As the context info gen3 code is only called for >=AX210 devices
(from iwl_trans_pcie_gen2_start_fw()) the code there to set LTR
on 22000 devices cannot actually do anything (22000 < AX210).
Fix this by moving the LTR code to iwl_trans_pcie_gen2_start_fw()
where it can handle both devices. This then requires that we kick
the firmware only after that rather than doing it from the context
info code.
Note that this again had a dead branch in gen3 code, which I've
removed here.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Fixes: ed0022da8b
("iwlwifi: pcie: set LTR on more devices")
Signed-off-by: Luca Coelho <luciano.coelho@intel.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
Link: https://lore.kernel.org/r/iwlwifi.20210326125611.675486178ed1.Ib61463aba6920645059e366dcdca4c4c77f0ff58@changeid
263 lines
7 KiB
C
263 lines
7 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2017 Intel Deutschland GmbH
|
|
* Copyright (C) 2018-2021 Intel Corporation
|
|
*/
|
|
#include "iwl-trans.h"
|
|
#include "iwl-fh.h"
|
|
#include "iwl-context-info.h"
|
|
#include "internal.h"
|
|
#include "iwl-prph.h"
|
|
|
|
static void *_iwl_pcie_ctxt_info_dma_alloc_coherent(struct iwl_trans *trans,
|
|
size_t size,
|
|
dma_addr_t *phys,
|
|
int depth)
|
|
{
|
|
void *result;
|
|
|
|
if (WARN(depth > 2,
|
|
"failed to allocate DMA memory not crossing 2^32 boundary"))
|
|
return NULL;
|
|
|
|
result = dma_alloc_coherent(trans->dev, size, phys, GFP_KERNEL);
|
|
|
|
if (!result)
|
|
return NULL;
|
|
|
|
if (unlikely(iwl_txq_crosses_4g_boundary(*phys, size))) {
|
|
void *old = result;
|
|
dma_addr_t oldphys = *phys;
|
|
|
|
result = _iwl_pcie_ctxt_info_dma_alloc_coherent(trans, size,
|
|
phys,
|
|
depth + 1);
|
|
dma_free_coherent(trans->dev, size, old, oldphys);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void *iwl_pcie_ctxt_info_dma_alloc_coherent(struct iwl_trans *trans,
|
|
size_t size,
|
|
dma_addr_t *phys)
|
|
{
|
|
return _iwl_pcie_ctxt_info_dma_alloc_coherent(trans, size, phys, 0);
|
|
}
|
|
|
|
int iwl_pcie_ctxt_info_alloc_dma(struct iwl_trans *trans,
|
|
const void *data, u32 len,
|
|
struct iwl_dram_data *dram)
|
|
{
|
|
dram->block = iwl_pcie_ctxt_info_dma_alloc_coherent(trans, len,
|
|
&dram->physical);
|
|
if (!dram->block)
|
|
return -ENOMEM;
|
|
|
|
dram->size = len;
|
|
memcpy(dram->block, data, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void iwl_pcie_ctxt_info_free_paging(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_self_init_dram *dram = &trans->init_dram;
|
|
int i;
|
|
|
|
if (!dram->paging) {
|
|
WARN_ON(dram->paging_cnt);
|
|
return;
|
|
}
|
|
|
|
/* free paging*/
|
|
for (i = 0; i < dram->paging_cnt; i++)
|
|
dma_free_coherent(trans->dev, dram->paging[i].size,
|
|
dram->paging[i].block,
|
|
dram->paging[i].physical);
|
|
|
|
kfree(dram->paging);
|
|
