffer size
|
|
* @rx_buf_size: Buffer size
|
|
*/
|
|
struct idpf_buf_queue {
|
|
__cacheline_group_begin_aligned(read_mostly);
|
|
struct virtchnl2_splitq_rx_buf_desc *split_buf;
|
|
struct libeth_fqe *hdr_buf;
|
|
struct page_pool *hdr_pp;
|
|
struct idpf_rx_buf *buf;
|
|
struct page_pool *pp;
|
|
void __iomem *tail;
|
|
|
|
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
|
|
u32 desc_count;
|
|
|
|
u32 hdr_truesize;
|
|
__cacheline_group_end_aligned(read_mostly);
|
|
|
|
__cacheline_group_begin_aligned(read_write);
|
|
u32 next_to_use;
|
|
u32 next_to_clean;
|
|
u32 next_to_alloc;
|
|
__cacheline_group_end_aligned(read_write);
|
|
|
|
__cacheline_group_begin_aligned(cold);
|
|
u32 q_id;
|
|
u32 size;
|
|
dma_addr_t dma;
|
|
|
|
struct idpf_q_vector *q_vector;
|
|
|
|
u16 rx_buffer_low_watermark;
|
|
u16 rx_hbuf_size;
|
|
u16 rx_buf_size;
|
|
__cacheline_group_end_aligned(cold);
|
|
};
|
|
libeth_cacheline_set_assert(struct idpf_buf_queue, 64, 16, 32);
|
|
|
|
/**
|
|
* struct idpf_compl_queue - software structure representing a completion queue
|
|
* @comp: completion descriptor array
|
|
* @txq_grp: See struct idpf_txq_group
|
|
* @flags: See enum idpf_queue_flags_t
|
|
* @desc_count: Number of descriptors
|
|
* @clean_budget: queue cleaning budget
|
|
* @netdev: &net_device corresponding to this queue
|
|
* @next_to_use: Next descriptor to use. Relevant in both split & single txq
|
|
* and bufq.
|
|
* @next_to_clean: Next descriptor to clean
|
|
* @num_completions: Only relevant for TX completion queue. It tracks the
|
|
* number of completions received to compare against the
|
|
* number of completions pending, as accumulated by the
|
|
* TX queues.
|
|
* @q_id: Queue id
|
|
* @size: Length of descriptor ring in bytes
|
|
* @dma: Physical address of ring
|
|
* @q_vector: Backreference to associated vector
|
|
*/
|
|
struct idpf_compl_queue {
|
|
__cacheline_group_begin_aligned(read_mostly);
|
|
struct idpf_splitq_tx_compl_desc *comp;
|
|
struct idpf_txq_group *txq_grp;
|
|
|
|
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
|
|
u32 desc_count;
|
|
|
|
u32 clean_budget;
|
|
struct net_device *netdev;
|
|
__cacheline_group_end_aligned(read_mostly);
|
|
|
|
__cacheline_group_begin_aligned(read_write);
|
|
u32 next_to_use;
|
|
u32 next_to_clean;
|
|
|
|
u32 num_completions;
|
|
__cacheline_group_end_aligned(read_write);
|
|
|
|
__cacheline_group_begin_aligned(cold);
|
|
u32 q_id;
|
|
u32 size;
|
|
dma_addr_t dma;
|
|
|
|
struct idpf_q_vector *q_vector;
|
|
__cacheline_group_end_aligned(cold);
|
|
};
|
|
libeth_cacheline_set_assert(struct idpf_compl_queue, 40, 16, 24);
|
|
|
|
/**
|
|
* struct idpf_sw_queue
|
|
* @ring: Pointer to the ring
|
|
* @flags: See enum idpf_queue_flags_t
|
|
* @desc_count: Descriptor count
|
|
* @next_to_use: Buffer to allocate at
|
|
* @next_to_clean: Next descriptor to clean
|
|
*
|
|
* Software queues are used in splitq mode to manage buffers between rxq
|
|
* producer and the bufq consumer. These are required in order to maintain a
|
|
* lockless buffer management system and are strictly software only constructs.
