1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/net/wireless/ath/ath12k/qmi.c
Linus Torvalds 3a8a670eee Networking changes for 6.5.
Core
 ----
 
  - Rework the sendpage & splice implementations. Instead of feeding
    data into sockets page by page extend sendmsg handlers to support
    taking a reference on the data, controlled by a new flag called
    MSG_SPLICE_PAGES. Rework the handling of unexpected-end-of-file
    to invoke an additional callback instead of trying to predict what
    the right combination of MORE/NOTLAST flags is.
    Remove the MSG_SENDPAGE_NOTLAST flag completely.
 
  - Implement SCM_PIDFD, a new type of CMSG type analogous to
    SCM_CREDENTIALS, but it contains pidfd instead of plain pid.
 
  - Enable socket busy polling with CONFIG_RT.
 
  - Improve reliability and efficiency of reporting for ref_tracker.
 
  - Auto-generate a user space C library for various Netlink families.
 
 Protocols
 ---------
 
  - Allow TCP to shrink the advertised window when necessary, prevent
    sk_rcvbuf auto-tuning from growing the window all the way up to
    tcp_rmem[2].
 
  - Use per-VMA locking for "page-flipping" TCP receive zerocopy.
 
  - Prepare TCP for device-to-device data transfers, by making sure
    that payloads are always attached to skbs as page frags.
 
  - Make the backoff time for the first N TCP SYN retransmissions
    linear. Exponential backoff is unnecessarily conservative.
 
  - Create a new MPTCP getsockopt to retrieve all info (MPTCP_FULL_INFO).
 
  - Avoid waking up applications using TLS sockets until we have
    a full record.
 
  - Allow using kernel memory for protocol ioctl callbacks, paving
    the way to issuing ioctls over io_uring.
 
  - Add nolocalbypass option to VxLAN, forcing packets to be fully
    encapsulated even if they are destined for a local IP address.
 
  - Make TCPv4 use consistent hash in TIME_WAIT and SYN_RECV. Ensure
    in-kernel ECMP implementation (e.g. Open vSwitch) select the same
    link for all packets. Support L4 symmetric hashing in Open vSwitch.
 
  - PPPoE: make number of hash bits configurable.
 
  - Allow DNS to be overwritten by DHCPACK in the in-kernel DHCP client
    (ipconfig).
 
  - Add layer 2 miss indication and filtering, allowing higher layers
    (e.g. ACL filters) to make forwarding decisions based on whether
    packet matched forwarding state in lower devices (bridge).
 
  - Support matching on Connectivity Fault Management (CFM) packets.
 
  - Hide the "link becomes ready" IPv6 messages by demoting their
    printk level to debug.
 
  - HSR: don't enable promiscuous mode if device offloads the proto.
 
  - Support active scanning in IEEE 802.15.4.
 
  - Continue work on Multi-Link Operation for WiFi 7.
 
 BPF
 ---
 
  - Add precision propagation for subprogs and callbacks. This allows
    maintaining verification efficiency when subprograms are used,
    or in fact passing the verifier at all for complex programs,
    especially those using open-coded iterators.
 
  - Improve BPF's {g,s}setsockopt() length handling. Previously BPF
    assumed the length is always equal to the amount of written data.
    But some protos allow passing a NULL buffer to discover what
    the output buffer *should* be, without writing anything.
 
  - Accept dynptr memory as memory arguments passed to helpers.
 
  - Add routing table ID to bpf_fib_lookup BPF helper.
 
  - Support O_PATH FDs in BPF_OBJ_PIN and BPF_OBJ_GET commands.
 
  - Drop bpf_capable() check in BPF_MAP_FREEZE command (used to mark
    maps as read-only).
 
  - Show target_{obj,btf}_id in tracing link fdinfo.
 
  - Addition of several new kfuncs (most of the names are self-explanatory):
    - Add a set of new dynptr kfuncs: bpf_dynptr_adjust(),
      bpf_dynptr_is_null(), bpf_dynptr_is_rdonly(), bpf_dynptr_size()
      and bpf_dynptr_clone().
    - bpf_task_under_cgroup()
    - bpf_sock_destroy() - force closing sockets
    - bpf_cpumask_first_and(), rework bpf_cpumask_any*() kfuncs
 
 Netfilter
 ---------
 
  - Relax set/map validation checks in nf_tables. Allow checking
    presence of an entry in a map without using the value.
 
  - Increase ip_vs_conn_tab_bits range for 64BIT builds.
 
  - Allow updating size of a set.
 
  - Improve NAT tuple selection when connection is closing.
 
 Driver API
 ----------
 
  - Integrate netdev with LED subsystem, to allow configuring HW
    "offloaded" blinking of LEDs based on link state and activity
    (i.e. packets coming in and out).
 
  - Support configuring rate selection pins of SFP modules.
 
  - Factor Clause 73 auto-negotiation code out of the drivers, provide
    common helper routines.
 
  - Add more fool-proof helpers for managing lifetime of MDIO devices
    associated with the PCS layer.
 
  - Allow drivers to report advanced statistics related to Time Aware
    scheduler offload (taprio).
 
  - Allow opting out of VF statistics in link dump, to allow more VFs
    to fit into the message.
 
  - Split devlink instance and devlink port operations.
 
 New hardware / drivers
 ----------------------
 
  - Ethernet:
    - Synopsys EMAC4 IP support (stmmac)
    - Marvell 88E6361 8 port (5x1GE + 3x2.5GE) switches
    - Marvell 88E6250 7 port switches
    - Microchip LAN8650/1 Rev.B0 PHYs
    - MediaTek MT7981/MT7988 built-in 1GE PHY driver
 
  - WiFi:
    - Realtek RTL8192FU, 2.4 GHz, b/g/n mode, 2T2R, 300 Mbps
    - Realtek RTL8723DS (SDIO variant)
    - Realtek RTL8851BE
 
  - CAN:
    - Fintek F81604
 
 Drivers
 -------
 
  - Ethernet NICs:
    - Intel (100G, ice):
      - support dynamic interrupt allocation
      - use meta data match instead of VF MAC addr on slow-path
    - nVidia/Mellanox:
      - extend link aggregation to handle 4, rather than just 2 ports
      - spawn sub-functions without any features by default
    - OcteonTX2:
      - support HTB (Tx scheduling/QoS) offload
      - make RSS hash generation configurable
      - support selecting Rx queue using TC filters
    - Wangxun (ngbe/txgbe):
      - add basic Tx/Rx packet offloads
      - add phylink support (SFP/PCS control)
    - Freescale/NXP (enetc):
      - report TAPRIO packet statistics
    - Solarflare/AMD:
      - support matching on IP ToS and UDP source port of outer header
      - VxLAN and GENEVE tunnel encapsulation over IPv4 or IPv6
      - add devlink dev info support for EF10
 
  - Virtual NICs:
    - Microsoft vNIC:
      - size the Rx indirection table based on requested configuration
      - support VLAN tagging
    - Amazon vNIC:
      - try to reuse Rx buffers if not fully consumed, useful for ARM
        servers running with 16kB pages
    - Google vNIC:
      - support TCP segmentation of >64kB frames
 
  - Ethernet embedded switches:
    - Marvell (mv88e6xxx):
      - enable USXGMII (88E6191X)
    - Microchip:
     - lan966x: add support for Egress Stage 0 ACL engine
     - lan966x: support mapping packet priority to internal switch
       priority (based on PCP or DSCP)
 
  - Ethernet PHYs:
    - Broadcom PHYs:
      - support for Wake-on-LAN for BCM54210E/B50212E
      - report LPI counter
    - Microsemi PHYs: support RGMII delay configuration (VSC85xx)
    - Micrel PHYs: receive timestamp in the frame (LAN8841)
    - Realtek PHYs: support optional external PHY clock
    - Altera TSE PCS: merge the driver into Lynx PCS which it is
      a variant of
 
