Commit70fb86a85d
("drm/xe: Revert some changes that break a mesa debug tool") partially reverted some changes to workaround breakage caused to mesa tools. However, in doing so it also broke fetching the GuC log via debugfs since xe_print_blob_ascii85() simply bails out. The fix is to avoid the extra newlines: the devcoredump interface is line-oriented and adding random newlines in the middle breaks it. If a tool is able to parse it by looking at the data and checking for chars that are out of the ascii85 space, it can still do so. A format change that breaks the line-oriented output on devcoredump however needs better coordination with existing tools. v2: Add suffix description comment v3: Reword explanation of xe_print_blob_ascii85() calling drm_puts() in a loop Reviewed-by: José Roberto de Souza <jose.souza@intel.com> Cc: John Harrison <John.C.Harrison@Intel.com> Cc: Julia Filipchuk <julia.filipchuk@intel.com> Cc: José Roberto de Souza <jose.souza@intel.com> Cc: stable@vger.kernel.org Fixes:70fb86a85d
("drm/xe: Revert some changes that break a mesa debug tool") Fixes:ec1455ce7e
("drm/xe/devcoredump: Add ASCII85 dump helper function") Link: https://patchwork.freedesktop.org/patch/msgid/20250123202307.95103-2-jose.souza@intel.com Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com> (cherry picked from commit 2c95bbf5002776117a69caed3b31c10bf7341bec) Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
476 lines
13 KiB
C
476 lines
13 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2023 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_devcoredump.h"
|
|
#include "xe_devcoredump_types.h"
|
|
|
|
#include <linux/ascii85.h>
|
|
#include <linux/devcoredump.h>
|
|
#include <generated/utsrelease.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
|
|
#include "xe_device.h"
|
|
#include "xe_exec_queue.h"
|
|
#include "xe_force_wake.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_guc_capture.h"
|
|
#include "xe_guc_ct.h"
|
|
#include "xe_guc_log.h"
|
|
#include "xe_guc_submit.h"
|
|
#include "xe_hw_engine.h"
|
|
#include "xe_module.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_sched_job.h"
|
|
#include "xe_vm.h"
|
|
|
|
/**
|
|
* DOC: Xe device coredump
|
|
*
|
|
* Xe uses dev_coredump infrastructure for exposing the crash errors in a
|
|
* standardized way. Once a crash occurs, devcoredump exposes a temporary
|
|
* node under ``/sys/class/devcoredump/devcd<m>/``. The same node is also
|
|
* accessible in ``/sys/class/drm/card<n>/device/devcoredump/``. The
|
|
* ``failing_device`` symlink points to the device that crashed and created the
|
|
* coredump.
|
|
*
|
|
* The following characteristics are observed by xe when creating a device
|
|
* coredump:
|
|
*
|
|
* **Snapshot at hang**:
|
|
* The 'data' file contains a snapshot of the HW and driver states at the time
|
|
* the hang happened. Due to the driver recovering from resets/crashes, it may
|
|
* not correspond to the state of the system when the file is read by
|
|
* userspace.
|
|
*
|
|
* **Coredump release**:
|
|
* After a coredump is generated, it stays in kernel memory until released by
|
|
* userspace by writing anything to it, or after an internal timer expires. The
|
|
* exact timeout may vary and should not be relied upon. Example to release
|
|
* a coredump:
|
|
*
|
|
* .. code-block:: shell
|
|
*
|
|
* $ > /sys/class/drm/card0/device/devcoredump/data
|
|
*
|
|
* **First failure only**:
|
|
* In general, the first hang is the most critical one since the following
|
|
* hangs can be a consequence of the initial hang. For this reason a snapshot
|
|
* is taken only for the first failure. Until the devcoredump is released by
|
|
* userspace or kernel, all subsequent hangs do not override the snapshot nor
|
|
* create new ones. Devcoredump has a delayed work queue that will eventually
|
|
* delete the file node and free all the dump information.