dram->paging_cnt = 0;
|
|
dram->paging = NULL;
|
|
}
|
|
|
|
int iwl_pcie_init_fw_sec(struct iwl_trans *trans,
|
|
const struct fw_img *fw,
|
|
struct iwl_context_info_dram *ctxt_dram)
|
|
{
|
|
struct iwl_self_init_dram *dram = &trans->init_dram;
|
|
int i, ret, lmac_cnt, umac_cnt, paging_cnt;
|
|
|
|
if (WARN(dram->paging,
|
|
"paging shouldn't already be initialized (%d pages)\n",
|
|
dram->paging_cnt))
|
|
iwl_pcie_ctxt_info_free_paging(trans);
|
|
|
|
lmac_cnt = iwl_pcie_get_num_sections(fw, 0);
|
|
/* add 1 due to separator */
|
|
umac_cnt = iwl_pcie_get_num_sections(fw, lmac_cnt + 1);
|
|
/* add 2 due to separators */
|
|
paging_cnt = iwl_pcie_get_num_sections(fw, lmac_cnt + umac_cnt + 2);
|
|
|
|
dram->fw = kcalloc(umac_cnt + lmac_cnt, sizeof(*dram->fw), GFP_KERNEL);
|
|
if (!dram->fw)
|
|
return -ENOMEM;
|
|
dram->paging = kcalloc(paging_cnt, sizeof(*dram->paging), GFP_KERNEL);
|
|
if (!dram->paging)
|
|
return -ENOMEM;
|
|
|
|
/* initialize lmac sections */
|
|
for (i = 0; i < lmac_cnt; i++) {
|
|
ret = iwl_pcie_ctxt_info_alloc_dma(trans, fw->sec[i].data,
|
|
fw->sec[i].len,
|
|
&dram->fw[dram->fw_cnt]);
|
|
if (ret)
|
|
return ret;
|
|
ctxt_dram->lmac_img[i] =
|
|
cpu_to_le64(dram->fw[dram->fw_cnt].physical);
|
|
dram->fw_cnt++;
|
|
}
|
|
|
|
/* initialize umac sections */
|
|
for (i = 0; i < umac_cnt; i++) {
|
|
/* access FW with +1 to make up for lmac separator */
|
|
ret = iwl_pcie_ctxt_info_alloc_dma(trans,
|
|
fw->sec[dram->fw_cnt + 1].data,
|
|
fw->sec[dram->fw_cnt + 1].len,
|
|
&dram->fw[dram->fw_cnt]);
|
|
if (ret)
|
|
return ret;
|
|
ctxt_dram->umac_img[i] =
|
|
cpu_to_le64(dram->fw[dram->fw_cnt].physical);
|
|
dram->fw_cnt++;
|
|
}
|
|
|
|
/*
|
|
* Initialize paging.
|
|
* Paging memory isn't stored in dram->fw as the umac and lmac - it is
|
|
* stored separately.
|
|
* This is since the timing of its release is different -
|
|
* while fw memory can be released on alive, the paging memory can be
|
|
* freed only when the device goes down.
|
|
* Given that, the logic here in accessing the fw image is a bit
|
|
* different - fw_cnt isn't changing so loop counter is added to it.
|
|
*/
|
|
for (i = 0; i < paging_cnt; i++) {
|
|
/* access FW with +2 to make up for lmac & umac separators */
|
|
int fw_idx = dram->fw_cnt + i + 2;
|
|
|
|
ret = iwl_pcie_ctxt_info_alloc_dma(trans, fw->sec[fw_idx].data,
|
|
fw->sec[fw_idx].len,
|
|
&dram->paging[i]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctxt_dram->virtual_img[i] =
|
|
cpu_to_le64(dram->paging[i].physical);
|
|
dram->paging_cnt++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int iwl_pcie_ctxt_info_init(struct iwl_trans *trans,
|
|
const struct fw_img *fw)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_context_info *ctxt_info;
|
|
struct iwl_context_info_rbd_cfg *rx_cfg;
|
|
u32 control_flags = 0, rb_size;
