1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vpe.c
Peyton Lee 3f19cffde9 drm/amdgpu/vpe: fix vpe dpm clk ratio setup failed
Some version of BIOS does not enable all clock levels,
resulting in high level clock frequency of 0.
The number of valid CLKs must be confirmed in advance.

Signed-off-by: Peyton Lee <peytolee@amd.com>
Reviewed-by: Lang Yu <lang.yu@amd.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2024-05-02 15:43:48 -04:00

930 lines
25 KiB
C

/*
* Copyright 2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/firmware.h>
#include <drm/drm_drv.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_vpe.h"
#include "amdgpu_smu.h"
#include "soc15_common.h"
#include "vpe_v6_1.h"
#define AMDGPU_CSA_VPE_SIZE 64
/* VPE CSA resides in the 4th page of CSA */
#define AMDGPU_CSA_VPE_OFFSET (4096 * 3)
/* 1 second timeout */
#define VPE_IDLE_TIMEOUT msecs_to_jiffies(1000)
#define VPE_MAX_DPM_LEVEL 4
#define FIXED1_8_BITS_PER_FRACTIONAL_PART 8
#define GET_PRATIO_INTEGER_PART(x) ((x) >> FIXED1_8_BITS_PER_FRACTIONAL_PART)
static void vpe_set_ring_funcs(struct amdgpu_device *adev);
static inline uint16_t div16_u16_rem(uint16_t dividend, uint16_t divisor, uint16_t *remainder)
{
*remainder = dividend % divisor;
return dividend / divisor;
}
static inline uint16_t complete_integer_division_u16(
uint16_t dividend,
uint16_t divisor,
uint16_t *remainder)
{
return div16_u16_rem(dividend, divisor, (uint16_t *)remainder);
}
static uint16_t vpe_u1_8_from_fraction(uint16_t numerator, uint16_t denominator)
{
u16 arg1_value = numerator;
u16 arg2_value = denominator;
uint16_t remainder;
/* determine integer part */
uint16_t res_value = complete_integer_division_u16(
arg1_value, arg2_value, &remainder);
if (res_value > 127 /* CHAR_MAX */)
return 0;
/* determine fractional part */
{
unsigned int i = FIXED1_8_BITS_PER_FRACTIONAL_PART;
do {
remainder <<= 1;
res_value <<= 1;
if (remainder >= arg2_value) {
res_value |= 1;
remainder -= arg2_value;
}
} while (--i != 0);
}
/* round up LSB */
{
uint16_t summand = (remainder << 1) >= arg2_value;
if ((res_value + summand) > 32767 /* SHRT_MAX */)
return 0;
res_value += summand;
}
return res_value;
}
static uint16_t vpe_internal_get_pratio(uint16_t from_frequency, uint16_t to_frequency)
{
uint16_t pratio = vpe_u1_8_from_fraction(from_frequency, to_frequency);
if (GET_PRATIO_INTEGER_PART(pratio) > 1)
pratio = 0;
return pratio;
}
/*
* VPE has 4 DPM levels from level 0 (lowerest) to 3 (highest),
* VPE FW will dynamically decide which level should be used according to current loading.
*
* Get VPE and SOC clocks from PM, and select the appropriate four clock values,
* calculate the ratios of adjusting from one clock to another.
* The VPE FW can then request the appropriate frequency from the PMFW.
*/
int amdgpu_vpe_configure_dpm(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = vpe->ring.adev;
uint32_t dpm_ctl;
if (adev->pm.dpm_enabled) {
struct dpm_clocks clock_table = { 0 };
struct dpm_clock *VPEClks;
struct dpm_clock *SOCClks;
uint32_t idx;
uint32_t vpeclk_enalbled_num = 0;
uint32_t pratio_vmax_vnorm = 0, pratio_vnorm_vmid = 0, pratio_vmid_vmin = 0;
uint16_t pratio_vmin_freq = 0, pratio_vmid_freq = 0, pratio_vnorm_freq = 0, pratio_vmax_freq = 0;
dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable));
dpm_ctl |= 1; /* DPM enablement */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl);
/* Get VPECLK and SOCCLK */
if (amdgpu_dpm_get_dpm_clock_table(adev, &clock_table)) {
dev_dbg(adev->dev, "%s: get clock failed!\n", __func__);
goto disable_dpm;
}
SOCClks = clock_table.SocClocks;
VPEClks = clock_table.VPEClocks;
/* Comfirm enabled vpe clk num
* Enabled VPE clocks are ordered from low to high in VPEClks
* The highest valid clock index+1 is the number of VPEClks
*/
for (idx = PP_SMU_NUM_VPECLK_DPM_LEVELS; idx && !vpeclk_enalbled_num; idx--)
if (VPEClks[idx-1].Freq)
vpeclk_enalbled_num = idx;
/* vpe dpm only cares 4 levels. */
for (idx = 0; idx < VPE_MAX_DPM_LEVEL; idx++) {
uint32_t soc_dpm_level;
uint32_t min_freq;
if (idx == 0)
soc_dpm_level = 0;
else
soc_dpm_level = (idx * 2) + 1;
/* clamp the max level */
if (soc_dpm_level > vpeclk_enalbled_num - 1)
soc_dpm_level = vpeclk_enalbled_num - 1;
min_freq = (SOCClks[soc_dpm_level].Freq < VPEClks[soc_dpm_level].Freq) ?