|
|
*/
|
|
|
|
#ifdef CONFIG_DEV_COREDUMP
|
|
|
|
/* 1 hour timeout */
|
|
#define XE_COREDUMP_TIMEOUT_JIFFIES (60 * 60 * HZ)
|
|
|
|
static struct xe_device *coredump_to_xe(const struct xe_devcoredump *coredump)
|
|
{
|
|
return container_of(coredump, struct xe_device, devcoredump);
|
|
}
|
|
|
|
static struct xe_guc *exec_queue_to_guc(struct xe_exec_queue *q)
|
|
{
|
|
return &q->gt->uc.guc;
|
|
}
|
|
|
|
static ssize_t __xe_devcoredump_read(char *buffer, size_t count,
|
|
struct xe_devcoredump *coredump)
|
|
{
|
|
struct xe_device *xe;
|
|
struct xe_devcoredump_snapshot *ss;
|
|
struct drm_printer p;
|
|
struct drm_print_iterator iter;
|
|
struct timespec64 ts;
|
|
int i;
|
|
|
|
xe = coredump_to_xe(coredump);
|
|
ss = &coredump->snapshot;
|
|
|
|
iter.data = buffer;
|
|
iter.start = 0;
|
|
iter.remain = count;
|
|
|
|
p = drm_coredump_printer(&iter);
|
|
|
|
drm_puts(&p, "**** Xe Device Coredump ****\n");
|
|
drm_printf(&p, "Reason: %s\n", ss->reason);
|
|
drm_puts(&p, "kernel: " UTS_RELEASE "\n");
|
|
drm_puts(&p, "module: " KBUILD_MODNAME "\n");
|
|
|
|
ts = ktime_to_timespec64(ss->snapshot_time);
|
|
drm_printf(&p, "Snapshot time: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
|
|
ts = ktime_to_timespec64(ss->boot_time);
|
|
drm_printf(&p, "Uptime: %lld.%09ld\n", ts.tv_sec, ts.tv_nsec);
|
|
drm_printf(&p, "Process: %s [%d]\n", ss->process_name, ss->pid);
|
|
xe_device_snapshot_print(xe, &p);
|
|
|
|
drm_printf(&p, "\n**** GT #%d ****\n", ss->gt->info.id);
|
|
drm_printf(&p, "\tTile: %d\n", ss->gt->tile->id);
|
|
|
|
drm_puts(&p, "\n**** GuC Log ****\n");
|
|
xe_guc_log_snapshot_print(ss->guc.log, &p);
|
|
drm_puts(&p, "\n**** GuC CT ****\n");
|
|
xe_guc_ct_snapshot_print(ss->guc.ct, &p);
|
|
|
|
drm_puts(&p, "\n**** Contexts ****\n");
|
|
xe_guc_exec_queue_snapshot_print(ss->ge, &p);
|
|
|
|
drm_puts(&p, "\n**** Job ****\n");
|
|
xe_sched_job_snapshot_print(ss->job, &p);
|
|
|
|
drm_puts(&p, "\n**** HW Engines ****\n");
|
|
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
|
|
if (ss->hwe[i])
|
|
xe_engine_snapshot_print(ss->hwe[i], &p);
|
|
|
|
drm_puts(&p, "\n**** VM state ****\n");
|
|
xe_vm_snapshot_print(ss->vm, &p);
|
|
|
|
return count - iter.remain;
|
|
}
|
|
|
|
static void xe_devcoredump_snapshot_free(struct xe_devcoredump_snapshot *ss)
|
|
{
|
|
int i;
|
|
|
|
kfree(ss->reason);
|
|
ss->reason = NULL;
|
|
|
|
xe_guc_log_snapshot_free(ss->guc.log);
|
|
ss->guc.log = NULL;
|
|
|
|
xe_guc_ct_snapshot_free(ss->guc.ct);
|
|
ss->guc.ct = NULL;
|
|
|
|
xe_guc_capture_put_matched_nodes(&ss->gt->uc.guc);
|
|
ss->matched_node = NULL;
|
|
|
|
xe_guc_exec_queue_snapshot_free(ss->ge);
|
|
ss->ge = NULL;
|
|
|
|
xe_sched_job_snapshot_free(ss->job);
|
|
ss->job = NULL;
|
|
|
|
for (i = 0; i < XE_NUM_HW_ENGINES; i++)
|
|
if (ss->hwe[i]) {
|
|
xe_hw_engine_snapshot_free(ss->hwe[i]);
|
|
ss->hwe[i] = NULL;
|
|
}
|
|
|
|
xe_vm_snapshot_free(ss->vm);
|
|
ss->vm = NULL;
|
|
}
|
|
|
|
static ssize_t xe_devcoredump_read(char *buffer, loff_t offset,
|
|
size_t count, void *data, size_t datalen)
|
|
{
|
|
struct xe_devcoredump *coredump = data;
|
|
struct xe_devcoredump_snapshot *ss;
|
|
ssize_t byte_copied;
|
|
|
|
if (!coredump)
|
|
return -ENODEV;
|
|
|
|
ss = &coredump->snapshot;
|
|
|
|
/* Ensure delayed work is captured before continuing */
|
|
flush_work(&ss->work);
|
|
|
|
mutex_lock(&coredump->lock);
