Adding AF_XDP zero-copy support. Note: Although these changes support AF_XDP socket in zero-copy mode, there is still a copy happening within the driver between XSK buffer pool and QPL bounce buffers in GQI-QPL format. In GQI-QPL queue format, the driver needs to allocate a fixed size memory, the size specified by vNIC device, for RX/TX and register this memory as a bounce buffer with the vNIC device when a queue is created. The number of pages in the bounce buffer is limited and the pages need to be made available to the vNIC by copying the RX data out to prevent head-of-line blocking. Therefore, we cannot pass the XSK buffer pool to the vNIC. The number of copies on RX path from the bounce buffer to XSK buffer is 2 for AF_XDP copy mode (bounce buffer -> allocated page frag -> XSK buffer) and 1 for AF_XDP zero-copy mode (bounce buffer -> XSK buffer). This patch contains the following changes: 1) Enable and disable XSK buffer pool 2) Copy XDP packets from QPL bounce buffers to XSK buffer on rx 3) Copy XDP packets from XSK buffer to QPL bounce buffers and ring the doorbell as part of XDP TX napi poll 4) ndo_xsk_wakeup callback support Signed-off-by: Praveen Kaligineedi <pkaligineedi@google.com> Reviewed-by: Jeroen de Borst <jeroendb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
1004 lines
26 KiB
C
1004 lines
26 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
|
|
/* Google virtual Ethernet (gve) driver
|
|
*
|
|
* Copyright (C) 2015-2021 Google, Inc.
|
|
*/
|
|
|
|
#include "gve.h"
|
|
#include "gve_adminq.h"
|
|
#include "gve_utils.h"
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/filter.h>
|
|
#include <net/xdp.h>
|
|
#include <net/xdp_sock_drv.h>
|
|
|
|
static void gve_rx_free_buffer(struct device *dev,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
|
|
GVE_DATA_SLOT_ADDR_PAGE_MASK);
|
|
|
|
page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
|
|
gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
u32 slots = rx->mask + 1;
|
|
int i;
|
|
|
|
if (rx->data.raw_addressing) {
|
|
for (i = 0; i < slots; i++)
|
|
gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
} else {
|
|
for (i = 0; i < slots; i++)
|
|
page_ref_sub(rx->data.page_info[i].page,
|
|
rx->data.page_info[i].pagecnt_bias - 1);
|
|
gve_unassign_qpl(priv, rx->data.qpl->id);
|
|
rx->data.qpl = NULL;
|
|
|
|
for (i = 0; i < rx->qpl_copy_pool_mask + 1; i++) {
|
|
page_ref_sub(rx->qpl_copy_pool[i].page,
|
|
rx->qpl_copy_pool[i].pagecnt_bias - 1);
|
|
put_page(rx->qpl_copy_pool[i].page);
|
|
}
|
|
}
|
|
kvfree(rx->data.page_info);
|
|
rx->data.page_info = NULL;
|
|
}
|
|
|
|
static void gve_rx_free_ring(struct gve_priv *priv, int idx)
|
|
{
|
|
struct gve_rx_ring *rx = &priv->rx[idx];
|
|
struct device *dev = &priv->pdev->dev;
|
|
u32 slots = rx->mask + 1;
|
|
size_t bytes;
|
|
|
|
gve_rx_remove_from_block(priv, idx);
|
|
|
|
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
|
|
dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
|
|
rx->desc.desc_ring = NULL;
|
|
|
|
dma_free_coherent(dev, sizeof(*rx->q_resources),
|
|
rx->q_resources, rx->q_resources_bus);
|
|
rx->q_resources = NULL;
|
|
|
|
gve_rx_unfill_pages(priv, rx);
|
|
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
dma_free_coherent(dev, bytes, rx->data.data_ring,
|
|
rx->data.data_bus);
|
|
rx->data.data_ring = NULL;
|
|
|
|
kvfree(rx->qpl_copy_pool);
|
|
rx->qpl_copy_pool = NULL;
|
|
|
|
netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
|
|
}
|
|
|
|
static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
|
|
dma_addr_t addr, struct page *page, __be64 *slot_addr)
|
|
{
|
|
page_info->page = page;
|
|
page_info->page_offset = 0;
|
|
page_info->page_address = page_address(page);
|
|
*slot_addr = cpu_to_be64(addr);
|
|
/* The page already has 1 ref */
|
|
page_ref_add(page, INT_MAX - 1);
|
|
page_info->pagecnt_bias = INT_MAX;
|
|
}
|
|
|
|
static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct page *page;
|
|
dma_addr_t dma;
|
|
int err;
|
|
|
|
err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
|
|
GFP_ATOMIC);
|
|
if (err)
|
|
return err;
|
|
|
|
gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
|
|
return 0;
|
|
}
|
|
|
|
static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
|
|
{
|
|
struct gve_priv *priv = rx->gve;
|
|
u32 slots;
|
|
int err;
|
|
int i;
|
|
int j;
|
|
|
|
/* Allocate one page per Rx queue slot. Each page is split into two
|
|
* packet buffers, when possible we "page flip" between the two.