|
|
dma_addr_t phys;
|
|
int ret;
|
|
|
|
ctxt_info = iwl_pcie_ctxt_info_dma_alloc_coherent(trans,
|
|
sizeof(*ctxt_info),
|
|
&phys);
|
|
if (!ctxt_info)
|
|
return -ENOMEM;
|
|
|
|
trans_pcie->ctxt_info_dma_addr = phys;
|
|
|
|
ctxt_info->version.version = 0;
|
|
ctxt_info->version.mac_id =
|
|
cpu_to_le16((u16)iwl_read32(trans, CSR_HW_REV));
|
|
/* size is in DWs */
|
|
ctxt_info->version.size = cpu_to_le16(sizeof(*ctxt_info) / 4);
|
|
|
|
switch (trans_pcie->rx_buf_size) {
|
|
case IWL_AMSDU_2K:
|
|
rb_size = IWL_CTXT_INFO_RB_SIZE_2K;
|
|
break;
|
|
case IWL_AMSDU_4K:
|
|
rb_size = IWL_CTXT_INFO_RB_SIZE_4K;
|
|
break;
|
|
case IWL_AMSDU_8K:
|
|
rb_size = IWL_CTXT_INFO_RB_SIZE_8K;
|
|
break;
|
|
case IWL_AMSDU_12K:
|
|
rb_size = IWL_CTXT_INFO_RB_SIZE_16K;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
rb_size = IWL_CTXT_INFO_RB_SIZE_4K;
|
|
}
|
|
|
|
WARN_ON(RX_QUEUE_CB_SIZE(trans->cfg->num_rbds) > 12);
|
|
control_flags = IWL_CTXT_INFO_TFD_FORMAT_LONG;
|
|
control_flags |=
|
|
u32_encode_bits(RX_QUEUE_CB_SIZE(trans->cfg->num_rbds),
|
|
IWL_CTXT_INFO_RB_CB_SIZE);
|
|
control_flags |= u32_encode_bits(rb_size, IWL_CTXT_INFO_RB_SIZE);
|
|
ctxt_info->control.control_flags = cpu_to_le32(control_flags);
|
|
|
|
/* initialize RX default queue */
|
|
rx_cfg = &ctxt_info->rbd_cfg;
|
|
rx_cfg->free_rbd_addr = cpu_to_le64(trans_pcie->rxq->bd_dma);
|
|
rx_cfg->used_rbd_addr = cpu_to_le64(trans_pcie->rxq->used_bd_dma);
|
|
rx_cfg->status_wr_ptr = cpu_to_le64(trans_pcie->rxq->rb_stts_dma);
|
|
|
|
/* initialize TX command queue */
|
|
ctxt_info->hcmd_cfg.cmd_queue_addr =
|
|
cpu_to_le64(trans->txqs.txq[trans->txqs.cmd.q_id]->dma_addr);
|
|
ctxt_info->hcmd_cfg.cmd_queue_size =
|
|
TFD_QUEUE_CB_SIZE(IWL_CMD_QUEUE_SIZE);
|
|
|
|
/* allocate ucode sections in dram and set addresses */
|
|
ret = iwl_pcie_init_fw_sec(trans, fw, &ctxt_info->dram);
|
|
if (ret) {
|
|
dma_free_coherent(trans->dev, sizeof(*trans_pcie->ctxt_info),
|
|
ctxt_info, trans_pcie->ctxt_info_dma_addr);
|
|
return ret;
|
|
}
|
|
|
|
trans_pcie->ctxt_info = ctxt_info;
|
|
|
|
iwl_enable_fw_load_int_ctx_info(trans);
|
|
|
|
/* Configure debug, if exists */
|
|
if (iwl_pcie_dbg_on(trans))
|
|
iwl_pcie_apply_destination(trans);
|
|
|
|
/* kick FW self load */
|
|
iwl_write64(trans, CSR_CTXT_INFO_BA, trans_pcie->ctxt_info_dma_addr);
|
|
|
|
/* Context info will be released upon alive or failure to get one */
|
|
|
|
return 0;
|
|
}
|
|
|
|
void iwl_pcie_ctxt_info_free(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (!trans_pcie->ctxt_info)
|
|
return;
|
|
|
|
dma_free_coherent(trans->dev, sizeof(*trans_pcie->ctxt_info),
|
|
trans_pcie->ctxt_info,
|
|
trans_pcie->ctxt_info_dma_addr);
|
|
trans_pcie->ctxt_info_dma_addr = 0;
|
|
trans_pcie->ctxt_info = NULL;
|
|
|
|
iwl_pcie_ctxt_info_free_fw_img(trans);
|
|
}
|