SOCClks[soc_dpm_level].Freq : VPEClks[soc_dpm_level].Freq;
switch (idx) {
case 0:
pratio_vmin_freq = min_freq;
break;
case 1:
pratio_vmid_freq = min_freq;
break;
case 2:
pratio_vnorm_freq = min_freq;
break;
case 3:
pratio_vmax_freq = min_freq;
break;
default:
break;
}
}
if (pratio_vmin_freq && pratio_vmid_freq && pratio_vnorm_freq && pratio_vmax_freq) {
uint32_t pratio_ctl;
pratio_vmax_vnorm = (uint32_t)vpe_internal_get_pratio(pratio_vmax_freq, pratio_vnorm_freq);
pratio_vnorm_vmid = (uint32_t)vpe_internal_get_pratio(pratio_vnorm_freq, pratio_vmid_freq);
pratio_vmid_vmin = (uint32_t)vpe_internal_get_pratio(pratio_vmid_freq, pratio_vmin_freq);
pratio_ctl = pratio_vmax_vnorm | (pratio_vnorm_vmid << 9) | (pratio_vmid_vmin << 18);
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_pratio), pratio_ctl); /* PRatio */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_request_interval), 24000); /* 1ms, unit=1/24MHz */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_decision_threshold), 1200000); /* 50ms */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_busy_clamp_threshold), 1200000);/* 50ms */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_idle_clamp_threshold), 1200000);/* 50ms */
dev_dbg(adev->dev, "%s: configure vpe dpm pratio done!\n", __func__);
} else {
dev_dbg(adev->dev, "%s: invalid pratio parameters!\n", __func__);
goto disable_dpm;
}
}
return 0;
disable_dpm:
dpm_ctl = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable));
dpm_ctl &= 0xfffffffe; /* Disable DPM */
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.dpm_enable), dpm_ctl);
dev_dbg(adev->dev, "%s: disable vpe dpm\n", __func__);
return -EINVAL;
}
int amdgpu_vpe_psp_update_sram(struct amdgpu_device *adev)
{
struct amdgpu_firmware_info ucode = {
.ucode_id = AMDGPU_UCODE_ID_VPE,
.mc_addr = adev->vpe.cmdbuf_gpu_addr,
.ucode_size = 8,
};
return psp_execute_ip_fw_load(&adev->psp, &ucode);
}
int amdgpu_vpe_init_microcode(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = vpe->ring.adev;
const struct vpe_firmware_header_v1_0 *vpe_hdr;
char fw_prefix[32], fw_name[64];
int ret;
amdgpu_ucode_ip_version_decode(adev, VPE_HWIP, fw_prefix, sizeof(fw_prefix));
snprintf(fw_name, sizeof(fw_name), "amdgpu/%s.bin", fw_prefix);
ret = amdgpu_ucode_request(adev, &adev->vpe.fw, fw_name);
if (ret)
goto out;
vpe_hdr = (const struct vpe_firmware_header_v1_0 *)adev->vpe.fw->data;
adev->vpe.fw_version = le32_to_cpu(vpe_hdr->header.ucode_version);
adev->vpe.feature_version = le32_to_cpu(vpe_hdr->ucode_feature_version);
if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
struct amdgpu_firmware_info *info;
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTX];
info->ucode_id = AMDGPU_UCODE_ID_VPE_CTX;
info->fw = adev->vpe.fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(vpe_hdr->ctx_ucode_size_bytes), PAGE_SIZE);
info = &adev->firmware.ucode[AMDGPU_UCODE_ID_VPE_CTL];
info->ucode_id = AMDGPU_UCODE_ID_VPE_CTL;
info->fw = adev->vpe.fw;
adev->firmware.fw_size +=
ALIGN(le32_to_cpu(vpe_hdr->ctl_ucode_size_bytes), PAGE_SIZE);
}
return 0;
out:
dev_err(adev->dev, "fail to initialize vpe microcode\n");
release_firmware(adev->vpe.fw);
adev->vpe.fw = NULL;
return ret;
}
int amdgpu_vpe_ring_init(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe);
struct amdgpu_ring *ring = &vpe->ring;
int ret;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->vm_hub = AMDGPU_MMHUB0(0);
ring->doorbell_index = (adev->doorbell_index.vpe_ring << 1);
snprintf(ring->name, 4, "vpe");
ret = amdgpu_ring_init(adev, ring, 1024, &vpe->trap_irq, 0,
AMDGPU_RING_PRIO_DEFAULT, NULL);
if (ret)
return ret;
return 0;
}
int amdgpu_vpe_ring_fini(struct amdgpu_vpe *vpe)
{
amdgpu_ring_fini(&vpe->ring);
return 0;
}