  - CAN: Kvaser PCIEcan:
    - support packet timestamping
 
  - WiFi:
    - Intel (iwlwifi):
      - major update for new firmware and Multi-Link Operation (MLO)
      - configuration rework to drop test devices and split
        the different families
      - support for segmented PNVM images and power tables
      - new vendor entries for PPAG (platform antenna gain) feature
    - Qualcomm 802.11ax (ath11k):
      - Multiple Basic Service Set Identifier (MBSSID) and
        Enhanced MBSSID Advertisement (EMA) support in AP mode
      - support factory test mode
    - RealTek (rtw89):
      - add RSSI based antenna diversity
      - support U-NII-4 channels on 5 GHz band
    - RealTek (rtl8xxxu):
      - AP mode support for 8188f
      - support USB RX aggregation for the newer chips
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmSbJM4ACgkQMUZtbf5S
 IrtoDhAAhEim1+LBIKf4lhPcVdZ2p/TkpnwTz5jsTwSeRBAxTwuNJ2fQhFXg13E3
 MnRq6QaEp8G4/tA/gynLvQop+FEZEnv+horP0zf/XLcC8euU7UrKdrpt/4xxdP07
 IL/fFWsoUGNO+L9LNaHwBo8g7nHvOkPscHEBHc2Xrvzab56TJk6vPySfLqcpKlNZ
 CHWDwTpgRqNZzSKiSpoMVd9OVMKUXcPYHpDmfEJ5l+e8vTXmZzOLHrSELHU5nP5f
 mHV7gxkDCTshoGcaed7UTiOvgu1p6E5EchDJxiLaSUbgsd8SZ3u4oXwRxgj33RK/
 fB2+UaLrRt/DdlHvT/Ph8e8Ygu77yIXMjT49jsfur/zVA0HEA2dFb7V6QlsYRmQp
 J25pnrdXmE15llgqsC0/UOW5J1laTjII+T2T70UOAqQl4LWYAQDG4WwsAqTzU0KY
 dueydDouTp9XC2WYrRUEQxJUzxaOaazskDUHc5c8oHp/zVBT+djdgtvVR9+gi6+7
 yy4elI77FlEEqL0ItdU/lSWINayAlPLsIHkMyhSGKX0XDpKjeycPqkNx4UterXB/
 JKIR5RBWllRft+igIngIkKX0tJGMU0whngiw7d1WLw25wgu4sB53hiWWoSba14hv
 tXMxwZs5iGaPcT38oRVMZz8I1kJM4Dz3SyI7twVvi4RUut64EG4=
 =9i4I
 -----END PGP SIGNATURE-----

Merge tag 'net-next-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking changes from Jakub Kicinski:
 "WiFi 7 and sendpage changes are the biggest pieces of work for this
  release. The latter will definitely require fixes but I think that we
  got it to a reasonable point.

  Core:

   - Rework the sendpage & splice implementations

     Instead of feeding data into sockets page by page extend sendmsg
     handlers to support taking a reference on the data, controlled by a
     new flag called MSG_SPLICE_PAGES

     Rework the handling of unexpected-end-of-file to invoke an
     additional callback instead of trying to predict what the right
     combination of MORE/NOTLAST flags is

     Remove the MSG_SENDPAGE_NOTLAST flag completely

   - Implement SCM_PIDFD, a new type of CMSG type analogous to
     SCM_CREDENTIALS, but it contains pidfd instead of plain pid

   - Enable socket busy polling with CONFIG_RT

   - Improve reliability and efficiency of reporting for ref_tracker

   - Auto-generate a user space C library for various Netlink families

  Protocols:

   - Allow TCP to shrink the advertised window when necessary, prevent
     sk_rcvbuf auto-tuning from growing the window all the way up to
     tcp_rmem[2]

   - Use per-VMA locking for "page-flipping" TCP receive zerocopy

   - Prepare TCP for device-to-device data transfers, by making sure
     that payloads are always attached to skbs as page frags

   - Make the backoff time for the first N TCP SYN retransmissions
     linear. Exponential backoff is unnecessarily conservative

   - Create a new MPTCP getsockopt to retrieve all info
     (MPTCP_FULL_INFO)

   - Avoid waking up applications using TLS sockets until we have a full
     record

   - Allow using kernel memory for protocol ioctl callbacks, paving the
     way to issuing ioctls over io_uring

   - Add nolocalbypass option to VxLAN, forcing packets to be fully
     encapsulated even if they are destined for a local IP address

   - Make TCPv4 use consistent hash in TIME_WAIT and SYN_RECV. Ensure
     in-kernel ECMP implementation (e.g. Open vSwitch) select the same
     link for all packets. Support L4 symmetric hashing in Open vSwitch

   - PPPoE: make number of hash bits configurable

   - Allow DNS to be overwritten by DHCPACK in the in-kernel DHCP client
     (ipconfig)

   - Add layer 2 miss indication and filtering, allowing higher layers
     (e.g. ACL filters) to make forwarding decisions based on whether
     packet matched forwarding state in lower devices (bridge)

   - Support matching on Connectivity Fault Management (CFM) packets

   - Hide the "link becomes ready" IPv6 messages by demoting their
     printk level to debug

   - HSR: don't enable promiscuous mode if device offloads the proto

   - Support active scanning in IEEE 802.15.4

   - Continue work on Multi-Link Operation for WiFi 7

  BPF:

   - Add precision propagation for subprogs and callbacks. This allows
     maintaining verification efficiency when subprograms are used, or
     in fact passing the verifier at all for complex programs,
     especially those using open-coded iterators

   - Improve BPF's {g,s}setsockopt() length handling. Previously BPF
     assumed the length is always equal to the amount of written data.
     But some protos allow passing a NULL buffer to discover what the
     output buffer *should* be, without writing anything

   - Accept dynptr memory as memory arguments passed to helpers

   - Add routing table ID to bpf_fib_lookup BPF helper

   - Support O_PATH FDs in BPF_OBJ_PIN and BPF_OBJ_GET commands

   - Drop bpf_capable() check in BPF_MAP_FREEZE command (used to mark
     maps as read-only)

   - Show target_{obj,btf}_id in tracing link fdinfo

   - Addition of several new kfuncs (most of the names are
     self-explanatory):
      - Add a set of new dynptr kfuncs: bpf_dynptr_adjust(),
        bpf_dynptr_is_null(), bpf_dynptr_is_rdonly(), bpf_dynptr_size()
        and bpf_dynptr_clone().
      - bpf_task_under_cgroup()
      - bpf_sock_destroy() - force closing sockets
      - bpf_cpumask_first_and(), rework bpf_cpumask_any*() kfuncs

  Netfilter:

   - Relax set/map validation checks in nf_tables. Allow checking
     presence of an entry in a map without using the value

   - Increase ip_vs_conn_tab_bits range for 64BIT builds

   - Allow updating size of a set

   - Improve NAT tuple selection when connection is closing

  Driver API:

   - Integrate netdev with LED subsystem, to allow configuring HW
     "offloaded" blinking of LEDs based on link state and activity
     (i.e. packets coming in and out)

   - Support configuring rate selection pins of SFP modules

   - Factor Clause 73 auto-negotiation code out of the drivers, provide
     common helper routines

   - Add more fool-proof helpers for managing lifetime of MDIO devices
     associated with the PCS layer

   - Allow drivers to report advanced statistics related to Time Aware
     scheduler offload (taprio)

   - Allow opting out of VF statistics in link dump, to allow more VFs
     to fit into the message

   - Split devlink instance and devlink port operations

  New hardware / drivers:

   - Ethernet:
      - Synopsys EMAC4 IP support (stmmac)
      - Marvell 88E6361 8 port (5x1GE + 3x2.5GE) switches
      - Marvell 88E6250 7 port switches
      - Microchip LAN8650/1 Rev.B0 PHYs
      - MediaTek MT7981/MT7988 built-in 1GE PHY driver

   - WiFi:
      - Realtek RTL8192FU, 2.4 GHz, b/g/n mode, 2T2R, 300 Mbps
      - Realtek RTL8723DS (SDIO variant)
      - Realtek RTL8851BE

   - CAN:
      - Fintek F81604

  Drivers:

   - Ethernet NICs:
      - Intel (100G, ice):
         - support dynamic interrupt allocation
         - use meta data match instead of VF MAC addr on slow-path
      - nVidia/Mellanox:
         - extend link aggregation to handle 4, rather than just 2 ports
         - spawn sub-functions without any features by default
      - OcteonTX2:
         - support HTB (Tx scheduling/QoS) offload
         - make RSS hash generation configurable
         - support selecting Rx queue using TC filters
      - Wangxun (ngbe/txgbe):
         - add basic Tx/Rx packet offloads
         - add phylink support (SFP/PCS control)
      - Freescale/NXP (enetc):
         - report TAPRIO packet statistics
      - Solarflare/AMD:
         - support matching on IP ToS and UDP source port of outer
           header
         - VxLAN and GENEVE tunnel encapsulation over IPv4 or IPv6
         - add devlink dev info support for EF10

   - Virtual NICs:
      - Microsoft vNIC:
         - size the Rx indirection table based on requested
           configuration
         - support VLAN tagging
      - Amazon vNIC:
         - try to reuse Rx buffers if not fully consumed, useful for ARM
           servers running with 16kB pages
      - Google vNIC:
         - support TCP segmentation of >64kB frames

   - Ethernet embedded switches:
      - Marvell (mv88e6xxx):
         - enable USXGMII (88E6191X)
      - Microchip:
         - lan966x: add support for Egress Stage 0 ACL engine
         - lan966x: support mapping packet priority to internal switch
           priority (based on PCP or DSCP)

   - Ethernet PHYs:
      - Broadcom PHYs:
         - support for Wake-on-LAN for BCM54210E/B50212E
         - report LPI counter
      - Microsemi PHYs: support RGMII delay configuration (VSC85xx)
      - Micrel PHYs: receive timestamp in the frame (LAN8841)
      - Realtek PHYs: support optional external PHY clock
      - Altera TSE PCS: merge the driver into Lynx PCS which it is a
        variant of