|
|
*/
|
|
struct idpf_sw_queue {
|
|
__cacheline_group_begin_aligned(read_mostly);
|
|
u32 *ring;
|
|
|
|
DECLARE_BITMAP(flags, __IDPF_Q_FLAGS_NBITS);
|
|
u32 desc_count;
|
|
__cacheline_group_end_aligned(read_mostly);
|
|
|
|
__cacheline_group_begin_aligned(read_write);
|
|
u32 next_to_use;
|
|
u32 next_to_clean;
|
|
__cacheline_group_end_aligned(read_write);
|
|
};
|
|
libeth_cacheline_group_assert(struct idpf_sw_queue, read_mostly, 24);
|
|
libeth_cacheline_group_assert(struct idpf_sw_queue, read_write, 8);
|
|
libeth_cacheline_struct_assert(struct idpf_sw_queue, 24, 8);
|
|
|
|
/**
|
|
* struct idpf_rxq_set
|
|
* @rxq: RX queue
|
|
* @refillq: pointers to refill queues
|
|
*
|
|
* Splitq only. idpf_rxq_set associates an rxq with at an array of refillqs.
|
|
* Each rxq needs a refillq to return used buffers back to the respective bufq.
|
|
* Bufqs then clean these refillqs for buffers to give to hardware.
|
|
*/
|
|
struct idpf_rxq_set {
|
|
struct idpf_rx_queue rxq;
|
|
struct idpf_sw_queue *refillq[IDPF_MAX_BUFQS_PER_RXQ_GRP];
|
|
};
|
|
|
|
/**
|
|
* struct idpf_bufq_set
|
|
* @bufq: Buffer queue
|
|
* @num_refillqs: Number of refill queues. This is always equal to num_rxq_sets
|
|
* in idpf_rxq_group.
|
|
* @refillqs: Pointer to refill queues array.
|
|
*
|
|
* Splitq only. idpf_bufq_set associates a bufq to an array of refillqs.
|
|
* In this bufq_set, there will be one refillq for each rxq in this rxq_group.
|
|
* Used buffers received by rxqs will be put on refillqs which bufqs will
|
|
* clean to return new buffers back to hardware.
|
|
*
|
|
* Buffers needed by some number of rxqs associated in this rxq_group are
|
|
* managed by at most two bufqs (depending on performance configuration).
|
|
*/
|
|
struct idpf_bufq_set {
|
|
struct idpf_buf_queue bufq;
|
|
int num_refillqs;
|
|
struct idpf_sw_queue *refillqs;
|
|
};
|
|
|
|
/**
|
|
* struct idpf_rxq_group
|
|
* @vport: Vport back pointer
|
|
* @singleq: Struct with single queue related members
|
|
* @singleq.num_rxq: Number of RX queues associated
|
|
* @singleq.rxqs: Array of RX queue pointers
|
|
* @splitq: Struct with split queue related members
|
|
* @splitq.num_rxq_sets: Number of RX queue sets
|
|
* @splitq.rxq_sets: Array of RX queue sets
|
|
* @splitq.bufq_sets: Buffer queue set pointer
|
|
*
|
|
* In singleq mode, an rxq_group is simply an array of rxqs. In splitq, a
|
|
* rxq_group contains all the rxqs, bufqs and refillqs needed to
|
|
* manage buffers in splitq mode.
|
|
*/
|
|
struct idpf_rxq_group {
|
|
struct idpf_vport *vport;
|
|
|
|
union {
|
|
struct {
|
|
u16 num_rxq;
|
|
struct idpf_rx_queue *rxqs[IDPF_LARGE_MAX_Q];
|
|
} singleq;
|
|
struct {
|
|
u16 num_rxq_sets;
|
|
struct idpf_rxq_set *rxq_sets[IDPF_LARGE_MAX_Q];
|
|
struct idpf_bufq_set *bufq_sets;
|
|
} splitq;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* struct idpf_txq_group
|
|
* @vport: Vport back pointer
|
|
* @num_txq: Number of TX queues associated
|
|
* @txqs: Array of TX queue pointers
|
|
* @stashes: array of OOO stashes for the queues
|
|
* @complq: Associated completion queue pointer, split queue only
|
|
* @num_completions_pending: Total number of completions pending for the
|
|
* completion queue, acculumated for all TX queues
|
|
* associated with that completion queue.
|
|
*
|
|
* Between singleq and splitq, a txq_group is largely the same except for the
|
|
* complq. In splitq a single complq is responsible for handling completions
|
|
* for some number of txqs associated in this txq_group.