static int vpe_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
switch (amdgpu_ip_version(adev, VPE_HWIP, 0)) {
case IP_VERSION(6, 1, 0):
vpe_v6_1_set_funcs(vpe);
break;
case IP_VERSION(6, 1, 1):
vpe_v6_1_set_funcs(vpe);
vpe->collaborate_mode = true;
break;
default:
return -EINVAL;
}
vpe_set_ring_funcs(adev);
vpe_set_regs(vpe);
dev_info(adev->dev, "VPE: collaborate mode %s", vpe->collaborate_mode ? "true" : "false");
return 0;
}
static void vpe_idle_work_handler(struct work_struct *work)
{
struct amdgpu_device *adev =
container_of(work, struct amdgpu_device, vpe.idle_work.work);
unsigned int fences = 0;
fences += amdgpu_fence_count_emitted(&adev->vpe.ring);
if (fences == 0)
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE);
else
schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT);
}
static int vpe_common_init(struct amdgpu_vpe *vpe)
{
struct amdgpu_device *adev = container_of(vpe, struct amdgpu_device, vpe);
int r;
r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT,
&adev->vpe.cmdbuf_obj,
&adev->vpe.cmdbuf_gpu_addr,
(void **)&adev->vpe.cmdbuf_cpu_addr);
if (r) {
dev_err(adev->dev, "VPE: failed to allocate cmdbuf bo %d\n", r);
return r;
}
vpe->context_started = false;
INIT_DELAYED_WORK(&adev->vpe.idle_work, vpe_idle_work_handler);
return 0;
}
static int vpe_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
int ret;
ret = vpe_common_init(vpe);
if (ret)
goto out;
ret = vpe_irq_init(vpe);
if (ret)
goto out;
ret = vpe_ring_init(vpe);
if (ret)
goto out;
ret = vpe_init_microcode(vpe);
if (ret)
goto out;
out:
return ret;
}
static int vpe_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
release_firmware(vpe->fw);
vpe->fw = NULL;
vpe_ring_fini(vpe);
amdgpu_bo_free_kernel(&adev->vpe.cmdbuf_obj,
&adev->vpe.cmdbuf_gpu_addr,
(void **)&adev->vpe.cmdbuf_cpu_addr);
return 0;
}
static int vpe_hw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
int ret;
/* Power on VPE */
ret = amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE,
AMD_PG_STATE_UNGATE);
if (ret)
return ret;
ret = vpe_load_microcode(vpe);
if (ret)
return ret;
ret = vpe_ring_start(vpe);
if (ret)
return ret;
return 0;
}
static int vpe_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
vpe_ring_stop(vpe);
/* Power off VPE */
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_GATE);
return 0;
}
static int vpe_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cancel_delayed_work_sync(&adev->vpe.idle_work);
return vpe_hw_fini(adev);
}
static int vpe_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return vpe_hw_init(adev);
}
static void vpe_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
int i;
for (i = 0; i < count; i++)
if (i == 0)
amdgpu_ring_write(ring, ring->funcs->nop |
VPE_CMD_NOP_HEADER_COUNT(count - 1));
else
amdgpu_ring_write(ring, ring->funcs->nop);
}
static uint64_t vpe_get_csa_mc_addr(struct amdgpu_ring *ring, uint32_t vmid)
{
struct amdgpu_device *adev = ring->adev;
uint32_t index = 0;
uint64_t csa_mc_addr;
if (amdgpu_sriov_vf(adev) || vmid == 0 || !adev->gfx.mcbp)
return 0;
csa_mc_addr = amdgpu_csa_vaddr(adev) + AMDGPU_CSA_VPE_OFFSET +
index * AMDGPU_CSA_VPE_SIZE;
return csa_mc_addr;
}
static void vpe_ring_emit_pred_exec(struct amdgpu_ring *ring,
uint32_t device_select,
uint32_t exec_count)
{
if (!ring->adev->vpe.collaborate_mode)
return;
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_PRED_EXE, 0) |
(device_select << 16));
amdgpu_ring_write(ring, exec_count & 0x1fff);
}
static void vpe_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_job *job,
struct amdgpu_ib *ib,
uint32_t flags)
{
uint32_t vmid = AMDGPU_JOB_GET_VMID(job);
uint64_t csa_mc_addr = vpe_get_csa_mc_addr(ring, vmid);
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_INDIRECT, 0) |
