1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c
Mario Limonciello 0dee726395 drm/amd: flush any delayed gfxoff on suspend entry
DCN 3.1.4 is reported to hang on s2idle entry if graphics activity
is happening during entry.  This is because GFXOFF was scheduled as
delayed but RLC gets disabled in s2idle entry sequence which will
hang GFX IP if not already in GFXOFF.

To help this problem, flush any delayed work for GFXOFF early in
s2idle entry sequence to ensure that it's off when RLC is changed.

commit 4b31b92b14 ("drm/amdgpu: complete gfxoff allow signal during
suspend without delay") modified power gating flow so that if called
in s0ix that it ensured that GFXOFF wasn't put in work queue but
instead processed immediately.

This is dead code due to commit 10cb67eb8a ("drm/amdgpu: skip
CG/PG for gfx during S0ix") because GFXOFF will now not be explicitly
called as part of the suspend entry code.  Remove that dead code.

Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Tim Huang <tim.huang@amd.com>
Reviewed-by: Lijo Lazar <lijo.lazar@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2023-08-16 11:35:14 -04:00

1309 lines
36 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_rlc.h"
#include "amdgpu_ras.h"
#include "amdgpu_xcp.h"
/* delay 0.1 second to enable gfx off feature */
#define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
#define GFX_OFF_NO_DELAY 0
/*
* GPU GFX IP block helpers function.
*/
int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
int pipe, int queue)
{
int bit = 0;
bit += mec * adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
bit += pipe * adev->gfx.mec.num_queue_per_pipe;
bit += queue;
return bit;
}
void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
int *mec, int *pipe, int *queue)
{
*queue = bit % adev->gfx.mec.num_queue_per_pipe;
*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
% adev->gfx.mec.num_pipe_per_mec;
*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
/ adev->gfx.mec.num_pipe_per_mec;
}
bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
int xcc_id, int mec, int pipe, int queue)
{
return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
}
int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
int me, int pipe, int queue)
{
int bit = 0;
bit += me * adev->gfx.me.num_pipe_per_me
* adev->gfx.me.num_queue_per_pipe;
bit += pipe * adev->gfx.me.num_queue_per_pipe;
bit += queue;
return bit;
}
void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
int *me, int *pipe, int *queue)
{
*queue = bit % adev->gfx.me.num_queue_per_pipe;
*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
% adev->gfx.me.num_pipe_per_me;
*me = (bit / adev->gfx.me.num_queue_per_pipe)
/ adev->gfx.me.num_pipe_per_me;
}
bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
int me, int pipe, int queue)
{
return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
adev->gfx.me.queue_bitmap);
}
/**
* amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
*
* @mask: array in which the per-shader array disable masks will be stored
* @max_se: number of SEs
* @max_sh: number of SHs
*
* The bitmask of CUs to be disabled in the shader array determined by se and
* sh is stored in mask[se * max_sh + sh].
*/
void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
{
unsigned int se, sh, cu;
const char *p;
memset(mask, 0, sizeof(*mask) * max_se * max_sh);
if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
return;
p = amdgpu_disable_cu;
for (;;) {
char *next;
int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
if (ret < 3) {
DRM_ERROR("amdgpu: could not parse disable_cu\n");
return;
}
if (se < max_se && sh < max_sh && cu < 16) {
DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
mask[se * max_sh + sh] |= 1u << cu;
} else {
DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
se, sh, cu);
}
next = strchr(p, ',');
if (!next)
break;
p = next + 1;
}
}
static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
{
return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
}
static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
{
if (amdgpu_compute_multipipe != -1) {
DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
amdgpu_compute_multipipe);
return amdgpu_compute_multipipe == 1;
}
if (adev->ip_versions[GC_HWIP][0] > IP_VERSION(9, 0, 0))
return true;
/* FIXME: spreading the queues across pipes causes perf regressions
* on POLARIS11 compute workloads */
if (adev->asic_type == CHIP_POLARIS11)
return false;
return adev->gfx.mec.num_mec > 1;
}
bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
int queue = ring->queue;
int pipe = ring->pipe;
/* Policy: use pipe1 queue0 as high priority graphics queue if we
* have more than one gfx pipe.