   - CAN: Kvaser PCIEcan:
      - support packet timestamping

   - WiFi:
      - Intel (iwlwifi):
         - major update for new firmware and Multi-Link Operation (MLO)
         - configuration rework to drop test devices and split the
           different families
         - support for segmented PNVM images and power tables
         - new vendor entries for PPAG (platform antenna gain) feature
      - Qualcomm 802.11ax (ath11k):
         - Multiple Basic Service Set Identifier (MBSSID) and Enhanced
           MBSSID Advertisement (EMA) support in AP mode
         - support factory test mode
      - RealTek (rtw89):
         - add RSSI based antenna diversity
         - support U-NII-4 channels on 5 GHz band
      - RealTek (rtl8xxxu):
         - AP mode support for 8188f
         - support USB RX aggregation for the newer chips"

* tag 'net-next-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1602 commits)
  net: scm: introduce and use scm_recv_unix helper
  af_unix: Skip SCM_PIDFD if scm->pid is NULL.
  net: lan743x: Simplify comparison
  netlink: Add __sock_i_ino() for __netlink_diag_dump().
  net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses
  Revert "af_unix: Call scm_recv() only after scm_set_cred()."
  phylink: ReST-ify the phylink_pcs_neg_mode() kdoc
  libceph: Partially revert changes to support MSG_SPLICE_PAGES
  net: phy: mscc: fix packet loss due to RGMII delays
  net: mana: use vmalloc_array and vcalloc
  net: enetc: use vmalloc_array and vcalloc
  ionic: use vmalloc_array and vcalloc
  pds_core: use vmalloc_array and vcalloc
  gve: use vmalloc_array and vcalloc
  octeon_ep: use vmalloc_array and vcalloc
  net: usb: qmi_wwan: add u-blox 0x1312 composition
  perf trace: fix MSG_SPLICE_PAGES build error
  ipvlan: Fix return value of ipvlan_queue_xmit()
  netfilter: nf_tables: fix underflow in chain reference counter
  netfilter: nf_tables: unbind non-anonymous set if rule construction fails
  ...
2023-06-28 16:43:10 -07:00