|
|
|
|
if (!ss->read.buffer) {
|
|
mutex_unlock(&coredump->lock);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (offset >= ss->read.size) {
|
|
mutex_unlock(&coredump->lock);
|
|
return 0;
|
|
}
|
|
|
|
byte_copied = count < ss->read.size - offset ? count :
|
|
ss->read.size - offset;
|
|
memcpy(buffer, ss->read.buffer + offset, byte_copied);
|
|
|
|
mutex_unlock(&coredump->lock);
|
|
|
|
return byte_copied;
|
|
}
|
|
|
|
static void xe_devcoredump_free(void *data)
|
|
{
|
|
struct xe_devcoredump *coredump = data;
|
|
|
|
/* Our device is gone. Nothing to do... */
|
|
if (!data || !coredump_to_xe(coredump))
|
|
return;
|
|
|
|
cancel_work_sync(&coredump->snapshot.work);
|
|
|
|
mutex_lock(&coredump->lock);
|
|
|
|
xe_devcoredump_snapshot_free(&coredump->snapshot);
|
|
kvfree(coredump->snapshot.read.buffer);
|
|
|
|
/* To prevent stale data on next snapshot, clear everything */
|
|
memset(&coredump->snapshot, 0, sizeof(coredump->snapshot));
|
|
coredump->captured = false;
|
|
drm_info(&coredump_to_xe(coredump)->drm,
|
|
"Xe device coredump has been deleted.\n");
|
|
|
|
mutex_unlock(&coredump->lock);
|
|
}
|
|
|
|
static void xe_devcoredump_deferred_snap_work(struct work_struct *work)
|
|
{
|
|
struct xe_devcoredump_snapshot *ss = container_of(work, typeof(*ss), work);
|
|
struct xe_devcoredump *coredump = container_of(ss, typeof(*coredump), snapshot);
|
|
struct xe_device *xe = coredump_to_xe(coredump);
|
|
unsigned int fw_ref;
|
|
|
|
/*
|
|
* NB: Despite passing a GFP_ flags parameter here, more allocations are done
|
|
* internally using GFP_KERNEL expliictly. Hence this call must be in the worker
|
|
* thread and not in the initial capture call.
|
|
*/
|
|
dev_coredumpm_timeout(gt_to_xe(ss->gt)->drm.dev, THIS_MODULE, coredump, 0, GFP_KERNEL,
|
|
xe_devcoredump_read, xe_devcoredump_free,
|
|
XE_COREDUMP_TIMEOUT_JIFFIES);
|
|
|
|
xe_pm_runtime_get(xe);
|
|
|
|
/* keep going if fw fails as we still want to save the memory and SW data */
|
|
fw_ref = xe_force_wake_get(gt_to_fw(ss->gt), XE_FORCEWAKE_ALL);
|
|
if (!xe_force_wake_ref_has_domain(fw_ref, XE_FORCEWAKE_ALL))
|
|
xe_gt_info(ss->gt, "failed to get forcewake for coredump capture\n");
|
|
xe_vm_snapshot_capture_delayed(ss->vm);
|
|
xe_guc_exec_queue_snapshot_capture_delayed(ss->ge);
|
|
xe_force_wake_put(gt_to_fw(ss->gt), fw_ref);
|
|
|
|
xe_pm_runtime_put(xe);
|
|
|
|
/* Calculate devcoredump size */
|
|
ss->read.size = __xe_devcoredump_read(NULL, INT_MAX, coredump);
|
|
|
|
ss->read.buffer = kvmalloc(ss->read.size, GFP_USER);
|
|
if (!ss->read.buffer)
|
|
return;
|
|
|
|
__xe_devcoredump_read(ss->read.buffer, ss->read.size, coredump);
|
|
xe_devcoredump_snapshot_free(ss);
|
|
}
|
|
|
|
static void devcoredump_snapshot(struct xe_devcoredump *coredump,
|
|
struct xe_exec_queue *q,
|
|
struct xe_sched_job *job)
|
|
{
|
|
struct xe_devcoredump_snapshot *ss = &coredump->snapshot;
|
|
struct xe_guc *guc = exec_queue_to_guc(q);
|
|
u32 adj_logical_mask = q->logical_mask;
|
|
u32 width_mask = (0x1 << q->width) - 1;
|
|
const char *process_name = "no process";
|
|
|
|
unsigned int fw_ref;
|
|
bool cookie;
|
|
int i;
|
|
|
|
ss->snapshot_time = ktime_get_real();
|
|
ss->boot_time = ktime_get_boottime();
|
|
|
|
if (q->vm && q->vm->xef) {
|
|
process_name = q->vm->xef->process_name;
|
|
ss->pid = q->vm->xef->pid;
|
|
}
|
|
|
|