|
|
*/
|
|
slots = rx->mask + 1;
|
|
|
|
rx->data.page_info = kvzalloc(slots *
|
|
sizeof(*rx->data.page_info), GFP_KERNEL);
|
|
if (!rx->data.page_info)
|
|
return -ENOMEM;
|
|
|
|
if (!rx->data.raw_addressing) {
|
|
rx->data.qpl = gve_assign_rx_qpl(priv, rx->q_num);
|
|
if (!rx->data.qpl) {
|
|
kvfree(rx->data.page_info);
|
|
rx->data.page_info = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
for (i = 0; i < slots; i++) {
|
|
if (!rx->data.raw_addressing) {
|
|
struct page *page = rx->data.qpl->pages[i];
|
|
dma_addr_t addr = i * PAGE_SIZE;
|
|
|
|
gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
|
|
&rx->data.data_ring[i].qpl_offset);
|
|
continue;
|
|
}
|
|
err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
if (err)
|
|
goto alloc_err;
|
|
}
|
|
|
|
if (!rx->data.raw_addressing) {
|
|
for (j = 0; j < rx->qpl_copy_pool_mask + 1; j++) {
|
|
struct page *page = alloc_page(GFP_KERNEL);
|
|
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto alloc_err_qpl;
|
|
}
|
|
|
|
rx->qpl_copy_pool[j].page = page;
|
|
rx->qpl_copy_pool[j].page_offset = 0;
|
|
rx->qpl_copy_pool[j].page_address = page_address(page);
|
|
|
|
/* The page already has 1 ref. */
|
|
page_ref_add(page, INT_MAX - 1);
|
|
rx->qpl_copy_pool[j].pagecnt_bias = INT_MAX;
|
|
}
|
|
}
|
|
|
|
return slots;
|
|
|
|
alloc_err_qpl:
|
|
while (j--) {
|
|
page_ref_sub(rx->qpl_copy_pool[j].page,
|
|
rx->qpl_copy_pool[j].pagecnt_bias - 1);
|
|
put_page(rx->qpl_copy_pool[j].page);
|
|
}
|
|
alloc_err:
|
|
while (i--)
|
|
gve_rx_free_buffer(&priv->pdev->dev,
|
|
&rx->data.page_info[i],
|
|
&rx->data.data_ring[i]);
|
|
return err;
|
|
}
|
|
|
|
static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
|
|
{
|
|
ctx->skb_head = NULL;
|
|
ctx->skb_tail = NULL;
|
|
ctx->total_size = 0;
|
|
ctx->frag_cnt = 0;
|
|
ctx->drop_pkt = false;
|
|
}
|
|
|
|
static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
|
|
{
|
|
struct gve_rx_ring *rx = &priv->rx[idx];
|
|
struct device *hdev = &priv->pdev->dev;
|
|
u32 slots, npages;
|
|
int filled_pages;
|
|
size_t bytes;
|
|
int err;
|
|
|
|
netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
|
|
/* Make sure everything is zeroed to start with */
|
|
memset(rx, 0, sizeof(*rx));
|
|
|
|
rx->gve = priv;
|
|
rx->q_num = idx;
|
|
|
|
slots = priv->rx_data_slot_cnt;
|
|
rx->mask = slots - 1;
|
|
rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
|
|
|
|
/* alloc rx data ring */
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
|
|
&rx->data.data_bus,
|
|
GFP_KERNEL);
|
|
if (!rx->data.data_ring)
|
|
return -ENOMEM;
|
|
|
|
rx->qpl_copy_pool_mask = min_t(u32, U32_MAX, slots * 2) - 1;
|
|
rx->qpl_copy_pool_head = 0;
|
|
rx->qpl_copy_pool = kvcalloc(rx->qpl_copy_pool_mask + 1,
|
|
sizeof(rx->qpl_copy_pool[0]),
|
|
GFP_KERNEL);
|
|
|
|
if (!rx->qpl_copy_pool) {
|
|
err = -ENOMEM;
|
|
goto abort_with_slots;
|
|
}
|
|
|
|
filled_pages = gve_prefill_rx_pages(rx);
|
|
if (filled_pages < 0) {
|
|
err = -ENOMEM;
|
|
goto abort_with_copy_pool;
|
|
}
|
|
rx->fill_cnt = filled_pages;
|
|
/* Ensure data ring slots (packet buffers) are visible. */
|
|
dma_wmb();
|
|
|
|
/* Alloc gve_queue_resources */
|
|
rx->q_resources =
|
|
dma_alloc_coherent(hdev,
|
|
sizeof(*rx->q_resources),
|
|
&rx->q_resources_bus,
|
|
GFP_KERNEL);
|
|
if (!rx->q_resources) {
|
|
err = -ENOMEM;
|
|
goto abort_filled;
|
|
}
|
|
netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
|
|
(unsigned long)rx->data.data_bus);
|
|
|
|