*/
if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
int me = ring->me;
int bit;
bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
if (ring == &adev->gfx.gfx_ring[bit])
return true;
}
return false;
}
bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
/* Policy: use 1st queue as high priority compute queue if we
* have more than one compute queue.
*/
if (adev->gfx.num_compute_rings > 1 &&
ring == &adev->gfx.compute_ring[0])
return true;
return false;
}
void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
{
int i, j, queue, pipe;
bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
adev->gfx.mec.num_queue_per_pipe,
adev->gfx.num_compute_rings);
int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
if (multipipe_policy) {
/* policy: make queues evenly cross all pipes on MEC1 only
* for multiple xcc, just use the original policy for simplicity */
for (j = 0; j < num_xcc; j++) {
for (i = 0; i < max_queues_per_mec; i++) {
pipe = i % adev->gfx.mec.num_pipe_per_mec;
queue = (i / adev->gfx.mec.num_pipe_per_mec) %
adev->gfx.mec.num_queue_per_pipe;
set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
adev->gfx.mec_bitmap[j].queue_bitmap);
}
}
} else {
/* policy: amdgpu owns all queues in the given pipe */
for (j = 0; j < num_xcc; j++) {
for (i = 0; i < max_queues_per_mec; ++i)
set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
}
}
for (j = 0; j < num_xcc; j++) {
dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
}
}
void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
{
int i, queue, pipe;
bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
adev->gfx.me.num_queue_per_pipe;
if (multipipe_policy) {
/* policy: amdgpu owns the first queue per pipe at this stage
* will extend to mulitple queues per pipe later */
for (i = 0; i < max_queues_per_me; i++) {
pipe = i % adev->gfx.me.num_pipe_per_me;
queue = (i / adev->gfx.me.num_pipe_per_me) %
adev->gfx.me.num_queue_per_pipe;
set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
adev->gfx.me.queue_bitmap);
}
} else {
for (i = 0; i < max_queues_per_me; ++i)
set_bit(i, adev->gfx.me.queue_bitmap);
}
/* update the number of active graphics rings */
adev->gfx.num_gfx_rings =
bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
}
static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
struct amdgpu_ring *ring, int xcc_id)
{
int queue_bit;
int mec, pipe, queue;
queue_bit = adev->gfx.mec.num_mec
* adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
while (--queue_bit >= 0) {
if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
continue;
amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
/*
* 1. Using pipes 2/3 from MEC 2 seems cause problems.
* 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
* only can be issued on queue 0.
*/
if ((mec == 1 && pipe > 1) || queue != 0)
continue;
ring->me = mec + 1;
ring->pipe = pipe;
ring->queue = queue;
return 0;
}
dev_err(adev->dev, "Failed to find a queue for KIQ\n");
return -EINVAL;
}
int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
struct amdgpu_irq_src *irq, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
int r = 0;
spin_lock_init(&kiq->ring_lock);
ring->adev = NULL;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->xcc_id = xcc_id;
ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
ring->doorbell_index =
(adev->doorbell_index.kiq +
xcc_id * adev->doorbell_index.xcc_doorbell_range)
<< 1;
r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
if (r)
return r;
ring->eop_gpu_addr = kiq->eop_gpu_addr;
ring->no_scheduler = true;
sprintf(ring->name, "kiq_%d.%d.%d.%d", xcc_id, ring->me, ring->pipe, ring->queue);
r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (r)
dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
return r;
}
void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
{
amdgpu_ring_fini(ring);
}
void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
}
int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
unsigned int hpd_size, int xcc_id)
{
int r;
u32 *hpd;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
&kiq->eop_gpu_addr, (void **)&hpd);
if (r) {
dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
return r;
}
memset(hpd, 0, hpd_size);
r = amdgpu_bo_reserve(kiq->eop_obj, true);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
amdgpu_bo_kunmap(kiq->eop_obj);
amdgpu_bo_unreserve(kiq->eop_obj);
return 0;
}
/* create MQD for each compute/gfx queue */
int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
unsigned int mqd_size, int xcc_id)
{
int r, i, j;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *ring = &kiq->ring;
u32 domain = AMDGPU_GEM_DOMAIN_GTT;
/* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
if (adev->ip_versions[GC_HWIP][0] >= IP_VERSION(10, 0, 0))
domain |= AMDGPU_GEM_DOMAIN_VRAM;
/* create MQD for KIQ */
if (!adev->enable_mes_kiq && !ring->mqd_obj) {
/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
* otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
* deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
* KIQ MQD no matter SRIOV or Bare-metal
*/
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT,
&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