3090 lines
77 KiB
C

// SPDX-License-Identifier: BSD-3-Clause-Clear
/*
* Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/elf.h>
#include "qmi.h"
#include "core.h"
#include "debug.h"
#include <linux/of.h>
#include <linux/firmware.h>
#define SLEEP_CLOCK_SELECT_INTERNAL_BIT 0x02
#define HOST_CSTATE_BIT 0x04
#define PLATFORM_CAP_PCIE_GLOBAL_RESET 0x08
#define ATH12K_QMI_MAX_CHUNK_SIZE 2097152
static struct qmi_elem_info wlfw_host_mlo_chip_info_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct wlfw_host_mlo_chip_info_s_v01,
chip_id),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct wlfw_host_mlo_chip_info_s_v01,
num_local_links),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = QMI_WLFW_MAX_NUM_MLO_LINKS_PER_CHIP_V01,
.elem_size = sizeof(u8),
.array_type = STATIC_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct wlfw_host_mlo_chip_info_s_v01,
hw_link_id),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = QMI_WLFW_MAX_NUM_MLO_LINKS_PER_CHIP_V01,
.elem_size = sizeof(u8),
.array_type = STATIC_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct wlfw_host_mlo_chip_info_s_v01,
valid_mlo_link_id),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_host_cap_req_msg_v01_ei[] = {
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
num_clients_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
num_clients),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
wake_msi_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
wake_msi),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
gpios_valid),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
gpios_len),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = QMI_WLFW_MAX_NUM_GPIO_V01,
.elem_size = sizeof(u32),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
gpios),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
nm_modem_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
nm_modem),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
bdf_support_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
bdf_support),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
bdf_cache_support_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
bdf_cache_support),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x16,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
m3_support_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x16,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
m3_support),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
m3_cache_support_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
m3_cache_support),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x18,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_filesys_support_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x18,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_filesys_support),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x19,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_cache_support_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x19,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_cache_support),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1A,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_done_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1A,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_done),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1B,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mem_bucket_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x1B,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mem_bucket),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1C,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mem_cfg_mode_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1C,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mem_cfg_mode),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1D,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_duration_valid),
},
{
.data_type = QMI_UNSIGNED_2_BYTE,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = 0x1D,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
cal_duraiton),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1E,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
platform_name_valid),
},
{
.data_type = QMI_STRING,
.elem_len = QMI_WLANFW_MAX_PLATFORM_NAME_LEN_V01 + 1,
.elem_size = sizeof(char),
.array_type = NO_ARRAY,
.tlv_type = 0x1E,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
platform_name),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1F,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
ddr_range_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLANFW_MAX_HOST_DDR_RANGE_SIZE_V01,
.elem_size = sizeof(struct qmi_wlanfw_host_ddr_range),
.array_type = STATIC_ARRAY,
.tlv_type = 0x1F,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
ddr_range),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x20,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
host_build_type_valid),
},
{
.data_type = QMI_SIGNED_4_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(enum qmi_wlanfw_host_build_type),
.array_type = NO_ARRAY,
.tlv_type = 0x20,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
host_build_type),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x21,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_capable_valid),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x21,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_capable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x22,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_chip_id_valid),
},
{
.data_type = QMI_UNSIGNED_2_BYTE,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = 0x22,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_chip_id),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x23,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_group_id_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x23,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_group_id),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x24,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
max_mlo_peer_valid),
},
{
.data_type = QMI_UNSIGNED_2_BYTE,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = 0x24,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
max_mlo_peer),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x25,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_num_chips_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x25,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_num_chips),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x26,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_chip_info_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLFW_MAX_NUM_MLO_CHIPS_V01,
.elem_size = sizeof(struct wlfw_host_mlo_chip_info_s_v01),
.array_type = STATIC_ARRAY,
.tlv_type = 0x26,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
mlo_chip_info),
.ei_array = wlfw_host_mlo_chip_info_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x27,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
feature_list_valid),
},
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0x27,
.offset = offsetof(struct qmi_wlanfw_host_cap_req_msg_v01,
feature_list),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_host_cap_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_host_cap_resp_msg_v01, resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_ind_register_req_msg_v01_ei[] = {
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
fw_ready_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
fw_ready_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
initiate_cal_download_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
initiate_cal_download_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
initiate_cal_update_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
initiate_cal_update_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
msa_ready_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
msa_ready_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
pin_connect_result_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
pin_connect_result_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
client_id_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
client_id),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x16,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
request_mem_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x16,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
request_mem_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
fw_mem_ready_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
fw_mem_ready_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x18,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
fw_init_done_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x18,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
fw_init_done_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x19,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
rejuvenate_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x19,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
rejuvenate_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1A,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
xo_cal_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1A,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
xo_cal_enable),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1B,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
cal_done_enable_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1B,
.offset = offsetof(struct qmi_wlanfw_ind_register_req_msg_v01,
cal_done_enable),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_ind_register_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_ind_register_resp_msg_v01,
resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_ind_register_resp_msg_v01,
fw_status_valid),
},
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_ind_register_resp_msg_v01,
fw_status),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_mem_cfg_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_cfg_s_v01, offset),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_cfg_s_v01, size),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_cfg_s_v01, secure_flag),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_mem_seg_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_s_v01,
size),
},
{
.data_type = QMI_SIGNED_4_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(enum qmi_wlanfw_mem_type_enum_v01),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_s_v01, type),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_s_v01, mem_cfg_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLANFW_MAX_NUM_MEM_CFG_V01,