/* alloc rx desc ring */
|
|
bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
|
|
npages = bytes / PAGE_SIZE;
|
|
if (npages * PAGE_SIZE != bytes) {
|
|
err = -EIO;
|
|
goto abort_with_q_resources;
|
|
}
|
|
|
|
rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
|
|
GFP_KERNEL);
|
|
if (!rx->desc.desc_ring) {
|
|
err = -ENOMEM;
|
|
goto abort_with_q_resources;
|
|
}
|
|
rx->cnt = 0;
|
|
rx->db_threshold = priv->rx_desc_cnt / 2;
|
|
rx->desc.seqno = 1;
|
|
|
|
/* Allocating half-page buffers allows page-flipping which is faster
|
|
* than copying or allocating new pages.
|
|
*/
|
|
rx->packet_buffer_size = PAGE_SIZE / 2;
|
|
gve_rx_ctx_clear(&rx->ctx);
|
|
gve_rx_add_to_block(priv, idx);
|
|
|
|
return 0;
|
|
|
|
abort_with_q_resources:
|
|
dma_free_coherent(hdev, sizeof(*rx->q_resources),
|
|
rx->q_resources, rx->q_resources_bus);
|
|
rx->q_resources = NULL;
|
|
abort_filled:
|
|
gve_rx_unfill_pages(priv, rx);
|
|
abort_with_copy_pool:
|
|
kvfree(rx->qpl_copy_pool);
|
|
rx->qpl_copy_pool = NULL;
|
|
abort_with_slots:
|
|
bytes = sizeof(*rx->data.data_ring) * slots;
|
|
dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
|
|
rx->data.data_ring = NULL;
|
|
|
|
return err;
|
|
}
|
|
|
|
int gve_rx_alloc_rings(struct gve_priv *priv)
|
|
{
|
|
int err = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < priv->rx_cfg.num_queues; i++) {
|
|
err = gve_rx_alloc_ring(priv, i);
|
|
if (err) {
|
|
netif_err(priv, drv, priv->dev,
|
|
"Failed to alloc rx ring=%d: err=%d\n",
|
|
i, err);
|
|
break;
|
|
}
|
|
}
|
|
/* Unallocate if there was an error */
|
|
if (err) {
|
|
int j;
|
|
|
|
for (j = 0; j < i; j++)
|
|
gve_rx_free_ring(priv, j);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void gve_rx_free_rings_gqi(struct gve_priv *priv)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < priv->rx_cfg.num_queues; i++)
|
|
gve_rx_free_ring(priv, i);
|
|
}
|
|
|
|
void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
|
|
|
|
iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
|
|
}
|
|
|
|
static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
|
|
{
|
|
if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
|
|
return PKT_HASH_TYPE_L4;
|
|
if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
|
|
return PKT_HASH_TYPE_L3;
|
|
return PKT_HASH_TYPE_L2;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
u16 packet_buffer_size, u16 len,
|
|
struct gve_rx_ctx *ctx)
|
|
{
|
|
u32 offset = page_info->page_offset + page_info->pad;
|
|
struct sk_buff *skb = ctx->skb_tail;
|
|
int num_frags = 0;
|
|
|
|
if (!skb) {
|
|
skb = napi_get_frags(napi);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
ctx->skb_head = skb;
|
|
ctx->skb_tail = skb;
|
|
} else {
|
|
num_frags = skb_shinfo(ctx->skb_tail)->nr_frags;
|
|
if (num_frags == MAX_SKB_FRAGS) {
|
|
skb = napi_alloc_skb(napi, 0);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
// We will never chain more than two SKBs: 2 * 16 * 2k > 64k
|
|
// which is why we do not need to chain by using skb->next
|
|
skb_shinfo(ctx->skb_tail)->frag_list = skb;
|
|
|
|
ctx->skb_tail = skb;
|
|
num_frags = 0;
|
|
}
|
|
}
|
|
|
|
if (skb != ctx->skb_head) {
|
|
ctx->skb_head->len += len;
|
|
ctx->skb_head->data_len += len;
|
|
ctx->skb_head->truesize += packet_buffer_size;
|
|
}
|
|
skb_add_rx_frag(skb, num_frags, page_info->page,
|
|
offset, len, packet_buffer_size);
|
|
|
|
return ctx->skb_head;
|
|
}
|
|
|
|
static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
|
|
{
|
|