strscpy(ss->process_name, process_name);
|
|
|
|
ss->gt = q->gt;
|
|
INIT_WORK(&ss->work, xe_devcoredump_deferred_snap_work);
|
|
|
|
cookie = dma_fence_begin_signalling();
|
|
for (i = 0; q->width > 1 && i < XE_HW_ENGINE_MAX_INSTANCE;) {
|
|
if (adj_logical_mask & BIT(i)) {
|
|
adj_logical_mask |= width_mask << i;
|
|
i += q->width;
|
|
} else {
|
|
++i;
|
|
}
|
|
}
|
|
|
|
/* keep going if fw fails as we still want to save the memory and SW data */
|
|
fw_ref = xe_force_wake_get(gt_to_fw(q->gt), XE_FORCEWAKE_ALL);
|
|
|
|
ss->guc.log = xe_guc_log_snapshot_capture(&guc->log, true);
|
|
ss->guc.ct = xe_guc_ct_snapshot_capture(&guc->ct);
|
|
ss->ge = xe_guc_exec_queue_snapshot_capture(q);
|
|
if (job)
|
|
ss->job = xe_sched_job_snapshot_capture(job);
|
|
ss->vm = xe_vm_snapshot_capture(q->vm);
|
|
|
|
xe_engine_snapshot_capture_for_queue(q);
|
|
|
|
queue_work(system_unbound_wq, &ss->work);
|
|
|
|
xe_force_wake_put(gt_to_fw(q->gt), fw_ref);
|
|
dma_fence_end_signalling(cookie);
|
|
}
|
|
|
|
/**
|
|
* xe_devcoredump - Take the required snapshots and initialize coredump device.
|
|
* @q: The faulty xe_exec_queue, where the issue was detected.
|
|
* @job: The faulty xe_sched_job, where the issue was detected.
|
|
* @fmt: Printf format + args to describe the reason for the core dump
|
|
*
|
|
* This function should be called at the crash time within the serialized
|
|
* gt_reset. It is skipped if we still have the core dump device available
|
|
* with the information of the 'first' snapshot.
|
|
*/
|
|
__printf(3, 4)
|
|
void xe_devcoredump(struct xe_exec_queue *q, struct xe_sched_job *job, const char *fmt, ...)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(q->gt);
|
|
struct xe_devcoredump *coredump = &xe->devcoredump;
|
|
va_list varg;
|
|
|
|
mutex_lock(&coredump->lock);
|
|
|
|
if (coredump->captured) {
|
|
drm_dbg(&xe->drm, "Multiple hangs are occurring, but only the first snapshot was taken\n");
|
|
mutex_unlock(&coredump->lock);
|
|
return;
|
|
}
|
|
|
|
coredump->captured = true;
|
|
|
|
va_start(varg, fmt);
|
|
coredump->snapshot.reason = kvasprintf(GFP_ATOMIC, fmt, varg);
|
|
va_end(varg);
|
|
|
|
devcoredump_snapshot(coredump, q, job);
|
|
|
|
drm_info(&xe->drm, "Xe device coredump has been created\n");
|
|
drm_info(&xe->drm, "Check your /sys/class/drm/card%d/device/devcoredump/data\n",
|
|
xe->drm.primary->index);
|
|
|
|
mutex_unlock(&coredump->lock);
|
|
}
|
|
|
|
static void xe_driver_devcoredump_fini(void *arg)
|
|
{
|
|
struct drm_device *drm = arg;
|
|
|
|
dev_coredump_put(drm->dev);
|
|
}
|
|
|
|
int xe_devcoredump_init(struct xe_device *xe)
|
|
{
|
|
int err;
|
|
|
|
err = drmm_mutex_init(&xe->drm, &xe->devcoredump.lock);
|
|
if (err)
|
|
return err;
|
|
|
|
if (IS_ENABLED(CONFIG_LOCKDEP)) {
|
|
fs_reclaim_acquire(GFP_KERNEL);
|
|
might_lock(&xe->devcoredump.lock);
|
|
fs_reclaim_release(GFP_KERNEL);
|
|
}
|
|
|
|
return devm_add_action_or_reset(xe->drm.dev, xe_driver_devcoredump_fini, &xe->drm);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* xe_print_blob_ascii85 - print a BLOB to some useful location in ASCII85
|
|
*
|
|
* The output is split into multiple calls to drm_puts() because some print
|
|
* targets, e.g. dmesg, cannot handle arbitrarily long lines. These targets may
|
|
* add newlines, as is the case with dmesg: each drm_puts() call creates a
|
|
* separate line.