.elem_size = sizeof(struct qmi_wlanfw_mem_cfg_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_s_v01, mem_cfg),
.ei_array = qmi_wlanfw_mem_cfg_s_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_request_mem_ind_msg_v01_ei[] = {
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_request_mem_ind_msg_v01,
mem_seg_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = ATH12K_QMI_WLANFW_MAX_NUM_MEM_SEG_V01,
.elem_size = sizeof(struct qmi_wlanfw_mem_seg_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_request_mem_ind_msg_v01,
mem_seg),
.ei_array = qmi_wlanfw_mem_seg_s_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_mem_seg_resp_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_resp_s_v01, addr),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_resp_s_v01, size),
},
{
.data_type = QMI_SIGNED_4_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(enum qmi_wlanfw_mem_type_enum_v01),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_resp_s_v01, type),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_mem_seg_resp_s_v01, restore),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_respond_mem_req_msg_v01_ei[] = {
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_respond_mem_req_msg_v01,
mem_seg_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = ATH12K_QMI_WLANFW_MAX_NUM_MEM_SEG_V01,
.elem_size = sizeof(struct qmi_wlanfw_mem_seg_resp_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_respond_mem_req_msg_v01,
mem_seg),
.ei_array = qmi_wlanfw_mem_seg_resp_s_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_respond_mem_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_respond_mem_resp_msg_v01,
resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_cap_req_msg_v01_ei[] = {
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_rf_chip_info_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_rf_chip_info_s_v01,
chip_id),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_rf_chip_info_s_v01,
chip_family),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_rf_board_info_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_rf_board_info_s_v01,
board_id),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_soc_info_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_soc_info_s_v01, soc_id),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_dev_mem_info_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_dev_mem_info_s_v01,
start),
},
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_dev_mem_info_s_v01,
size),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_fw_version_info_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_fw_version_info_s_v01,
fw_version),
},
{
.data_type = QMI_STRING,
.elem_len = ATH12K_QMI_WLANFW_MAX_TIMESTAMP_LEN_V01 + 1,
.elem_size = sizeof(char),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_fw_version_info_s_v01,
fw_build_timestamp),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_cap_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01, resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
chip_info_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_wlanfw_rf_chip_info_s_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
chip_info),
.ei_array = qmi_wlanfw_rf_chip_info_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
board_info_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_wlanfw_rf_board_info_s_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
board_info),
.ei_array = qmi_wlanfw_rf_board_info_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
soc_info_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_wlanfw_soc_info_s_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
soc_info),
.ei_array = qmi_wlanfw_soc_info_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
fw_version_info_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_wlanfw_fw_version_info_s_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
fw_version_info),
.ei_array = qmi_wlanfw_fw_version_info_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
fw_build_id_valid),
},
{
.data_type = QMI_STRING,
.elem_len = ATH12K_QMI_WLANFW_MAX_BUILD_ID_LEN_V01 + 1,
.elem_size = sizeof(char),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
fw_build_id),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
num_macs_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
num_macs),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x16,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
voltage_mv_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x16,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
voltage_mv),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
time_freq_hz_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
time_freq_hz),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x18,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
otp_version_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x18,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
otp_version),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x19,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
eeprom_caldata_read_timeout_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x19,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
eeprom_caldata_read_timeout),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1A,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
fw_caps_valid),
},
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0x1A,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01, fw_caps),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1B,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
rd_card_chain_cap_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x1B,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
rd_card_chain_cap),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x1C,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01,
dev_mem_info_valid),
},
{
.data_type = QMI_STRUCT,
.elem_len = ATH12K_QMI_WLFW_MAX_DEV_MEM_NUM_V01,
.elem_size = sizeof(struct qmi_wlanfw_dev_mem_info_s_v01),
.array_type = STATIC_ARRAY,
.tlv_type = 0x1C,
.offset = offsetof(struct qmi_wlanfw_cap_resp_msg_v01, dev_mem),
.ei_array = qmi_wlanfw_dev_mem_info_s_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_bdf_download_req_msg_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
valid),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
file_id_valid),
},
{
.data_type = QMI_SIGNED_4_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(enum qmi_wlanfw_cal_temp_id_enum_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
file_id),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
total_size_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
total_size),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
seg_id_valid),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
seg_id),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
data_valid),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
data_len),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = QMI_WLANFW_MAX_DATA_SIZE_V01,
.elem_size = sizeof(u8),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
data),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
end_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x14,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
end),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
bdf_type_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x15,
.offset = offsetof(struct qmi_wlanfw_bdf_download_req_msg_v01,
bdf_type),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_bdf_download_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_bdf_download_resp_msg_v01,
resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_m3_info_req_msg_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_8_BYTE,
.elem_len = 1,
.elem_size = sizeof(u64),
.array_type = NO_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_m3_info_req_msg_v01, addr),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_m3_info_req_msg_v01, size),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_m3_info_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_m3_info_resp_msg_v01, resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_ce_tgt_pipe_cfg_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_tgt_pipe_cfg_s_v01,
pipe_num),
},
{
.data_type = QMI_SIGNED_4_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(enum qmi_wlanfw_pipedir_enum_v01),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_tgt_pipe_cfg_s_v01,
pipe_dir),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_tgt_pipe_cfg_s_v01,
nentries),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_tgt_pipe_cfg_s_v01,
nbytes_max),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_tgt_pipe_cfg_s_v01,
flags),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_ce_svc_pipe_cfg_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_svc_pipe_cfg_s_v01,
service_id),
},
{
.data_type = QMI_SIGNED_4_BYTE_ENUM,
.elem_len = 1,
.elem_size = sizeof(enum qmi_wlanfw_pipedir_enum_v01),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_svc_pipe_cfg_s_v01,
pipe_dir),
},
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_ce_svc_pipe_cfg_s_v01,
pipe_num),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_shadow_reg_cfg_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_2_BYTE,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_shadow_reg_cfg_s_v01, id),
},
{
.data_type = QMI_UNSIGNED_2_BYTE,
.elem_len = 1,
.elem_size = sizeof(u16),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_shadow_reg_cfg_s_v01,
offset),
},
{
.data_type = QMI_EOTI,
.array_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_shadow_reg_v3_cfg_s_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0,
.offset = offsetof(struct qmi_wlanfw_shadow_reg_v3_cfg_s_v01,
addr),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_wlan_mode_req_msg_v01_ei[] = {
{
.data_type = QMI_UNSIGNED_4_BYTE,
.elem_len = 1,
.elem_size = sizeof(u32),
.array_type = NO_ARRAY,
.tlv_type = 0x01,
.offset = offsetof(struct qmi_wlanfw_wlan_mode_req_msg_v01,
mode),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_wlan_mode_req_msg_v01,
hw_debug_valid),
},
{
.data_type = QMI_UNSIGNED_1_BYTE,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_wlan_mode_req_msg_v01,
hw_debug),
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_wlan_mode_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_wlan_mode_resp_msg_v01,
resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_wlan_cfg_req_msg_v01_ei[] = {
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
host_version_valid),
},
{
.data_type = QMI_STRING,
.elem_len = QMI_WLANFW_MAX_STR_LEN_V01 + 1,
.elem_size = sizeof(char),
.array_type = NO_ARRAY,