const __be64 offset = cpu_to_be64(PAGE_SIZE / 2);
|
|
|
|
/* "flip" to other packet buffer on this page */
|
|
page_info->page_offset ^= PAGE_SIZE / 2;
|
|
*(slot_addr) ^= offset;
|
|
}
|
|
|
|
static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
|
|
{
|
|
int pagecount = page_count(page_info->page);
|
|
|
|
/* This page is not being used by any SKBs - reuse */
|
|
if (pagecount == page_info->pagecnt_bias)
|
|
return 1;
|
|
/* This page is still being used by an SKB - we can't reuse */
|
|
else if (pagecount > page_info->pagecnt_bias)
|
|
return 0;
|
|
WARN(pagecount < page_info->pagecnt_bias,
|
|
"Pagecount should never be less than the bias.");
|
|
return -1;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
|
|
struct gve_rx_slot_page_info *page_info, u16 len,
|
|
struct napi_struct *napi,
|
|
union gve_rx_data_slot *data_slot,
|
|
u16 packet_buffer_size, struct gve_rx_ctx *ctx)
|
|
{
|
|
struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
|
|
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
/* Optimistically stop the kernel from freeing the page.
|
|
* We will check again in refill to determine if we need to alloc a
|
|
* new page.
|
|
*/
|
|
gve_dec_pagecnt_bias(page_info);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_copy_to_pool(struct gve_rx_ring *rx,
|
|
struct gve_rx_slot_page_info *page_info,
|
|
u16 len, struct napi_struct *napi)
|
|
{
|
|
u32 pool_idx = rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask;
|
|
void *src = page_info->page_address + page_info->page_offset;
|
|
struct gve_rx_slot_page_info *copy_page_info;
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
bool alloc_page = false;
|
|
struct sk_buff *skb;
|
|
void *dst;
|
|
|
|
copy_page_info = &rx->qpl_copy_pool[pool_idx];
|
|
if (!copy_page_info->can_flip) {
|
|
int recycle = gve_rx_can_recycle_buffer(copy_page_info);
|
|
|
|
if (unlikely(recycle < 0)) {
|
|
gve_schedule_reset(rx->gve);
|
|
return NULL;
|
|
}
|
|
alloc_page = !recycle;
|
|
}
|
|
|
|
if (alloc_page) {
|
|
struct gve_rx_slot_page_info alloc_page_info;
|
|
struct page *page;
|
|
|
|
/* The least recently used page turned out to be
|
|
* still in use by the kernel. Ignoring it and moving
|
|
* on alleviates head-of-line blocking.
|
|
*/
|
|
rx->qpl_copy_pool_head++;
|
|
|
|
page = alloc_page(GFP_ATOMIC);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
alloc_page_info.page = page;
|
|
alloc_page_info.page_offset = 0;
|
|
alloc_page_info.page_address = page_address(page);
|
|
alloc_page_info.pad = page_info->pad;
|
|
|
|
memcpy(alloc_page_info.page_address, src, page_info->pad + len);
|
|
skb = gve_rx_add_frags(napi, &alloc_page_info,
|
|
rx->packet_buffer_size,
|
|
len, ctx);
|
|
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_frag_copy_cnt++;
|
|
rx->rx_frag_alloc_cnt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
|
|
return skb;
|
|
}
|
|
|
|
dst = copy_page_info->page_address + copy_page_info->page_offset;
|
|
memcpy(dst, src, page_info->pad + len);
|
|
copy_page_info->pad = page_info->pad;
|
|
|
|
skb = gve_rx_add_frags(napi, copy_page_info,
|
|
rx->packet_buffer_size, len, ctx);
|
|
if (unlikely(!skb))
|
|
return NULL;
|
|
|
|
gve_dec_pagecnt_bias(copy_page_info);
|
|
copy_page_info->page_offset += rx->packet_buffer_size;
|
|
copy_page_info->page_offset &= (PAGE_SIZE - 1);
|
|
|
|
if (copy_page_info->can_flip) {
|
|
/* We have used both halves of this copy page, it
|
|
* is time for it to go to the back of the queue.