return r;
}
/* prepare MQD backup */
kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
if (!kiq->mqd_backup) {
dev_warn(adev->dev,
"no memory to create MQD backup for ring %s\n", ring->name);
return -ENOMEM;
}
}
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
/* create MQD for each KGQ */
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
if (!ring->mqd_obj) {
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
domain, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
return r;
}
ring->mqd_size = mqd_size;
/* prepare MQD backup */
adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.me.mqd_backup[i]) {
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
return -ENOMEM;
}
}
}
}
/* create MQD for each KCQ */
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
ring = &adev->gfx.compute_ring[j];
if (!ring->mqd_obj) {
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
domain, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
return r;
}
ring->mqd_size = mqd_size;
/* prepare MQD backup */
adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.mec.mqd_backup[j]) {
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
return -ENOMEM;
}
}
}
return 0;
}
void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_ring *ring = NULL;
int i, j;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
kfree(adev->gfx.me.mqd_backup[i]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
ring = &adev->gfx.compute_ring[j];
kfree(adev->gfx.mec.mqd_backup[j]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
ring = &kiq->ring;
kfree(kiq->mqd_backup);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
int i, r = 0;
int j;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
spin_lock(&kiq->ring_lock);
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
adev->gfx.num_compute_rings)) {
spin_unlock(&kiq->ring_lock);
return -ENOMEM;
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
kiq->pmf->kiq_unmap_queues(kiq_ring,
&adev->gfx.compute_ring[j],
RESET_QUEUES, 0, 0);
}
if (kiq_ring->sched.ready && !adev->job_hang)
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
return r;
}
int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
int i, r = 0;
int j;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
spin_lock(&kiq->ring_lock);
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
adev->gfx.num_gfx_rings)) {
spin_unlock(&kiq->ring_lock);
return -ENOMEM;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
j = i + xcc_id * adev->gfx.num_gfx_rings;
kiq->pmf->kiq_unmap_queues(kiq_ring,
&adev->gfx.gfx_ring[j],
PREEMPT_QUEUES, 0, 0);
}
}
if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
return r;
}
int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
int queue_bit)
{
int mec, pipe, queue;
int set_resource_bit = 0;
amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
return set_resource_bit;
}
int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
uint64_t queue_mask = 0;
int r, i, j;
if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
return -EINVAL;
for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
continue;
/* This situation may be hit in the future if a new HW
* generation exposes more than 64 queues. If so, the
* definition of queue_mask needs updating */
if (WARN_ON(i > (sizeof(queue_mask)*8))) {
DRM_ERROR("Invalid KCQ enabled: %d\n", i);
break;
}
queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
}
DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
kiq_ring->queue);
amdgpu_device_flush_hdp(adev, NULL);
spin_lock(&kiq->ring_lock);
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
adev->gfx.num_compute_rings +
kiq->pmf->set_resources_size);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
spin_unlock(&kiq->ring_lock);
return r;
}
if (adev->enable_mes)
queue_mask = ~0ULL;
kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
j = i + xcc_id * adev->gfx.num_compute_rings;
kiq->pmf->kiq_map_queues(kiq_ring,
&adev->gfx.compute_ring[j]);
}
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
if (r)
DRM_ERROR("KCQ enable failed\n");
return r;
}
int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
struct amdgpu_ring *kiq_ring = &kiq->ring;
int r, i, j;
if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
return -EINVAL;
amdgpu_device_flush_hdp(adev, NULL);
spin_lock(&kiq->ring_lock);
/* No need to map kcq on the slave */
if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
adev->gfx.num_gfx_rings);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
spin_unlock(&kiq->ring_lock);
return r;
}
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
j = i + xcc_id * adev->gfx.num_gfx_rings;
kiq->pmf->kiq_map_queues(kiq_ring,
&adev->gfx.gfx_ring[j]);
}
}
r = amdgpu_ring_test_helper(kiq_ring);
spin_unlock(&kiq->ring_lock);
if (r)
DRM_ERROR("KCQ enable failed\n");
return r;
}
/* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
*
* @adev: amdgpu_device pointer
* @bool enable true: enable gfx off feature, false: disable gfx off feature
*
* 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
* 2. other client can send request to disable gfx off feature, the request should be honored.