.tlv_type = 0x10,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
host_version),
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
tgt_cfg_valid),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
tgt_cfg_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLANFW_MAX_NUM_CE_V01,
.elem_size = sizeof(struct qmi_wlanfw_ce_tgt_pipe_cfg_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x11,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
tgt_cfg),
.ei_array = qmi_wlanfw_ce_tgt_pipe_cfg_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
svc_cfg_valid),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
svc_cfg_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLANFW_MAX_NUM_SVC_V01,
.elem_size = sizeof(struct qmi_wlanfw_ce_svc_pipe_cfg_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x12,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
svc_cfg),
.ei_array = qmi_wlanfw_ce_svc_pipe_cfg_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
shadow_reg_valid),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
shadow_reg_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLANFW_MAX_NUM_SHADOW_REG_V01,
.elem_size = sizeof(struct qmi_wlanfw_shadow_reg_cfg_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x13,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
shadow_reg),
.ei_array = qmi_wlanfw_shadow_reg_cfg_s_v01_ei,
},
{
.data_type = QMI_OPT_FLAG,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
shadow_reg_v3_valid),
},
{
.data_type = QMI_DATA_LEN,
.elem_len = 1,
.elem_size = sizeof(u8),
.array_type = NO_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
shadow_reg_v3_len),
},
{
.data_type = QMI_STRUCT,
.elem_len = QMI_WLANFW_MAX_NUM_SHADOW_REG_V3_V01,
.elem_size = sizeof(struct qmi_wlanfw_shadow_reg_v3_cfg_s_v01),
.array_type = VAR_LEN_ARRAY,
.tlv_type = 0x17,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_req_msg_v01,
shadow_reg_v3),
.ei_array = qmi_wlanfw_shadow_reg_v3_cfg_s_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_wlan_cfg_resp_msg_v01_ei[] = {
{
.data_type = QMI_STRUCT,
.elem_len = 1,
.elem_size = sizeof(struct qmi_response_type_v01),
.array_type = NO_ARRAY,
.tlv_type = 0x02,
.offset = offsetof(struct qmi_wlanfw_wlan_cfg_resp_msg_v01, resp),
.ei_array = qmi_response_type_v01_ei,
},
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
.tlv_type = QMI_COMMON_TLV_TYPE,
},
};
static struct qmi_elem_info qmi_wlanfw_mem_ready_ind_msg_v01_ei[] = {
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
},
};
static struct qmi_elem_info qmi_wlanfw_fw_ready_ind_msg_v01_ei[] = {
{
.data_type = QMI_EOTI,
.array_type = NO_ARRAY,
},
};
static void ath12k_host_cap_parse_mlo(struct qmi_wlanfw_host_cap_req_msg_v01 *req)
{
req->mlo_capable_valid = 1;
req->mlo_capable = 1;
req->mlo_chip_id_valid = 1;
req->mlo_chip_id = 0;
req->mlo_group_id_valid = 1;
req->mlo_group_id = 0;
req->max_mlo_peer_valid = 1;
/* Max peer number generally won't change for the same device
* but needs to be synced with host driver.
*/
req->max_mlo_peer = 32;
req->mlo_num_chips_valid = 1;
req->mlo_num_chips = 1;
req->mlo_chip_info_valid = 1;
req->mlo_chip_info[0].chip_id = 0;
req->mlo_chip_info[0].num_local_links = 2;
req->mlo_chip_info[0].hw_link_id[0] = 0;
req->mlo_chip_info[0].hw_link_id[1] = 1;
req->mlo_chip_info[0].valid_mlo_link_id[0] = 1;
req->mlo_chip_info[0].valid_mlo_link_id[1] = 1;
}
static int ath12k_qmi_host_cap_send(struct ath12k_base *ab)
{
struct qmi_wlanfw_host_cap_req_msg_v01 req;
struct qmi_wlanfw_host_cap_resp_msg_v01 resp;
struct qmi_txn txn = {};
int ret = 0;
memset(&req, 0, sizeof(req));
memset(&resp, 0, sizeof(resp));
req.num_clients_valid = 1;
req.num_clients = 1;
req.mem_cfg_mode = ab->qmi.target_mem_mode;
req.mem_cfg_mode_valid = 1;
req.bdf_support_valid = 1;
req.bdf_support = 1;
req.m3_support_valid = 1;
req.m3_support = 1;
req.m3_cache_support_valid = 1;
req.m3_cache_support = 1;
req.cal_done_valid = 1;
req.cal_done = ab->qmi.cal_done;
if (ab->hw_params->qmi_cnss_feature_bitmap) {
req.feature_list_valid = 1;
req.feature_list = ab->hw_params->qmi_cnss_feature_bitmap;
}
/* BRINGUP: here we are piggybacking a lot of stuff using
* internal_sleep_clock, should it be split?
*/
if (ab->hw_params->internal_sleep_clock) {
req.nm_modem_valid = 1;
/* Notify firmware that this is non-qualcomm platform. */
req.nm_modem |= HOST_CSTATE_BIT;
/* Notify firmware about the sleep clock selection,
* nm_modem_bit[1] is used for this purpose. Host driver on
* non-qualcomm platforms should select internal sleep
* clock.
*/
req.nm_modem |= SLEEP_CLOCK_SELECT_INTERNAL_BIT;
req.nm_modem |= PLATFORM_CAP_PCIE_GLOBAL_RESET;
ath12k_host_cap_parse_mlo(&req);
}
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_host_cap_resp_msg_v01_ei, &resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_HOST_CAP_REQ_V01,
QMI_WLANFW_HOST_CAP_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_host_cap_req_msg_v01_ei, &req);
if (ret < 0) {
ath12k_warn(ab, "Failed to send host capability request,err = %d\n", ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0)
goto out;
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "Host capability request failed, result: %d, err: %d\n",
resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
out:
return ret;
}
static int ath12k_qmi_fw_ind_register_send(struct ath12k_base *ab)
{
struct qmi_wlanfw_ind_register_req_msg_v01 *req;
struct qmi_wlanfw_ind_register_resp_msg_v01 *resp;
struct qmi_handle *handle = &ab->qmi.handle;
struct qmi_txn txn;
int ret;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
resp = kzalloc(sizeof(*resp), GFP_KERNEL);
if (!resp) {
ret = -ENOMEM;
goto resp_out;
}
req->client_id_valid = 1;
req->client_id = QMI_WLANFW_CLIENT_ID;
req->fw_ready_enable_valid = 1;
req->fw_ready_enable = 1;
req->request_mem_enable_valid = 1;
req->request_mem_enable = 1;
req->fw_mem_ready_enable_valid = 1;
req->fw_mem_ready_enable = 1;
req->cal_done_enable_valid = 1;
req->cal_done_enable = 1;
req->fw_init_done_enable_valid = 1;
req->fw_init_done_enable = 1;
req->pin_connect_result_enable_valid = 0;
req->pin_connect_result_enable = 0;
ret = qmi_txn_init(handle, &txn,
qmi_wlanfw_ind_register_resp_msg_v01_ei, resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_IND_REGISTER_REQ_V01,
QMI_WLANFW_IND_REGISTER_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_ind_register_req_msg_v01_ei, req);
if (ret < 0) {
ath12k_warn(ab, "Failed to send indication register request, err = %d\n",
ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0) {
ath12k_warn(ab, "failed to register fw indication %d\n", ret);
goto out;
}
if (resp->resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "FW Ind register request failed, result: %d, err: %d\n",
resp->resp.result, resp->resp.error);
ret = -EINVAL;
goto out;
}
out:
kfree(resp);
resp_out:
kfree(req);
return ret;
}
static int ath12k_qmi_respond_fw_mem_request(struct ath12k_base *ab)
{
struct qmi_wlanfw_respond_mem_req_msg_v01 *req;
struct qmi_wlanfw_respond_mem_resp_msg_v01 resp;
struct qmi_txn txn = {};
int ret = 0, i;
bool delayed;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
memset(&resp, 0, sizeof(resp));
/* Some targets by default request a block of big contiguous
* DMA memory, it's hard to allocate from kernel. So host returns
* failure to firmware and firmware then request multiple blocks of
* small chunk size memory.
*/
if (ab->qmi.target_mem_delayed) {
delayed = true;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi delays mem_request %d\n",
ab->qmi.mem_seg_count);
memset(req, 0, sizeof(*req));
} else {
delayed = false;
req->mem_seg_len = ab->qmi.mem_seg_count;
for (i = 0; i < req->mem_seg_len ; i++) {
req->mem_seg[i].addr = ab->qmi.target_mem[i].paddr;
req->mem_seg[i].size = ab->qmi.target_mem[i].size;
req->mem_seg[i].type = ab->qmi.target_mem[i].type;
ath12k_dbg(ab, ATH12K_DBG_QMI,
"qmi req mem_seg[%d] %pad %u %u\n", i,
&ab->qmi.target_mem[i].paddr,
ab->qmi.target_mem[i].size,
ab->qmi.target_mem[i].type);
}
}
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_respond_mem_resp_msg_v01_ei, &resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_RESPOND_MEM_REQ_V01,
QMI_WLANFW_RESPOND_MEM_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_respond_mem_req_msg_v01_ei, req);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to respond memory request, err = %d\n",
ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0) {
ath12k_warn(ab, "qmi failed memory request, err = %d\n", ret);
goto out;
}
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
/* the error response is expected when
* target_mem_delayed is true.
*/
if (delayed && resp.resp.error == 0)
goto out;
ath12k_warn(ab, "Respond mem req failed, result: %d, err: %d\n",
resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
out:
kfree(req);
return ret;
}
static void ath12k_qmi_free_target_mem_chunk(struct ath12k_base *ab)
{
int i;
for (i = 0; i < ab->qmi.mem_seg_count; i++) {
if (!ab->qmi.target_mem[i].v.addr)
continue;
dma_free_coherent(ab->dev,
ab->qmi.target_mem[i].size,
ab->qmi.target_mem[i].v.addr,
ab->qmi.target_mem[i].paddr);
ab->qmi.target_mem[i].v.addr = NULL;
}
}
static int ath12k_qmi_alloc_target_mem_chunk(struct ath12k_base *ab)
{
int i;
struct target_mem_chunk *chunk;
ab->qmi.target_mem_delayed = false;
for (i = 0; i < ab->qmi.mem_seg_count; i++) {
chunk = &ab->qmi.target_mem[i];
/* Allocate memory for the region and the functionality supported
* on the host. For the non-supported memory region, host does not
* allocate memory, assigns NULL and FW will handle this without crashing.
*/
switch (chunk->type) {
case HOST_DDR_REGION_TYPE:
case M3_DUMP_REGION_TYPE:
case PAGEABLE_MEM_REGION_TYPE:
case CALDB_MEM_REGION_TYPE:
chunk->v.addr = dma_alloc_coherent(ab->dev,
chunk->size,
&chunk->paddr,
GFP_KERNEL | __GFP_NOWARN);
if (!chunk->v.addr) {
if (chunk->size > ATH12K_QMI_MAX_CHUNK_SIZE) {
ab->qmi.target_mem_delayed = true;
ath12k_warn(ab,
"qmi dma allocation failed (%d B type %u), will try later with small size\n",
chunk->size,
chunk->type);
ath12k_qmi_free_target_mem_chunk(ab);
return 0;
}
ath12k_warn(ab, "memory allocation failure for %u size: %d\n",
chunk->type, chunk->size);
return -ENOMEM;
}
break;
default:
ath12k_warn(ab, "memory type %u not supported\n",
chunk->type);
chunk->paddr = 0;
chunk->v.addr = NULL;
break;
}
}
return 0;
}
static int ath12k_qmi_request_target_cap(struct ath12k_base *ab)
{
struct qmi_wlanfw_cap_req_msg_v01 req;
struct qmi_wlanfw_cap_resp_msg_v01 resp;
struct qmi_txn txn = {};
unsigned int board_id = ATH12K_BOARD_ID_DEFAULT;
int ret = 0;
int i;
memset(&req, 0, sizeof(req));
memset(&resp, 0, sizeof(resp));
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_cap_resp_msg_v01_ei, &resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_CAP_REQ_V01,