|
|
*/
|
|
copy_page_info->can_flip = false;
|
|
rx->qpl_copy_pool_head++;
|
|
prefetch(rx->qpl_copy_pool[rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask].page);
|
|
} else {
|
|
copy_page_info->can_flip = true;
|
|
}
|
|
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_frag_copy_cnt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *
|
|
gve_rx_qpl(struct device *dev, struct net_device *netdev,
|
|
struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
|
|
u16 len, struct napi_struct *napi,
|
|
union gve_rx_data_slot *data_slot)
|
|
{
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
struct sk_buff *skb;
|
|
|
|
/* if raw_addressing mode is not enabled gvnic can only receive into
|
|
* registered segments. If the buffer can't be recycled, our only
|
|
* choice is to copy the data out of it so that we can return it to the
|
|
* device.
|
|
*/
|
|
if (page_info->can_flip) {
|
|
skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx);
|
|
/* No point in recycling if we didn't get the skb */
|
|
if (skb) {
|
|
/* Make sure that the page isn't freed. */
|
|
gve_dec_pagecnt_bias(page_info);
|
|
gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
|
|
}
|
|
} else {
|
|
skb = gve_rx_copy_to_pool(rx, page_info, len, napi);
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
|
|
struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
|
|
u16 len, union gve_rx_data_slot *data_slot,
|
|
bool is_only_frag)
|
|
{
|
|
struct net_device *netdev = priv->dev;
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
struct sk_buff *skb = NULL;
|
|
|
|
if (len <= priv->rx_copybreak && is_only_frag) {
|
|
/* Just copy small packets */
|
|
skb = gve_rx_copy(netdev, napi, page_info, len);
|
|
if (skb) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_copied_pkt++;
|
|
rx->rx_frag_copy_cnt++;
|
|
rx->rx_copybreak_pkt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
} else {
|
|
int recycle = gve_rx_can_recycle_buffer(page_info);
|
|
|
|
if (unlikely(recycle < 0)) {
|
|
gve_schedule_reset(priv);
|
|
return NULL;
|
|
}
|
|
page_info->can_flip = recycle;
|
|
if (page_info->can_flip) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_frag_flip_cnt++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
|
|
if (rx->data.raw_addressing) {
|
|
skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
|
|
page_info, len, napi,
|
|
data_slot,
|
|
rx->packet_buffer_size, ctx);
|
|
} else {
|
|
skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
|
|
page_info, len, napi, data_slot);
|
|
}
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static int gve_xsk_pool_redirect(struct net_device *dev,
|
|
struct gve_rx_ring *rx,
|
|
void *data, int len,
|
|
struct bpf_prog *xdp_prog)
|
|
{
|
|
struct xdp_buff *xdp;
|
|
int err;
|
|
|
|
if (rx->xsk_pool->frame_len < len)
|
|
return -E2BIG;
|
|
xdp = xsk_buff_alloc(rx->xsk_pool);
|
|
if (!xdp) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->xdp_alloc_fails++;
|
|
u64_stats_update_end(&rx->statss);
|
|
return -ENOMEM;
|
|
}
|
|
xdp->data_end = xdp->data + len;
|
|
memcpy(xdp->data, data, len);
|
|
err = xdp_do_redirect(dev, xdp, xdp_prog);
|
|
if (err)
|
|
xsk_buff_free(xdp);
|
|
return err;
|
|
}
|
|
|
|
static int gve_xdp_redirect(struct net_device *dev, struct gve_rx_ring *rx,
|
|
struct xdp_buff *orig, struct bpf_prog *xdp_prog)
|
|
{
|
|
int total_len, len = orig->data_end - orig->data;
|
|
int headroom = XDP_PACKET_HEADROOM;
|
|
struct xdp_buff new;
|
|
void *frame;
|
|
int err;
|
|
|
|
if (rx->xsk_pool)
|
|
return gve_xsk_pool_redirect(dev, rx, orig->data,