VPE_CMD_INDIRECT_HEADER_VMID(vmid & 0xf));
/* base must be 32 byte aligned */
amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0);
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
amdgpu_ring_write(ring, ib->length_dw);
amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr));
amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr));
}
static void vpe_ring_emit_fence(struct amdgpu_ring *ring, uint64_t addr,
uint64_t seq, unsigned int flags)
{
int i = 0;
do {
/* write the fence */
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0));
/* zero in first two bits */
WARN_ON_ONCE(addr & 0x3);
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, i == 0 ? lower_32_bits(seq) : upper_32_bits(seq));
addr += 4;
} while ((flags & AMDGPU_FENCE_FLAG_64BIT) && (i++ < 1));
if (flags & AMDGPU_FENCE_FLAG_INT) {
/* generate an interrupt */
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_TRAP, 0));
amdgpu_ring_write(ring, 0);
}
}
static void vpe_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
{
uint32_t seq = ring->fence_drv.sync_seq;
uint64_t addr = ring->fence_drv.gpu_addr;
vpe_ring_emit_pred_exec(ring, 0, 6);
/* wait for idle */
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM,
VPE_POLL_REGMEM_SUBOP_REGMEM) |
VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
VPE_CMD_POLL_REGMEM_HEADER_MEM(1));
amdgpu_ring_write(ring, addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, seq); /* reference */
amdgpu_ring_write(ring, 0xffffffff); /* mask */
amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
VPE_CMD_POLL_REGMEM_DW5_INTERVAL(4));
}
static void vpe_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val)
{
vpe_ring_emit_pred_exec(ring, 0, 3);
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_REG_WRITE, 0));
amdgpu_ring_write(ring, reg << 2);
amdgpu_ring_write(ring, val);
}
static void vpe_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
uint32_t val, uint32_t mask)
{
vpe_ring_emit_pred_exec(ring, 0, 6);
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_POLL_REGMEM,
VPE_POLL_REGMEM_SUBOP_REGMEM) |
VPE_CMD_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
VPE_CMD_POLL_REGMEM_HEADER_MEM(0));
amdgpu_ring_write(ring, reg << 2);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, val); /* reference */
amdgpu_ring_write(ring, mask); /* mask */
amdgpu_ring_write(ring, VPE_CMD_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
VPE_CMD_POLL_REGMEM_DW5_INTERVAL(10));
}
static void vpe_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned int vmid,
uint64_t pd_addr)
{
amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
}
static unsigned int vpe_ring_init_cond_exec(struct amdgpu_ring *ring,
uint64_t addr)
{
unsigned int ret;
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_COND_EXE, 0));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, 1);
ret = ring->wptr & ring->buf_mask;
amdgpu_ring_write(ring, 0);
return ret;
}
static int vpe_ring_preempt_ib(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
uint32_t preempt_reg = vpe->regs.queue0_preempt;
int i, r = 0;
/* assert preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, false);
/* emit the trailing fence */
ring->trail_seq += 1;
amdgpu_ring_alloc(ring, 10);
vpe_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0);
amdgpu_ring_commit(ring);
/* assert IB preemption */
WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 1);
/* poll the trailing fence */
for (i = 0; i < adev->usec_timeout; i++) {
if (ring->trail_seq ==
le32_to_cpu(*(ring->trail_fence_cpu_addr)))
break;
udelay(1);
}
if (i >= adev->usec_timeout) {
r = -EINVAL;
dev_err(adev->dev, "ring %d failed to be preempted\n", ring->idx);
}
/* deassert IB preemption */