* 3. other client can cancel their request of disable gfx off feature
* 4. other client should not send request to enable gfx off feature before disable gfx off feature.
*/
void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
{
unsigned long delay = GFX_OFF_DELAY_ENABLE;
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return;
mutex_lock(&adev->gfx.gfx_off_mutex);
if (enable) {
/* If the count is already 0, it means there's an imbalance bug somewhere.
* Note that the bug may be in a different caller than the one which triggers the
* WARN_ON_ONCE.
*/
if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
goto unlock;
adev->gfx.gfx_off_req_count--;
if (adev->gfx.gfx_off_req_count == 0 &&
!adev->gfx.gfx_off_state) {
schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
delay);
}
} else {
if (adev->gfx.gfx_off_req_count == 0) {
cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
if (adev->gfx.gfx_off_state &&
!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
adev->gfx.gfx_off_state = false;
if (adev->gfx.funcs->init_spm_golden) {
dev_dbg(adev->dev,
"GFXOFF is disabled, re-init SPM golden settings\n");
amdgpu_gfx_init_spm_golden(adev);
}
}
}
adev->gfx.gfx_off_req_count++;
}
unlock:
mutex_unlock(&adev->gfx.gfx_off_mutex);
}
int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_set_residency_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_get_residency_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
{
int r = 0;
mutex_lock(&adev->gfx.gfx_off_mutex);
r = amdgpu_dpm_get_status_gfxoff(adev, value);
mutex_unlock(&adev->gfx.gfx_off_mutex);
return r;
}
int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
{
int r;
if (amdgpu_ras_is_supported(adev, ras_block->block)) {
if (!amdgpu_persistent_edc_harvesting_supported(adev))
amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
r = amdgpu_ras_block_late_init(adev, ras_block);
if (r)
return r;
if (adev->gfx.cp_ecc_error_irq.funcs) {
r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
if (r)
goto late_fini;
}
} else {
amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
}
return 0;
late_fini:
amdgpu_ras_block_late_fini(adev, ras_block);
return r;
}
int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
{
int err = 0;
struct amdgpu_gfx_ras *ras = NULL;
/* adev->gfx.ras is NULL, which means gfx does not
* support ras function, then do nothing here.
*/
if (!adev->gfx.ras)
return 0;
ras = adev->gfx.ras;
err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
if (err) {
dev_err(adev->dev, "Failed to register gfx ras block!\n");
return err;
}
strcpy(ras->ras_block.ras_comm.name, "gfx");
ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
adev->gfx.ras_if = &ras->ras_block.ras_comm;
/* If not define special ras_late_init function, use gfx default ras_late_init */
if (!ras->ras_block.ras_late_init)
ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
/* If not defined special ras_cb function, use default ras_cb */
if (!ras->ras_block.ras_cb)
ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
return 0;
}
int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
struct amdgpu_iv_entry *entry)
{
if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
return adev->gfx.ras->poison_consumption_handler(adev, entry);
return 0;
}
int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
void *err_data,
struct amdgpu_iv_entry *entry)
{
/* TODO ue will trigger an interrupt.