QMI_WLANFW_CAP_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_cap_req_msg_v01_ei, &req);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send target cap request, err = %d\n",
ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0) {
ath12k_warn(ab, "qmi failed target cap request %d\n", ret);
goto out;
}
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "qmi targetcap req failed, result: %d, err: %d\n",
resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
if (resp.chip_info_valid) {
ab->qmi.target.chip_id = resp.chip_info.chip_id;
ab->qmi.target.chip_family = resp.chip_info.chip_family;
}
if (resp.board_info_valid)
ab->qmi.target.board_id = resp.board_info.board_id;
else
ab->qmi.target.board_id = board_id;
if (resp.soc_info_valid)
ab->qmi.target.soc_id = resp.soc_info.soc_id;
if (resp.fw_version_info_valid) {
ab->qmi.target.fw_version = resp.fw_version_info.fw_version;
strscpy(ab->qmi.target.fw_build_timestamp,
resp.fw_version_info.fw_build_timestamp,
sizeof(ab->qmi.target.fw_build_timestamp));
}
if (resp.fw_build_id_valid)
strscpy(ab->qmi.target.fw_build_id, resp.fw_build_id,
sizeof(ab->qmi.target.fw_build_id));
if (resp.dev_mem_info_valid) {
for (i = 0; i < ATH12K_QMI_WLFW_MAX_DEV_MEM_NUM_V01; i++) {
ab->qmi.dev_mem[i].start =
resp.dev_mem[i].start;
ab->qmi.dev_mem[i].size =
resp.dev_mem[i].size;
ath12k_dbg(ab, ATH12K_DBG_QMI,
"devmem [%d] start ox%llx size %llu\n", i,
ab->qmi.dev_mem[i].start,
ab->qmi.dev_mem[i].size);
}
}
if (resp.eeprom_caldata_read_timeout_valid) {
ab->qmi.target.eeprom_caldata = resp.eeprom_caldata_read_timeout;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi cal data supported from eeprom\n");
}
ath12k_info(ab, "chip_id 0x%x chip_family 0x%x board_id 0x%x soc_id 0x%x\n",
ab->qmi.target.chip_id, ab->qmi.target.chip_family,
ab->qmi.target.board_id, ab->qmi.target.soc_id);
ath12k_info(ab, "fw_version 0x%x fw_build_timestamp %s fw_build_id %s",
ab->qmi.target.fw_version,
ab->qmi.target.fw_build_timestamp,
ab->qmi.target.fw_build_id);
out:
return ret;
}
static int ath12k_qmi_load_file_target_mem(struct ath12k_base *ab,
const u8 *data, u32 len, u8 type)
{
struct qmi_wlanfw_bdf_download_req_msg_v01 *req;
struct qmi_wlanfw_bdf_download_resp_msg_v01 resp;
struct qmi_txn txn = {};
const u8 *temp = data;
int ret;
u32 remaining = len;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
memset(&resp, 0, sizeof(resp));
while (remaining) {
req->valid = 1;
req->file_id_valid = 1;
req->file_id = ab->qmi.target.board_id;
req->total_size_valid = 1;
req->total_size = remaining;
req->seg_id_valid = 1;
req->data_valid = 1;
req->bdf_type = type;
req->bdf_type_valid = 1;
req->end_valid = 1;
req->end = 0;
if (remaining > QMI_WLANFW_MAX_DATA_SIZE_V01) {
req->data_len = QMI_WLANFW_MAX_DATA_SIZE_V01;
} else {
req->data_len = remaining;
req->end = 1;
}
if (type == ATH12K_QMI_FILE_TYPE_EEPROM) {
req->data_valid = 0;
req->end = 1;
req->data_len = ATH12K_QMI_MAX_BDF_FILE_NAME_SIZE;
} else {
memcpy(req->data, temp, req->data_len);
}
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_bdf_download_resp_msg_v01_ei,
&resp);
if (ret < 0)
goto out;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi bdf download req fixed addr type %d\n",
type);
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_BDF_DOWNLOAD_REQ_V01,
QMI_WLANFW_BDF_DOWNLOAD_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_bdf_download_req_msg_v01_ei, req);
if (ret < 0) {
qmi_txn_cancel(&txn);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0)
goto out;
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "qmi BDF download failed, result: %d, err: %d\n",
resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
if (type == ATH12K_QMI_FILE_TYPE_EEPROM) {
remaining = 0;
} else {
remaining -= req->data_len;
temp += req->data_len;
req->seg_id++;
ath12k_dbg(ab, ATH12K_DBG_QMI,
"qmi bdf download request remaining %i\n",
remaining);
}
}
out:
kfree(req);
return ret;
}
static int ath12k_qmi_load_bdf_qmi(struct ath12k_base *ab,
enum ath12k_qmi_bdf_type type)
{
struct device *dev = ab->dev;
char filename[ATH12K_QMI_MAX_BDF_FILE_NAME_SIZE];
const struct firmware *fw_entry;
struct ath12k_board_data bd;
u32 fw_size, file_type;
int ret = 0;
const u8 *tmp;
memset(&bd, 0, sizeof(bd));
switch (type) {
case ATH12K_QMI_BDF_TYPE_ELF:
ret = ath12k_core_fetch_bdf(ab, &bd);
if (ret) {
ath12k_warn(ab, "qmi failed to load bdf:\n");
goto out;
}
if (bd.len >= SELFMAG && memcmp(bd.data, ELFMAG, SELFMAG) == 0)
type = ATH12K_QMI_BDF_TYPE_ELF;
else
type = ATH12K_QMI_BDF_TYPE_BIN;
break;
case ATH12K_QMI_BDF_TYPE_REGDB:
ret = ath12k_core_fetch_board_data_api_1(ab, &bd,
ATH12K_REGDB_FILE_NAME);
if (ret) {
ath12k_warn(ab, "qmi failed to load regdb bin:\n");
goto out;
}
break;
case ATH12K_QMI_BDF_TYPE_CALIBRATION:
if (ab->qmi.target.eeprom_caldata) {
file_type = ATH12K_QMI_FILE_TYPE_EEPROM;
tmp = filename;
fw_size = ATH12K_QMI_MAX_BDF_FILE_NAME_SIZE;
} else {
file_type = ATH12K_QMI_FILE_TYPE_CALDATA;
/* cal-<bus>-<id>.bin */
snprintf(filename, sizeof(filename), "cal-%s-%s.bin",
ath12k_bus_str(ab->hif.bus), dev_name(dev));
fw_entry = ath12k_core_firmware_request(ab, filename);
if (!IS_ERR(fw_entry))
goto success;
fw_entry = ath12k_core_firmware_request(ab,
ATH12K_DEFAULT_CAL_FILE);
if (IS_ERR(fw_entry)) {
ret = PTR_ERR(fw_entry);
ath12k_warn(ab,
"qmi failed to load CAL data file:%s\n",
filename);
goto out;
}
success:
fw_size = min_t(u32, ab->hw_params->fw.board_size,
fw_entry->size);
tmp = fw_entry->data;
}
ret = ath12k_qmi_load_file_target_mem(ab, tmp, fw_size, file_type);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to load caldata\n");
goto out_qmi_cal;
}
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi caldata downloaded: type: %u\n",
file_type);
out_qmi_cal:
if (!ab->qmi.target.eeprom_caldata)
release_firmware(fw_entry);
return ret;
default:
ath12k_warn(ab, "unknown file type for load %d", type);
goto out;
}
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi bdf_type %d\n", type);
fw_size = min_t(u32, ab->hw_params->fw.board_size, bd.len);
ret = ath12k_qmi_load_file_target_mem(ab, bd.data, fw_size, type);
if (ret < 0)
ath12k_warn(ab, "qmi failed to load bdf file\n");
out:
ath12k_core_free_bdf(ab, &bd);
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi BDF download sequence completed\n");
return ret;
}
static int ath12k_qmi_m3_load(struct ath12k_base *ab)
{
struct m3_mem_region *m3_mem = &ab->qmi.m3_mem;
const struct firmware *fw;
char path[100];
int ret;
if (m3_mem->vaddr || m3_mem->size)
return 0;
fw = ath12k_core_firmware_request(ab, ATH12K_M3_FILE);
if (IS_ERR(fw)) {
ret = PTR_ERR(fw);
ath12k_core_create_firmware_path(ab, ATH12K_M3_FILE,
path, sizeof(path));
ath12k_err(ab, "failed to load %s: %d\n", path, ret);
return ret;
}
m3_mem->vaddr = dma_alloc_coherent(ab->dev,
fw->size, &m3_mem->paddr,
GFP_KERNEL);
if (!m3_mem->vaddr) {
ath12k_err(ab, "failed to allocate memory for M3 with size %zu\n",
fw->size);
release_firmware(fw);
return -ENOMEM;
}
memcpy(m3_mem->vaddr, fw->data, fw->size);
m3_mem->size = fw->size;
release_firmware(fw);
return 0;
}
static void ath12k_qmi_m3_free(struct ath12k_base *ab)
{
struct m3_mem_region *m3_mem = &ab->qmi.m3_mem;
if (!m3_mem->vaddr)
return;
dma_free_coherent(ab->dev, m3_mem->size,
m3_mem->vaddr, m3_mem->paddr);
m3_mem->vaddr = NULL;
}
static int ath12k_qmi_wlanfw_m3_info_send(struct ath12k_base *ab)
{
struct m3_mem_region *m3_mem = &ab->qmi.m3_mem;
struct qmi_wlanfw_m3_info_req_msg_v01 req;
struct qmi_wlanfw_m3_info_resp_msg_v01 resp;
struct qmi_txn txn = {};
int ret = 0;
memset(&req, 0, sizeof(req));
memset(&resp, 0, sizeof(resp));
ret = ath12k_qmi_m3_load(ab);
if (ret) {
ath12k_err(ab, "failed to load m3 firmware: %d", ret);
return ret;
}
req.addr = m3_mem->paddr;
req.size = m3_mem->size;
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_m3_info_resp_msg_v01_ei, &resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_M3_INFO_REQ_V01,
QMI_WLANFW_M3_INFO_REQ_MSG_V01_MAX_MSG_LEN,
qmi_wlanfw_m3_info_req_msg_v01_ei, &req);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send M3 information request, err = %d\n",
ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0) {
ath12k_warn(ab, "qmi failed M3 information request %d\n", ret);
goto out;
}
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "qmi M3 info request failed, result: %d, err: %d\n",
resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
out:
return ret;
}
static int ath12k_qmi_wlanfw_mode_send(struct ath12k_base *ab,
u32 mode)
{
struct qmi_wlanfw_wlan_mode_req_msg_v01 req;
struct qmi_wlanfw_wlan_mode_resp_msg_v01 resp;
struct qmi_txn txn = {};
int ret = 0;
memset(&req, 0, sizeof(req));
memset(&resp, 0, sizeof(resp));
req.mode = mode;
req.hw_debug_valid = 1;
req.hw_debug = 0;
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_wlan_mode_resp_msg_v01_ei, &resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_WLAN_MODE_REQ_V01,
QMI_WLANFW_WLAN_MODE_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_wlan_mode_req_msg_v01_ei, &req);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send mode request, mode: %d, err = %d\n",
mode, ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0) {
if (mode == ATH12K_FIRMWARE_MODE_OFF && ret == -ENETRESET) {
ath12k_warn(ab, "WLFW service is dis-connected\n");
return 0;
}
ath12k_warn(ab, "qmi failed set mode request, mode: %d, err = %d\n",
mode, ret);
goto out;
}
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "Mode request failed, mode: %d, result: %d err: %d\n",
mode, resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
out:
return ret;
}
static int ath12k_qmi_wlanfw_wlan_cfg_send(struct ath12k_base *ab)
{
struct qmi_wlanfw_wlan_cfg_req_msg_v01 *req;
struct qmi_wlanfw_wlan_cfg_resp_msg_v01 resp;
struct ce_pipe_config *ce_cfg;
struct service_to_pipe *svc_cfg;
struct qmi_txn txn = {};
int ret = 0, pipe_num;
ce_cfg = (struct ce_pipe_config *)ab->qmi.ce_cfg.tgt_ce;
svc_cfg = (struct service_to_pipe *)ab->qmi.ce_cfg.svc_to_ce_map;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
memset(&resp, 0, sizeof(resp));
req->host_version_valid = 1;
strscpy(req->host_version, ATH12K_HOST_VERSION_STRING,
sizeof(req->host_version));
req->tgt_cfg_valid = 1;
/* This is number of CE configs */
req->tgt_cfg_len = ab->qmi.ce_cfg.tgt_ce_len;
for (pipe_num = 0; pipe_num < req->tgt_cfg_len ; pipe_num++) {
req->tgt_cfg[pipe_num].pipe_num = ce_cfg[pipe_num].pipenum;
req->tgt_cfg[pipe_num].pipe_dir = ce_cfg[pipe_num].pipedir;
req->tgt_cfg[pipe_num].nentries = ce_cfg[pipe_num].nentries;
req->tgt_cfg[pipe_num].nbytes_max = ce_cfg[pipe_num].nbytes_max;
req->tgt_cfg[pipe_num].flags = ce_cfg[pipe_num].flags;
}
req->svc_cfg_valid = 1;
/* This is number of Service/CE configs */