|
|
len, xdp_prog);
|
|
|
|
total_len = headroom + SKB_DATA_ALIGN(len) +
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
|
|
frame = page_frag_alloc(&rx->page_cache, total_len, GFP_ATOMIC);
|
|
if (!frame) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->xdp_alloc_fails++;
|
|
u64_stats_update_end(&rx->statss);
|
|
return -ENOMEM;
|
|
}
|
|
xdp_init_buff(&new, total_len, &rx->xdp_rxq);
|
|
xdp_prepare_buff(&new, frame, headroom, len, false);
|
|
memcpy(new.data, orig->data, len);
|
|
|
|
err = xdp_do_redirect(dev, &new, xdp_prog);
|
|
if (err)
|
|
page_frag_free(frame);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void gve_xdp_done(struct gve_priv *priv, struct gve_rx_ring *rx,
|
|
struct xdp_buff *xdp, struct bpf_prog *xprog,
|
|
int xdp_act)
|
|
{
|
|
struct gve_tx_ring *tx;
|
|
int tx_qid;
|
|
int err;
|
|
|
|
switch (xdp_act) {
|
|
case XDP_ABORTED:
|
|
case XDP_DROP:
|
|
default:
|
|
break;
|
|
case XDP_TX:
|
|
tx_qid = gve_xdp_tx_queue_id(priv, rx->q_num);
|
|
tx = &priv->tx[tx_qid];
|
|
spin_lock(&tx->xdp_lock);
|
|
err = gve_xdp_xmit_one(priv, tx, xdp->data,
|
|
xdp->data_end - xdp->data, NULL);
|
|
spin_unlock(&tx->xdp_lock);
|
|
|
|
if (unlikely(err)) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->xdp_tx_errors++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
break;
|
|
case XDP_REDIRECT:
|
|
err = gve_xdp_redirect(priv->dev, rx, xdp, xprog);
|
|
|
|
if (unlikely(err)) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->xdp_redirect_errors++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
break;
|
|
}
|
|
u64_stats_update_begin(&rx->statss);
|
|
if ((u32)xdp_act < GVE_XDP_ACTIONS)
|
|
rx->xdp_actions[xdp_act]++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
|
|
#define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
|
|
static void gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
|
|
struct gve_rx_desc *desc, u32 idx,
|
|
struct gve_rx_cnts *cnts)
|
|
{
|
|
bool is_last_frag = !GVE_PKTCONT_BIT_IS_SET(desc->flags_seq);
|
|
struct gve_rx_slot_page_info *page_info;
|
|
u16 frag_size = be16_to_cpu(desc->len);
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
union gve_rx_data_slot *data_slot;
|
|
struct gve_priv *priv = rx->gve;
|
|
struct sk_buff *skb = NULL;
|
|
struct bpf_prog *xprog;
|
|
struct xdp_buff xdp;
|
|
dma_addr_t page_bus;
|
|
void *va;
|
|
|
|
u16 len = frag_size;
|
|
struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
|
|
bool is_first_frag = ctx->frag_cnt == 0;
|
|
|
|
bool is_only_frag = is_first_frag && is_last_frag;
|
|
|
|
if (unlikely(ctx->drop_pkt))
|
|
goto finish_frag;
|
|
|
|
if (desc->flags_seq & GVE_RXF_ERR) {
|
|
ctx->drop_pkt = true;
|
|
cnts->desc_err_pkt_cnt++;
|
|
napi_free_frags(napi);
|
|
goto finish_frag;
|
|
}
|
|
|
|
if (unlikely(frag_size > rx->packet_buffer_size)) {
|
|
netdev_warn(priv->dev, "Unexpected frag size %d, can't exceed %d, scheduling reset",
|
|
frag_size, rx->packet_buffer_size);
|
|
ctx->drop_pkt = true;
|
|
napi_free_frags(napi);
|
|
gve_schedule_reset(rx->gve);
|
|
goto finish_frag;
|
|
}
|
|
|
|
/* Prefetch two packet buffers ahead, we will need it soon. */
|
|
page_info = &rx->data.page_info[(idx + 2) & rx->mask];
|
|
va = page_info->page_address + page_info->page_offset;
|
|
prefetch(page_info->page); /* Kernel page struct. */
|
|
prefetch(va); /* Packet header. */
|
|
prefetch(va + 64); /* Next cacheline too. */
|
|
|
|
page_info = &rx->data.page_info[idx];
|
|
data_slot = &rx->data.data_ring[idx];
|
|
page_bus = (rx->data.raw_addressing) ?