WREG32(vpe_get_reg_offset(vpe, ring->me, preempt_reg), 0);
/* deassert the preemption condition */
amdgpu_ring_set_preempt_cond_exec(ring, true);
return r;
}
static int vpe_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int vpe_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct amdgpu_vpe *vpe = &adev->vpe;
if (!adev->pm.dpm_enabled)
dev_err(adev->dev, "Without PM, cannot support powergating\n");
dev_dbg(adev->dev, "%s: %s!\n", __func__, (state == AMD_PG_STATE_GATE) ? "GATE":"UNGATE");
if (state == AMD_PG_STATE_GATE) {
amdgpu_dpm_enable_vpe(adev, false);
vpe->context_started = false;
} else {
amdgpu_dpm_enable_vpe(adev, true);
}
return 0;
}
static uint64_t vpe_ring_get_rptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
uint64_t rptr;
if (ring->use_doorbell) {
rptr = atomic64_read((atomic64_t *)ring->rptr_cpu_addr);
dev_dbg(adev->dev, "rptr/doorbell before shift == 0x%016llx\n", rptr);
} else {
rptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_hi));
rptr = rptr << 32;
rptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_rptr_lo));
dev_dbg(adev->dev, "rptr before shift [%i] == 0x%016llx\n", ring->me, rptr);
}
return (rptr >> 2);
}
static uint64_t vpe_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
uint64_t wptr;
if (ring->use_doorbell) {
wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr);
dev_dbg(adev->dev, "wptr/doorbell before shift == 0x%016llx\n", wptr);
} else {
wptr = RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_hi));
wptr = wptr << 32;
wptr |= RREG32(vpe_get_reg_offset(vpe, ring->me, vpe->regs.queue0_rb_wptr_lo));
dev_dbg(adev->dev, "wptr before shift [%i] == 0x%016llx\n", ring->me, wptr);
}
return (wptr >> 2);
}
static void vpe_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
if (ring->use_doorbell) {
dev_dbg(adev->dev, "Using doorbell, \
wptr_offs == 0x%08x, \
lower_32_bits(ring->wptr) << 2 == 0x%08x, \
upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
ring->wptr_offs,
lower_32_bits(ring->wptr << 2),
upper_32_bits(ring->wptr << 2));
atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2);
WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
if (vpe->collaborate_mode)
WDOORBELL64(ring->doorbell_index + 4, ring->wptr << 2);
} else {
int i;
for (i = 0; i < vpe->num_instances; i++) {
dev_dbg(adev->dev, "Not using doorbell, \
regVPEC_QUEUE0_RB_WPTR == 0x%08x, \
regVPEC_QUEUE0_RB_WPTR_HI == 0x%08x\n",
lower_32_bits(ring->wptr << 2),
upper_32_bits(ring->wptr << 2));
WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_lo),
lower_32_bits(ring->wptr << 2));
WREG32(vpe_get_reg_offset(vpe, i, vpe->regs.queue0_rb_wptr_hi),
upper_32_bits(ring->wptr << 2));
}
}
}
static int vpe_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
const uint32_t test_pattern = 0xdeadbeef;
uint32_t index, i;
uint64_t wb_addr;
int ret;
ret = amdgpu_device_wb_get(adev, &index);
if (ret) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret);
return ret;
}
adev->wb.wb[index] = 0;
wb_addr = adev->wb.gpu_addr + (index * 4);
ret = amdgpu_ring_alloc(ring, 4);
if (ret) {
dev_err(adev->dev, "amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, ret);
goto out;
}
amdgpu_ring_write(ring, VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0));
amdgpu_ring_write(ring, lower_32_bits(wb_addr));
amdgpu_ring_write(ring, upper_32_bits(wb_addr));
amdgpu_ring_write(ring, test_pattern);
amdgpu_ring_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
if (le32_to_cpu(adev->wb.wb[index]) == test_pattern)
goto out;
udelay(1);
}
ret = -ETIMEDOUT;
out:
amdgpu_device_wb_free(adev, index);
return ret;
}
static int vpe_ring_test_ib(struct amdgpu_ring *ring, long timeout)
{
struct amdgpu_device *adev = ring->adev;
const uint32_t test_pattern = 0xdeadbeef;