req->svc_cfg_len = ab->qmi.ce_cfg.svc_to_ce_map_len;
for (pipe_num = 0; pipe_num < req->svc_cfg_len; pipe_num++) {
req->svc_cfg[pipe_num].service_id = svc_cfg[pipe_num].service_id;
req->svc_cfg[pipe_num].pipe_dir = svc_cfg[pipe_num].pipedir;
req->svc_cfg[pipe_num].pipe_num = svc_cfg[pipe_num].pipenum;
}
/* set shadow v3 configuration */
if (ab->hw_params->supports_shadow_regs) {
req->shadow_reg_v3_valid = 1;
req->shadow_reg_v3_len = min_t(u32,
ab->qmi.ce_cfg.shadow_reg_v3_len,
QMI_WLANFW_MAX_NUM_SHADOW_REG_V3_V01);
memcpy(&req->shadow_reg_v3, ab->qmi.ce_cfg.shadow_reg_v3,
sizeof(u32) * req->shadow_reg_v3_len);
} else {
req->shadow_reg_v3_valid = 0;
}
ret = qmi_txn_init(&ab->qmi.handle, &txn,
qmi_wlanfw_wlan_cfg_resp_msg_v01_ei, &resp);
if (ret < 0)
goto out;
ret = qmi_send_request(&ab->qmi.handle, NULL, &txn,
QMI_WLANFW_WLAN_CFG_REQ_V01,
QMI_WLANFW_WLAN_CFG_REQ_MSG_V01_MAX_LEN,
qmi_wlanfw_wlan_cfg_req_msg_v01_ei, req);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send wlan config request, err = %d\n",
ret);
goto out;
}
ret = qmi_txn_wait(&txn, msecs_to_jiffies(ATH12K_QMI_WLANFW_TIMEOUT_MS));
if (ret < 0) {
ath12k_warn(ab, "qmi failed wlan config request, err = %d\n", ret);
goto out;
}
if (resp.resp.result != QMI_RESULT_SUCCESS_V01) {
ath12k_warn(ab, "qmi wlan config request failed, result: %d, err: %d\n",
resp.resp.result, resp.resp.error);
ret = -EINVAL;
goto out;
}
out:
kfree(req);
return ret;
}
void ath12k_qmi_firmware_stop(struct ath12k_base *ab)
{
int ret;
ret = ath12k_qmi_wlanfw_mode_send(ab, ATH12K_FIRMWARE_MODE_OFF);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send wlan mode off\n");
return;
}
}
int ath12k_qmi_firmware_start(struct ath12k_base *ab,
u32 mode)
{
int ret;
ret = ath12k_qmi_wlanfw_wlan_cfg_send(ab);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send wlan cfg:%d\n", ret);
return ret;
}
ret = ath12k_qmi_wlanfw_mode_send(ab, mode);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send wlan fw mode:%d\n", ret);
return ret;
}
return 0;
}
static int
ath12k_qmi_driver_event_post(struct ath12k_qmi *qmi,
enum ath12k_qmi_event_type type,
void *data)
{
struct ath12k_qmi_driver_event *event;
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event)
return -ENOMEM;
event->type = type;
event->data = data;
spin_lock(&qmi->event_lock);
list_add_tail(&event->list, &qmi->event_list);
spin_unlock(&qmi->event_lock);
queue_work(qmi->event_wq, &qmi->event_work);
return 0;
}
static int ath12k_qmi_event_server_arrive(struct ath12k_qmi *qmi)
{
struct ath12k_base *ab = qmi->ab;
int ret;
ret = ath12k_qmi_fw_ind_register_send(ab);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send FW indication QMI:%d\n", ret);
return ret;
}
ret = ath12k_qmi_host_cap_send(ab);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send host cap QMI:%d\n", ret);
return ret;
}
return ret;
}
static int ath12k_qmi_event_mem_request(struct ath12k_qmi *qmi)
{
struct ath12k_base *ab = qmi->ab;
int ret;
ret = ath12k_qmi_respond_fw_mem_request(ab);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to respond fw mem req:%d\n", ret);
return ret;
}
return ret;
}
static int ath12k_qmi_event_load_bdf(struct ath12k_qmi *qmi)
{
struct ath12k_base *ab = qmi->ab;
int ret;
ret = ath12k_qmi_request_target_cap(ab);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to req target capabilities:%d\n", ret);
return ret;
}
ret = ath12k_qmi_load_bdf_qmi(ab, ATH12K_QMI_BDF_TYPE_REGDB);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to load regdb file:%d\n", ret);
return ret;
}
ret = ath12k_qmi_load_bdf_qmi(ab, ATH12K_QMI_BDF_TYPE_ELF);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to load board data file:%d\n", ret);
return ret;
}
if (ab->hw_params->download_calib) {
ret = ath12k_qmi_load_bdf_qmi(ab, ATH12K_QMI_BDF_TYPE_CALIBRATION);
if (ret < 0)
ath12k_warn(ab, "qmi failed to load calibrated data :%d\n", ret);
}
ret = ath12k_qmi_wlanfw_m3_info_send(ab);
if (ret < 0) {
ath12k_warn(ab, "qmi failed to send m3 info req:%d\n", ret);
return ret;
}
return ret;
}
static void ath12k_qmi_msg_mem_request_cb(struct qmi_handle *qmi_hdl,
struct sockaddr_qrtr *sq,
struct qmi_txn *txn,
const void *data)
{
struct ath12k_qmi *qmi = container_of(qmi_hdl, struct ath12k_qmi, handle);
struct ath12k_base *ab = qmi->ab;
const struct qmi_wlanfw_request_mem_ind_msg_v01 *msg = data;
int i, ret;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi firmware request memory request\n");
if (msg->mem_seg_len == 0 ||
msg->mem_seg_len > ATH12K_QMI_WLANFW_MAX_NUM_MEM_SEG_V01)
ath12k_warn(ab, "Invalid memory segment length: %u\n",
msg->mem_seg_len);
ab->qmi.mem_seg_count = msg->mem_seg_len;
for (i = 0; i < qmi->mem_seg_count ; i++) {
ab->qmi.target_mem[i].type = msg->mem_seg[i].type;
ab->qmi.target_mem[i].size = msg->mem_seg[i].size;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi mem seg type %d size %d\n",
msg->mem_seg[i].type, msg->mem_seg[i].size);
}
ret = ath12k_qmi_alloc_target_mem_chunk(ab);
if (ret) {
ath12k_warn(ab, "qmi failed to alloc target memory: %d\n",
ret);
return;
}
ath12k_qmi_driver_event_post(qmi, ATH12K_QMI_EVENT_REQUEST_MEM, NULL);
}
static void ath12k_qmi_msg_mem_ready_cb(struct qmi_handle *qmi_hdl,
struct sockaddr_qrtr *sq,
struct qmi_txn *txn,
const void *decoded)
{
struct ath12k_qmi *qmi = container_of(qmi_hdl, struct ath12k_qmi, handle);
struct ath12k_base *ab = qmi->ab;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi firmware memory ready indication\n");
ath12k_qmi_driver_event_post(qmi, ATH12K_QMI_EVENT_FW_MEM_READY, NULL);
}
static void ath12k_qmi_msg_fw_ready_cb(struct qmi_handle *qmi_hdl,
struct sockaddr_qrtr *sq,
struct qmi_txn *txn,
const void *decoded)
{
struct ath12k_qmi *qmi = container_of(qmi_hdl, struct ath12k_qmi, handle);
struct ath12k_base *ab = qmi->ab;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi firmware ready\n");
ath12k_qmi_driver_event_post(qmi, ATH12K_QMI_EVENT_FW_READY, NULL);
}
static const struct qmi_msg_handler ath12k_qmi_msg_handlers[] = {
{
.type = QMI_INDICATION,
.msg_id = QMI_WLFW_REQUEST_MEM_IND_V01,
.ei = qmi_wlanfw_request_mem_ind_msg_v01_ei,
.decoded_size = sizeof(struct qmi_wlanfw_request_mem_ind_msg_v01),
.fn = ath12k_qmi_msg_mem_request_cb,
},
{
.type = QMI_INDICATION,
.msg_id = QMI_WLFW_FW_MEM_READY_IND_V01,
.ei = qmi_wlanfw_mem_ready_ind_msg_v01_ei,
.decoded_size = sizeof(struct qmi_wlanfw_fw_mem_ready_ind_msg_v01),
.fn = ath12k_qmi_msg_mem_ready_cb,
},
{
.type = QMI_INDICATION,
.msg_id = QMI_WLFW_FW_READY_IND_V01,
.ei = qmi_wlanfw_fw_ready_ind_msg_v01_ei,
.decoded_size = sizeof(struct qmi_wlanfw_fw_ready_ind_msg_v01),
.fn = ath12k_qmi_msg_fw_ready_cb,
},
};
static int ath12k_qmi_ops_new_server(struct qmi_handle *qmi_hdl,
struct qmi_service *service)
{
struct ath12k_qmi *qmi = container_of(qmi_hdl, struct ath12k_qmi, handle);
struct ath12k_base *ab = qmi->ab;
struct sockaddr_qrtr *sq = &qmi->sq;
int ret;
sq->sq_family = AF_QIPCRTR;
sq->sq_node = service->node;
sq->sq_port = service->port;
ret = kernel_connect(qmi_hdl->sock, (struct sockaddr *)sq,
sizeof(*sq), 0);
if (ret) {
ath12k_warn(ab, "qmi failed to connect to remote service %d\n", ret);
return ret;
}
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi wifi fw qmi service connected\n");
ath12k_qmi_driver_event_post(qmi, ATH12K_QMI_EVENT_SERVER_ARRIVE, NULL);
return ret;
}
static void ath12k_qmi_ops_del_server(struct qmi_handle *qmi_hdl,
struct qmi_service *service)
{
struct ath12k_qmi *qmi = container_of(qmi_hdl, struct ath12k_qmi, handle);
struct ath12k_base *ab = qmi->ab;
ath12k_dbg(ab, ATH12K_DBG_QMI, "qmi wifi fw del server\n");
ath12k_qmi_driver_event_post(qmi, ATH12K_QMI_EVENT_SERVER_EXIT, NULL);
}
static const struct qmi_ops ath12k_qmi_ops = {
.new_server = ath12k_qmi_ops_new_server,
.del_server = ath12k_qmi_ops_del_server,
};
static void ath12k_qmi_driver_event_work(struct work_struct *work)
{
struct ath12k_qmi *qmi = container_of(work, struct ath12k_qmi,
event_work);
struct ath12k_qmi_driver_event *event;
struct ath12k_base *ab = qmi->ab;
int ret;
spin_lock(&qmi->event_lock);
while (!list_empty(&qmi->event_list)) {
event = list_first_entry(&qmi->event_list,
struct ath12k_qmi_driver_event, list);
list_del(&event->list);
spin_unlock(&qmi->event_lock);
if (test_bit(ATH12K_FLAG_UNREGISTERING, &ab->dev_flags))
goto skip;
switch (event->type) {
case ATH12K_QMI_EVENT_SERVER_ARRIVE:
ret = ath12k_qmi_event_server_arrive(qmi);
if (ret < 0)
set_bit(ATH12K_FLAG_QMI_FAIL, &ab->dev_flags);
break;
case ATH12K_QMI_EVENT_SERVER_EXIT:
set_bit(ATH12K_FLAG_CRASH_FLUSH, &ab->dev_flags);
set_bit(ATH12K_FLAG_RECOVERY, &ab->dev_flags);
break;
case ATH12K_QMI_EVENT_REQUEST_MEM:
ret = ath12k_qmi_event_mem_request(qmi);
if (ret < 0)
set_bit(ATH12K_FLAG_QMI_FAIL, &ab->dev_flags);
break;
case ATH12K_QMI_EVENT_FW_MEM_READY:
ret = ath12k_qmi_event_load_bdf(qmi);
if (ret < 0)
set_bit(ATH12K_FLAG_QMI_FAIL, &ab->dev_flags);
break;
case ATH12K_QMI_EVENT_FW_READY:
clear_bit(ATH12K_FLAG_QMI_FAIL, &ab->dev_flags);
if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags)) {
ath12k_hal_dump_srng_stats(ab);
queue_work(ab->workqueue, &ab->restart_work);
break;
}
clear_bit(ATH12K_FLAG_CRASH_FLUSH,
&ab->dev_flags);
clear_bit(ATH12K_FLAG_RECOVERY, &ab->dev_flags);
ath12k_core_qmi_firmware_ready(ab);
set_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags);
break;
default:
ath12k_warn(ab, "invalid event type: %d", event->type);
break;
}
skip:
kfree(event);
spin_lock(&qmi->event_lock);
}
spin_unlock(&qmi->event_lock);
}
int ath12k_qmi_init_service(struct ath12k_base *ab)
{
int ret;
memset(&ab->qmi.target, 0, sizeof(struct target_info));
memset(&ab->qmi.target_mem, 0, sizeof(struct target_mem_chunk));
ab->qmi.ab = ab;
ab->qmi.target_mem_mode = ATH12K_QMI_TARGET_MEM_MODE_DEFAULT;
ret = qmi_handle_init(&ab->qmi.handle, ATH12K_QMI_RESP_LEN_MAX,
&ath12k_qmi_ops, ath12k_qmi_msg_handlers);
if (ret < 0) {
ath12k_warn(ab, "failed to initialize qmi handle\n");
return ret;
}
ab->qmi.event_wq = alloc_ordered_workqueue("ath12k_qmi_driver_event", 0);
if (!ab->qmi.event_wq) {
ath12k_err(ab, "failed to allocate workqueue\n");
return -EFAULT;
}
INIT_LIST_HEAD(&ab->qmi.event_list);
spin_lock_init(&ab->qmi.event_lock);
INIT_WORK(&ab->qmi.event_work, ath12k_qmi_driver_event_work);
ret = qmi_add_lookup(&ab->qmi.handle, ATH12K_QMI_WLFW_SERVICE_ID_V01,
ATH12K_QMI_WLFW_SERVICE_VERS_V01,
ab->qmi.service_ins_id);
if (ret < 0) {
ath12k_warn(ab, "failed to add qmi lookup\n");
destroy_workqueue(ab->qmi.event_wq);
return ret;
}
return ret;
}
void ath12k_qmi_deinit_service(struct ath12k_base *ab)
{
qmi_handle_release(&ab->qmi.handle);
cancel_work_sync(&ab->qmi.event_work);
destroy_workqueue(ab->qmi.event_wq);
ath12k_qmi_m3_free(ab);
ath12k_qmi_free_target_mem_chunk(ab);
}