|
|
*/
|
|
struct idpf_txq_group {
|
|
struct idpf_vport *vport;
|
|
|
|
u16 num_txq;
|
|
struct idpf_tx_queue *txqs[IDPF_LARGE_MAX_Q];
|
|
struct idpf_txq_stash *stashes;
|
|
|
|
struct idpf_compl_queue *complq;
|
|
|
|
u32 num_completions_pending;
|
|
};
|
|
|
|
static inline int idpf_q_vector_to_mem(const struct idpf_q_vector *q_vector)
|
|
{
|
|
u32 cpu;
|
|
|
|
if (!q_vector)
|
|
return NUMA_NO_NODE;
|
|
|
|
cpu = cpumask_first(q_vector->affinity_mask);
|
|
|
|
return cpu < nr_cpu_ids ? cpu_to_mem(cpu) : NUMA_NO_NODE;
|
|
}
|
|
|
|
/**
|
|
* idpf_size_to_txd_count - Get number of descriptors needed for large Tx frag
|
|
* @size: transmit request size in bytes
|
|
*
|
|
* In the case where a large frag (>= 16K) needs to be split across multiple
|
|
* descriptors, we need to assume that we can have no more than 12K of data
|
|
* per descriptor due to hardware alignment restrictions (4K alignment).
|
|
*/
|
|
static inline u32 idpf_size_to_txd_count(unsigned int size)
|
|
{
|
|
return DIV_ROUND_UP(size, IDPF_TX_MAX_DESC_DATA_ALIGNED);
|
|
}
|
|
|
|
/**
|
|
* idpf_tx_singleq_build_ctob - populate command tag offset and size
|
|
* @td_cmd: Command to be filled in desc
|
|
* @td_offset: Offset to be filled in desc
|
|
* @size: Size of the buffer
|
|
* @td_tag: td tag to be filled
|
|
*
|
|
* Returns the 64 bit value populated with the input parameters
|
|
*/
|
|
static inline __le64 idpf_tx_singleq_build_ctob(u64 td_cmd, u64 td_offset,
|
|
unsigned int size, u64 td_tag)
|
|
{
|
|
return cpu_to_le64(IDPF_TX_DESC_DTYPE_DATA |
|
|
(td_cmd << IDPF_TXD_QW1_CMD_S) |
|
|
(td_offset << IDPF_TXD_QW1_OFFSET_S) |
|
|
((u64)size << IDPF_TXD_QW1_TX_BUF_SZ_S) |
|
|
(td_tag << IDPF_TXD_QW1_L2TAG1_S));
|
|
}
|
|
|
|
void idpf_tx_splitq_build_ctb(union idpf_tx_flex_desc *desc,
|
|
struct idpf_tx_splitq_params *params,
|
|
u16 td_cmd, u16 size);
|
|
void idpf_tx_splitq_build_flow_desc(union idpf_tx_flex_desc *desc,
|
|
struct idpf_tx_splitq_params *params,
|
|
u16 td_cmd, u16 size);
|
|
/**
|
|
* idpf_tx_splitq_build_desc - determine which type of data descriptor to build
|
|
* @desc: descriptor to populate
|
|
* @params: pointer to tx params struct
|
|
* @td_cmd: command to be filled in desc
|
|
* @size: size of buffer
|
|
*/
|
|
static inline void idpf_tx_splitq_build_desc(union idpf_tx_flex_desc *desc,
|
|
struct idpf_tx_splitq_params *params,
|
|
u16 td_cmd, u16 size)
|
|
{
|
|
if (params->dtype == IDPF_TX_DESC_DTYPE_FLEX_L2TAG1_L2TAG2)
|
|
idpf_tx_splitq_build_ctb(desc, params, td_cmd, size);
|
|
else
|
|
idpf_tx_splitq_build_flow_desc(desc, params, td_cmd, size);
|
|
}
|
|
|
|
/**
|
|
* idpf_alloc_page - Allocate a new RX buffer from the page pool
|
|
* @pool: page_pool to allocate from
|
|
* @buf: metadata struct to populate with page info
|
|
* @buf_size: 2K or 4K
|
|
*
|
|
* Returns &dma_addr_t to be passed to HW for Rx, %DMA_MAPPING_ERROR otherwise.