*
* When “Full RAS” is enabled, the per-IP interrupt sources should
* be disabled and the driver should only look for the aggregated
* interrupt via sync flood
*/
if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
amdgpu_ras_reset_gpu(adev);
}
return AMDGPU_RAS_SUCCESS;
}
int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct ras_common_if *ras_if = adev->gfx.ras_if;
struct ras_dispatch_if ih_data = {
.entry = entry,
};
if (!ras_if)
return 0;
ih_data.head = *ras_if;
DRM_ERROR("CP ECC ERROR IRQ\n");
amdgpu_ras_interrupt_dispatch(adev, &ih_data);
return 0;
}
void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
void *ras_error_status,
void (*func)(struct amdgpu_device *adev, void *ras_error_status,
int xcc_id))
{
int i;
int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
if (err_data) {
err_data->ue_count = 0;
err_data->ce_count = 0;
}
for_each_inst(i, xcc_mask)
func(adev, ras_error_status, i);
}
uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
{
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq, reg_val_offs = 0, value = 0;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
struct amdgpu_ring *ring = &kiq->ring;
if (amdgpu_device_skip_hw_access(adev))
return 0;
if (adev->mes.ring.sched.ready)
return amdgpu_mes_rreg(adev, reg);
BUG_ON(!ring->funcs->emit_rreg);
spin_lock_irqsave(&kiq->ring_lock, flags);
if (amdgpu_device_wb_get(adev, &reg_val_offs)) {
pr_err("critical bug! too many kiq readers\n");
goto failed_unlock;
}
amdgpu_ring_alloc(ring, 32);
amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
if (r)
goto failed_undo;
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for gpu reset case because this way may
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
* never return if we keep waiting in virt_kiq_rreg, which cause
* gpu_recover() hang there.
*
* also don't wait anymore for IRQ context
* */
if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
goto failed_kiq_read;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq_read;
mb();
value = adev->wb.wb[reg_val_offs];
amdgpu_device_wb_free(adev, reg_val_offs);
return value;
failed_undo:
amdgpu_ring_undo(ring);
failed_unlock:
spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq_read:
if (reg_val_offs)
amdgpu_device_wb_free(adev, reg_val_offs);
dev_err(adev->dev, "failed to read reg:%x\n", reg);
return ~0;
}
void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
{
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq;
struct amdgpu_kiq *kiq = &adev->gfx.kiq[0];
struct amdgpu_ring *ring = &kiq->ring;
BUG_ON(!ring->funcs->emit_wreg);
if (amdgpu_device_skip_hw_access(adev))
return;
if (adev->mes.ring.sched.ready) {
amdgpu_mes_wreg(adev, reg, v);
return;
}
spin_lock_irqsave(&kiq->ring_lock, flags);
amdgpu_ring_alloc(ring, 32);
amdgpu_ring_emit_wreg(ring, reg, v);
r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
if (r)
goto failed_undo;
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for gpu reset case because this way may
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
* never return if we keep waiting in virt_kiq_rreg, which cause
* gpu_recover() hang there.