struct amdgpu_ib ib = {};
struct dma_fence *f = NULL;
uint32_t index;
uint64_t wb_addr;
int ret;
ret = amdgpu_device_wb_get(adev, &index);
if (ret) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", ret);
return ret;
}
adev->wb.wb[index] = 0;
wb_addr = adev->wb.gpu_addr + (index * 4);
ret = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib);
if (ret)
goto err0;
ib.ptr[0] = VPE_CMD_HEADER(VPE_CMD_OPCODE_FENCE, 0);
ib.ptr[1] = lower_32_bits(wb_addr);
ib.ptr[2] = upper_32_bits(wb_addr);
ib.ptr[3] = test_pattern;
ib.ptr[4] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.ptr[5] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.ptr[6] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.ptr[7] = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0);
ib.length_dw = 8;
ret = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
if (ret)
goto err1;
ret = dma_fence_wait_timeout(f, false, timeout);
if (ret <= 0) {
ret = ret ? : -ETIMEDOUT;
goto err1;
}
ret = (le32_to_cpu(adev->wb.wb[index]) == test_pattern) ? 0 : -EINVAL;
err1:
amdgpu_ib_free(adev, &ib, NULL);
dma_fence_put(f);
err0:
amdgpu_device_wb_free(adev, index);
return ret;
}
static void vpe_ring_begin_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_vpe *vpe = &adev->vpe;
cancel_delayed_work_sync(&adev->vpe.idle_work);
/* Power on VPE and notify VPE of new context */
if (!vpe->context_started) {
uint32_t context_notify;
/* Power on VPE */
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VPE, AMD_PG_STATE_UNGATE);
/* Indicates that a job from a new context has been submitted. */
context_notify = RREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator));
if ((context_notify & 0x1) == 0)
context_notify |= 0x1;
else
context_notify &= ~(0x1);
WREG32(vpe_get_reg_offset(vpe, 0, vpe->regs.context_indicator), context_notify);
vpe->context_started = true;
}
}
static void vpe_ring_end_use(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
schedule_delayed_work(&adev->vpe.idle_work, VPE_IDLE_TIMEOUT);
}
static const struct amdgpu_ring_funcs vpe_ring_funcs = {
.type = AMDGPU_RING_TYPE_VPE,
.align_mask = 0xf,
.nop = VPE_CMD_HEADER(VPE_CMD_OPCODE_NOP, 0),
.support_64bit_ptrs = true,
.get_rptr = vpe_ring_get_rptr,
.get_wptr = vpe_ring_get_wptr,
.set_wptr = vpe_ring_set_wptr,
.emit_frame_size =
5 + /* vpe_ring_init_cond_exec */
6 + /* vpe_ring_emit_pipeline_sync */
10 + 10 + 10 + /* vpe_ring_emit_fence */
/* vpe_ring_emit_vm_flush */
SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6,
.emit_ib_size = 7 + 6,
.emit_ib = vpe_ring_emit_ib,
.emit_pipeline_sync = vpe_ring_emit_pipeline_sync,
.emit_fence = vpe_ring_emit_fence,
.emit_vm_flush = vpe_ring_emit_vm_flush,
.emit_wreg = vpe_ring_emit_wreg,
.emit_reg_wait = vpe_ring_emit_reg_wait,
.emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
.insert_nop = vpe_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.test_ring = vpe_ring_test_ring,
.test_ib = vpe_ring_test_ib,
.init_cond_exec = vpe_ring_init_cond_exec,
.preempt_ib = vpe_ring_preempt_ib,
.begin_use = vpe_ring_begin_use,
.end_use = vpe_ring_end_use,
};
static void vpe_set_ring_funcs(struct amdgpu_device *adev)
{
adev->vpe.ring.funcs = &vpe_ring_funcs;
}
const struct amd_ip_funcs vpe_ip_funcs = {
.name = "vpe_v6_1",
.early_init = vpe_early_init,
.late_init = NULL,
.sw_init = vpe_sw_init,
.sw_fini = vpe_sw_fini,
.hw_init = vpe_hw_init,
.hw_fini = vpe_hw_fini,
.suspend = vpe_suspend,
.resume = vpe_resume,
.soft_reset = NULL,
.set_clockgating_state = vpe_set_clockgating_state,
.set_powergating_state = vpe_set_powergating_state,
};
const struct amdgpu_ip_block_version vpe_v6_1_ip_block = {
.type = AMD_IP_BLOCK_TYPE_VPE,
.major = 6,
.minor = 1,
.rev = 0,
.funcs = &vpe_ip_funcs,
};