|
|
be64_to_cpu(data_slot->addr) - page_info->page_offset :
|
|
rx->data.qpl->page_buses[idx];
|
|
dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
|
|
len -= page_info->pad;
|
|
frag_size -= page_info->pad;
|
|
|
|
xprog = READ_ONCE(priv->xdp_prog);
|
|
if (xprog && is_only_frag) {
|
|
void *old_data;
|
|
int xdp_act;
|
|
|
|
xdp_init_buff(&xdp, rx->packet_buffer_size, &rx->xdp_rxq);
|
|
xdp_prepare_buff(&xdp, page_info->page_address +
|
|
page_info->page_offset, GVE_RX_PAD,
|
|
len, false);
|
|
old_data = xdp.data;
|
|
xdp_act = bpf_prog_run_xdp(xprog, &xdp);
|
|
if (xdp_act != XDP_PASS) {
|
|
gve_xdp_done(priv, rx, &xdp, xprog, xdp_act);
|
|
ctx->total_size += frag_size;
|
|
goto finish_ok_pkt;
|
|
}
|
|
|
|
page_info->pad += xdp.data - old_data;
|
|
len = xdp.data_end - xdp.data;
|
|
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->xdp_actions[XDP_PASS]++;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
|
|
skb = gve_rx_skb(priv, rx, page_info, napi, len,
|
|
data_slot, is_only_frag);
|
|
if (!skb) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_skb_alloc_fail++;
|
|
u64_stats_update_end(&rx->statss);
|
|
|
|
napi_free_frags(napi);
|
|
ctx->drop_pkt = true;
|
|
goto finish_frag;
|
|
}
|
|
ctx->total_size += frag_size;
|
|
|
|
if (is_first_frag) {
|
|
if (likely(feat & NETIF_F_RXCSUM)) {
|
|
/* NIC passes up the partial sum */
|
|
if (desc->csum)
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
|
else
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
skb->csum = csum_unfold(desc->csum);
|
|
}
|
|
|
|
/* parse flags & pass relevant info up */
|
|
if (likely(feat & NETIF_F_RXHASH) &&
|
|
gve_needs_rss(desc->flags_seq))
|
|
skb_set_hash(skb, be32_to_cpu(desc->rss_hash),
|
|
gve_rss_type(desc->flags_seq));
|
|
}
|
|
|
|
if (is_last_frag) {
|
|
skb_record_rx_queue(skb, rx->q_num);
|
|
if (skb_is_nonlinear(skb))
|
|
napi_gro_frags(napi);
|
|
else
|
|
napi_gro_receive(napi, skb);
|
|
goto finish_ok_pkt;
|
|
}
|
|
|
|
goto finish_frag;
|
|
|
|
finish_ok_pkt:
|
|
cnts->ok_pkt_bytes += ctx->total_size;
|
|
cnts->ok_pkt_cnt++;
|
|
finish_frag:
|
|
ctx->frag_cnt++;
|
|
if (is_last_frag) {
|
|
cnts->total_pkt_cnt++;
|
|
cnts->cont_pkt_cnt += (ctx->frag_cnt > 1);
|
|
gve_rx_ctx_clear(ctx);
|
|
}
|
|
}
|
|
|
|
bool gve_rx_work_pending(struct gve_rx_ring *rx)
|
|
{
|
|
struct gve_rx_desc *desc;
|
|
__be16 flags_seq;
|
|
u32 next_idx;
|
|
|
|
next_idx = rx->cnt & rx->mask;
|
|
desc = rx->desc.desc_ring + next_idx;
|
|
|
|
flags_seq = desc->flags_seq;
|
|
|
|
return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
|
|
}
|
|
|
|
static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
|
|
{
|
|
int refill_target = rx->mask + 1;
|
|
u32 fill_cnt = rx->fill_cnt;
|
|
|
|
while (fill_cnt - rx->cnt < refill_target) {
|
|
struct gve_rx_slot_page_info *page_info;
|
|
u32 idx = fill_cnt & rx->mask;
|
|
|
|
page_info = &rx->data.page_info[idx];
|
|
if (page_info->can_flip) {
|
|
/* The other half of the page is free because it was
|
|
* free when we processed the descriptor. Flip to it.
|
|
*/
|
|
union gve_rx_data_slot *data_slot =
|
|
&rx->data.data_ring[idx];
|
|
|
|
gve_rx_flip_buff(page_info, &data_slot->addr);
|
|
page_info->can_flip = 0;
|
|
} else {
|
|
/* It is possible that the networking stack has already
|
|
* finished processing all outstanding packets in the buffer
|
|
* and it can be reused.
|
|
* Flipping is unnecessary here - if the networking stack still
|
|
* owns half the page it is impossible to tell which half. Either
|
|
* the whole page is free or it needs to be replaced.