|
|
*
|
|
* There is also a scheduler yield call to prevent the 'task has been stuck for
|
|
* 120s' kernel hang check feature from firing when printing to a slow target
|
|
* such as dmesg over a serial port.
|
|
*
|
|
* @p: the printer object to output to
|
|
* @prefix: optional prefix to add to output string
|
|
* @suffix: optional suffix to add at the end. 0 disables it and is
|
|
* not added to the output, which is useful when using multiple calls
|
|
* to dump data to @p
|
|
* @blob: the Binary Large OBject to dump out
|
|
* @offset: offset in bytes to skip from the front of the BLOB, must be a multiple of sizeof(u32)
|
|
* @size: the size in bytes of the BLOB, must be a multiple of sizeof(u32)
|
|
*/
|
|
void xe_print_blob_ascii85(struct drm_printer *p, const char *prefix, char suffix,
|
|
const void *blob, size_t offset, size_t size)
|
|
{
|
|
const u32 *blob32 = (const u32 *)blob;
|
|
char buff[ASCII85_BUFSZ], *line_buff;
|
|
size_t line_pos = 0;
|
|
|
|
#define DMESG_MAX_LINE_LEN 800
|
|
/* Always leave space for the suffix char and the \0 */
|
|
#define MIN_SPACE (ASCII85_BUFSZ + 2) /* 85 + "<suffix>\0" */
|
|
|
|
if (size & 3)
|
|
drm_printf(p, "Size not word aligned: %zu", size);
|
|
if (offset & 3)
|
|
drm_printf(p, "Offset not word aligned: %zu", size);
|
|
|
|
line_buff = kzalloc(DMESG_MAX_LINE_LEN, GFP_KERNEL);
|
|
if (IS_ERR_OR_NULL(line_buff)) {
|
|
drm_printf(p, "Failed to allocate line buffer: %pe", line_buff);
|
|
return;
|
|
}
|
|
|
|
blob32 += offset / sizeof(*blob32);
|
|
size /= sizeof(*blob32);
|
|
|
|
if (prefix) {
|
|
strscpy(line_buff, prefix, DMESG_MAX_LINE_LEN - MIN_SPACE - 2);
|
|
line_pos = strlen(line_buff);
|
|
|
|
line_buff[line_pos++] = ':';
|
|
line_buff[line_pos++] = ' ';
|
|
}
|
|
|
|
while (size--) {
|
|
u32 val = *(blob32++);
|
|
|
|
strscpy(line_buff + line_pos, ascii85_encode(val, buff),
|
|
DMESG_MAX_LINE_LEN - line_pos);
|
|
line_pos += strlen(line_buff + line_pos);
|
|
|
|
if ((line_pos + MIN_SPACE) >= DMESG_MAX_LINE_LEN) {
|
|
line_buff[line_pos++] = 0;
|
|
|
|
drm_puts(p, line_buff);
|
|
|
|
line_pos = 0;
|
|
|
|
/* Prevent 'stuck thread' time out errors */
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
if (suffix)
|
|
line_buff[line_pos++] = suffix;
|
|
|
|
if (line_pos) {
|
|
line_buff[line_pos++] = 0;
|
|
drm_puts(p, line_buff);
|
|
}
|
|
|
|
kfree(line_buff);
|
|
|
|
#undef MIN_SPACE
|
|
#undef DMESG_MAX_LINE_LEN
|
|
}
|