*
* also don't wait anymore for IRQ context
* */
if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
goto failed_kiq_write;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq_write;
return;
failed_undo:
amdgpu_ring_undo(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
failed_kiq_write:
dev_err(adev->dev, "failed to write reg:%x\n", reg);
}
int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
{
if (amdgpu_num_kcq == -1) {
return 8;
} else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
return 8;
}
return amdgpu_num_kcq;
}
void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
uint32_t ucode_id)
{
const struct gfx_firmware_header_v1_0 *cp_hdr;
const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
struct amdgpu_firmware_info *info = NULL;
const struct firmware *ucode_fw;
unsigned int fw_size;
switch (ucode_id) {
case AMDGPU_UCODE_ID_CP_PFP:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.pfp_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.pfp_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_PFP:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
adev->gfx.pfp_fw_version =
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
adev->gfx.pfp_feature_version =
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
ucode_fw = adev->gfx.pfp_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.pfp_fw->data;
ucode_fw = adev->gfx.pfp_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_ME:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.me_fw->data;
adev->gfx.me_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.me_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.me_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_ME:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
adev->gfx.me_fw_version =
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
adev->gfx.me_feature_version =
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
ucode_fw = adev->gfx.me_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.me_fw->data;
ucode_fw = adev->gfx.me_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_CE:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.ce_fw->data;
adev->gfx.ce_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.ce_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.ce_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_MEC1:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_MEC1_JT:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec_fw->data;
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_MEC2:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
adev->gfx.mec2_fw_version =
le32_to_cpu(cp_hdr->header.ucode_version);
adev->gfx.mec2_feature_version =
le32_to_cpu(cp_hdr->ucode_feature_version);
ucode_fw = adev->gfx.mec2_fw;
fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_MEC2_JT:
cp_hdr = (const struct gfx_firmware_header_v1_0 *)
adev->gfx.mec2_fw->data;
ucode_fw = adev->gfx.mec2_fw;
fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
break;
case AMDGPU_UCODE_ID_CP_RS64_MEC:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
adev->gfx.mec_fw_version =
le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
adev->gfx.mec_feature_version =
le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
break;
case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
adev->gfx.mec_fw->data;
ucode_fw = adev->gfx.mec_fw;
fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
break;
default:
break;
}
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
info = &adev->firmware.ucode[ucode_id];
info->ucode_id = ucode_id;
info->fw = ucode_fw;
adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
}
}
bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
{
return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
adev->gfx.num_xcc_per_xcp : 1));
}
static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
struct device_attribute *addr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
int mode;
mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
AMDGPU_XCP_FL_NONE);
return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
}
static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
struct device_attribute *addr,
const char *buf, size_t count)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
enum amdgpu_gfx_partition mode;
int ret = 0, num_xcc;
num_xcc = NUM_XCC(adev->gfx.xcc_mask);
if (num_xcc % 2 != 0)
return -EINVAL;
if (!strncasecmp("SPX", buf, strlen("SPX"))) {
mode = AMDGPU_SPX_PARTITION_MODE;
} else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
/*
* DPX mode needs AIDs to be in multiple of 2.
* Each AID connects 2 XCCs.
*/
if (num_xcc%4)
return -EINVAL;
mode = AMDGPU_DPX_PARTITION_MODE;
} else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
if (num_xcc != 6)
return -EINVAL;
mode = AMDGPU_TPX_PARTITION_MODE;
} else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
if (num_xcc != 8)
return -EINVAL;
mode = AMDGPU_QPX_PARTITION_MODE;
} else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
mode = AMDGPU_CPX_PARTITION_MODE;
} else {
return -EINVAL;
}
ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
if (ret)
return ret;
return count;
}
static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
struct device_attribute *addr,
char *buf)
{
struct drm_device *ddev = dev_get_drvdata(dev);
struct amdgpu_device *adev = drm_to_adev(ddev);
char *supported_partition;
/* TBD */
switch (NUM_XCC(adev->gfx.xcc_mask)) {
case 8:
supported_partition = "SPX, DPX, QPX, CPX";
break;
case 6:
supported_partition = "SPX, TPX, CPX";
break;
case 4:
supported_partition = "SPX, DPX, CPX";
break;
/* this seems only existing in emulation phase */
case 2:
supported_partition = "SPX, CPX";
break;
default:
supported_partition = "Not supported";
break;
}
return sysfs_emit(buf, "%s\n", supported_partition);
}
static DEVICE_ATTR(current_compute_partition, 0644,
amdgpu_gfx_get_current_compute_partition,
amdgpu_gfx_set_compute_partition);
static DEVICE_ATTR(available_compute_partition, 0444,
amdgpu_gfx_get_available_compute_partition, NULL);
int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
{
int r;
r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
if (r)
return r;
r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
return r;
}
void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
{
device_remove_file(adev->dev, &dev_attr_current_compute_partition);
device_remove_file(adev->dev, &dev_attr_available_compute_partition);
}