|
|
*/
|
|
int recycle = gve_rx_can_recycle_buffer(page_info);
|
|
|
|
if (recycle < 0) {
|
|
if (!rx->data.raw_addressing)
|
|
gve_schedule_reset(priv);
|
|
return false;
|
|
}
|
|
if (!recycle) {
|
|
/* We can't reuse the buffer - alloc a new one*/
|
|
union gve_rx_data_slot *data_slot =
|
|
&rx->data.data_ring[idx];
|
|
struct device *dev = &priv->pdev->dev;
|
|
gve_rx_free_buffer(dev, page_info, data_slot);
|
|
page_info->page = NULL;
|
|
if (gve_rx_alloc_buffer(priv, dev, page_info,
|
|
data_slot)) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rx_buf_alloc_fail++;
|
|
u64_stats_update_end(&rx->statss);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
fill_cnt++;
|
|
}
|
|
rx->fill_cnt = fill_cnt;
|
|
return true;
|
|
}
|
|
|
|
static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
|
|
netdev_features_t feat)
|
|
{
|
|
u64 xdp_redirects = rx->xdp_actions[XDP_REDIRECT];
|
|
u64 xdp_txs = rx->xdp_actions[XDP_TX];
|
|
struct gve_rx_ctx *ctx = &rx->ctx;
|
|
struct gve_priv *priv = rx->gve;
|
|
struct gve_rx_cnts cnts = {0};
|
|
struct gve_rx_desc *next_desc;
|
|
u32 idx = rx->cnt & rx->mask;
|
|
u32 work_done = 0;
|
|
|
|
struct gve_rx_desc *desc = &rx->desc.desc_ring[idx];
|
|
|
|
// Exceed budget only if (and till) the inflight packet is consumed.
|
|
while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
|
|
(work_done < budget || ctx->frag_cnt)) {
|
|
next_desc = &rx->desc.desc_ring[(idx + 1) & rx->mask];
|
|
prefetch(next_desc);
|
|
|
|
gve_rx(rx, feat, desc, idx, &cnts);
|
|
|
|
rx->cnt++;
|
|
idx = rx->cnt & rx->mask;
|
|
desc = &rx->desc.desc_ring[idx];
|
|
rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
|
|
work_done++;
|
|
}
|
|
|
|
// The device will only send whole packets.
|
|
if (unlikely(ctx->frag_cnt)) {
|
|
struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
|
|
|
|
napi_free_frags(napi);
|
|
gve_rx_ctx_clear(&rx->ctx);
|
|
netdev_warn(priv->dev, "Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
|
|
GVE_SEQNO(desc->flags_seq), rx->desc.seqno);
|
|
gve_schedule_reset(rx->gve);
|
|
}
|
|
|
|
if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
|
|
return 0;
|
|
|
|
if (work_done) {
|
|
u64_stats_update_begin(&rx->statss);
|
|
rx->rpackets += cnts.ok_pkt_cnt;
|
|
rx->rbytes += cnts.ok_pkt_bytes;
|
|
rx->rx_cont_packet_cnt += cnts.cont_pkt_cnt;
|
|
rx->rx_desc_err_dropped_pkt += cnts.desc_err_pkt_cnt;
|
|
u64_stats_update_end(&rx->statss);
|
|
}
|
|
|
|
if (xdp_txs != rx->xdp_actions[XDP_TX])
|
|
gve_xdp_tx_flush(priv, rx->q_num);
|
|
|
|
if (xdp_redirects != rx->xdp_actions[XDP_REDIRECT])
|
|
xdp_do_flush();
|
|
|
|
/* restock ring slots */
|
|
if (!rx->data.raw_addressing) {
|
|
/* In QPL mode buffs are refilled as the desc are processed */
|
|
rx->fill_cnt += work_done;
|
|
} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
|
|
/* In raw addressing mode buffs are only refilled if the avail
|
|
* falls below a threshold.
|
|
*/
|
|
if (!gve_rx_refill_buffers(priv, rx))
|
|
return 0;
|
|
|
|
/* If we were not able to completely refill buffers, we'll want
|
|
* to schedule this queue for work again to refill buffers.
|
|
*/
|
|
if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
|
|
gve_rx_write_doorbell(priv, rx);
|
|
return budget;
|
|
}
|
|
}
|
|
|
|
gve_rx_write_doorbell(priv, rx);
|
|
return cnts.total_pkt_cnt;
|
|
}
|
|
|
|
int gve_rx_poll(struct gve_notify_block *block, int budget)
|
|
{
|
|
struct gve_rx_ring *rx = block->rx;
|
|
netdev_features_t feat;
|
|
int work_done = 0;
|
|
|
|
feat = block->napi.dev->features;
|
|
|
|
/* If budget is 0, do all the work */
|
|
if (budget == 0)
|
|
budget = INT_MAX;
|
|
|
|
if (budget > 0)
|
|
work_done = gve_clean_rx_done(rx, budget, feat);
|
|
|
|
return work_done;
|
|
}
|