|
|
*/
|
|
static inline dma_addr_t idpf_alloc_page(struct page_pool *pool,
|
|
struct idpf_rx_buf *buf,
|
|
unsigned int buf_size)
|
|
{
|
|
if (buf_size == IDPF_RX_BUF_2048)
|
|
buf->page = page_pool_dev_alloc_frag(pool, &buf->offset,
|
|
buf_size);
|
|
else
|
|
buf->page = page_pool_dev_alloc_pages(pool);
|
|
|
|
if (!buf->page)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
buf->truesize = buf_size;
|
|
|
|
return page_pool_get_dma_addr(buf->page) + buf->offset +
|
|
pool->p.offset;
|
|
}
|
|
|
|
/**
|
|
* idpf_rx_put_page - Return RX buffer page to pool
|
|
* @rx_buf: RX buffer metadata struct
|
|
*/
|
|
static inline void idpf_rx_put_page(struct idpf_rx_buf *rx_buf)
|
|
{
|
|
page_pool_put_page(rx_buf->page->pp, rx_buf->page,
|
|
rx_buf->truesize, true);
|
|
rx_buf->page = NULL;
|
|
}
|
|
|
|
/**
|
|
* idpf_rx_sync_for_cpu - Synchronize DMA buffer
|
|
* @rx_buf: RX buffer metadata struct
|
|
* @len: frame length from descriptor
|
|
*/
|
|
static inline void idpf_rx_sync_for_cpu(struct idpf_rx_buf *rx_buf, u32 len)
|
|
{
|
|
struct page *page = rx_buf->page;
|
|
struct page_pool *pp = page->pp;
|
|
|
|
dma_sync_single_range_for_cpu(pp->p.dev,
|
|
page_pool_get_dma_addr(page),
|
|
rx_buf->offset + pp->p.offset, len,
|
|
page_pool_get_dma_dir(pp));
|
|
}
|
|
|
|
int idpf_vport_singleq_napi_poll(struct napi_struct *napi, int budget);
|
|
void idpf_vport_init_num_qs(struct idpf_vport *vport,
|
|
struct virtchnl2_create_vport *vport_msg);
|
|
void idpf_vport_calc_num_q_desc(struct idpf_vport *vport);
|
|
int idpf_vport_calc_total_qs(struct idpf_adapter *adapter, u16 vport_index,
|
|
struct virtchnl2_create_vport *vport_msg,
|
|
struct idpf_vport_max_q *max_q);
|
|
void idpf_vport_calc_num_q_groups(struct idpf_vport *vport);
|
|
int idpf_vport_queues_alloc(struct idpf_vport *vport);
|
|
void idpf_vport_queues_rel(struct idpf_vport *vport);
|
|
void idpf_vport_intr_rel(struct idpf_vport *vport);
|
|
int idpf_vport_intr_alloc(struct idpf_vport *vport);
|
|
void idpf_vport_intr_update_itr_ena_irq(struct idpf_q_vector *q_vector);
|
|
void idpf_vport_intr_deinit(struct idpf_vport *vport);
|
|
int idpf_vport_intr_init(struct idpf_vport *vport);
|
|
void idpf_vport_intr_ena(struct idpf_vport *vport);
|
|
int idpf_config_rss(struct idpf_vport *vport);
|
|
int idpf_init_rss(struct idpf_vport *vport);
|
|
void idpf_deinit_rss(struct idpf_vport *vport);
|
|
int idpf_rx_bufs_init_all(struct idpf_vport *vport);
|
|
void idpf_rx_add_frag(struct idpf_rx_buf *rx_buf, struct sk_buff *skb,
|
|
unsigned int size);
|
|
struct sk_buff *idpf_rx_construct_skb(const struct idpf_rx_queue *rxq,
|
|
struct idpf_rx_buf *rx_buf,
|
|
unsigned int size);
|
|
struct sk_buff *idpf_rx_build_skb(const struct libeth_fqe *buf, u32 size);
|
|
void idpf_tx_buf_hw_update(struct idpf_tx_queue *tx_q, u32 val,
|
|
bool xmit_more);
|
|
unsigned int idpf_size_to_txd_count(unsigned int size);
|
|
netdev_tx_t idpf_tx_drop_skb(struct idpf_tx_queue *tx_q, struct sk_buff *skb);
|
|
void idpf_tx_dma_map_error(struct idpf_tx_queue *txq, struct sk_buff *skb,
|
|
struct idpf_tx_buf *first, u16 ring_idx);
|
|
unsigned int idpf_tx_desc_count_required(struct idpf_tx_queue *txq,
|
|
struct sk_buff *skb);
|
|
int idpf_tx_maybe_stop_common(struct idpf_tx_queue *tx_q, unsigned int size);
|
|
void idpf_tx_timeout(struct net_device *netdev, unsigned int txqueue);
|
|
netdev_tx_t idpf_tx_singleq_frame(struct sk_buff *skb,
|
|
struct idpf_tx_queue *tx_q);
|
|
netdev_tx_t idpf_tx_start(struct sk_buff *skb, struct net_device *netdev);
|
|
bool idpf_rx_singleq_buf_hw_alloc_all(struct idpf_rx_queue *rxq,
|
|
u16 cleaned_count);
|
|
int idpf_tso(struct sk_buff *skb, struct idpf_tx_offload_params *off);
|
|
|
|
#endif /* !_IDPF_TXRX_H_ */
|