1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/iommu/amd/iommu.c
Alejandro Jimenez c5b0320bbf iommu/amd: Preserve default DTE fields when updating Host Page Table Root
When updating the page table root field on the DTE, avoid overwriting any
bits that are already set. The earlier call to make_clear_dte() writes
default values that all DTEs must have set (currently DTE[V]), and those
must be preserved.

Currently this doesn't cause problems since the page table root update is
the first field that is set after make_clear_dte() is called, and
DTE_FLAG_V is set again later along with the permission bits (IR/IW).
Remove this redundant assignment too.

Fixes: fd5dff9de4 ("iommu/amd: Modify set_dte_entry() to use 256-bit DTE helpers")
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Reviewed-by: Dheeraj Kumar Srivastava <dheerajkumar.srivastava@amd.com>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/20250106191413.3107140-1-alejandro.j.jimenez@oracle.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
2025-02-28 12:18:00 +01:00

4001 lines
100 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
* Author: Joerg Roedel <jroedel@suse.de>
* Leo Duran <leo.duran@amd.com>
*/
#define pr_fmt(fmt) "AMD-Vi: " fmt
#define dev_fmt(fmt) pr_fmt(fmt)
#include <linux/ratelimit.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/pci-ats.h>
#include <linux/bitmap.h>
#include <linux/slab.h>
#include <linux/debugfs.h>
#include <linux/scatterlist.h>
#include <linux/dma-map-ops.h>
#include <linux/dma-direct.h>
#include <linux/idr.h>
#include <linux/iommu-helper.h>
#include <linux/delay.h>
#include <linux/amd-iommu.h>
#include <linux/notifier.h>
#include <linux/export.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/irqdomain.h>
#include <linux/percpu.h>
#include <linux/io-pgtable.h>
#include <linux/cc_platform.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
#include <asm/proto.h>
#include <asm/iommu.h>
#include <asm/gart.h>
#include <asm/dma.h>
#include <uapi/linux/iommufd.h>
#include "amd_iommu.h"
#include "../dma-iommu.h"
#include "../irq_remapping.h"
#include "../iommu-pages.h"
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
/* Reserved IOVA ranges */
#define MSI_RANGE_START (0xfee00000)
#define MSI_RANGE_END (0xfeefffff)
#define HT_RANGE_START (0xfd00000000ULL)
#define HT_RANGE_END (0xffffffffffULL)
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
LIST_HEAD(acpihid_map);
const struct iommu_ops amd_iommu_ops;
static const struct iommu_dirty_ops amd_dirty_ops;
int amd_iommu_max_glx_val = -1;
/*
* general struct to manage commands send to an IOMMU
*/
struct iommu_cmd {
u32 data[4];
};
/*
* AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
* to know which ones are already in use.
*/
DEFINE_IDA(pdom_ids);
struct kmem_cache *amd_iommu_irq_cache;
static int amd_iommu_attach_device(struct iommu_domain *dom,
struct device *dev);
static void set_dte_entry(struct amd_iommu *iommu,
struct iommu_dev_data *dev_data);
static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
/****************************************************************************
*
* Helper functions
*
****************************************************************************/
static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
{
/*
* Note:
* We use arch_cmpxchg128_local() because:
* - Need cmpxchg16b instruction mainly for 128-bit store to DTE
* (not necessary for cmpxchg since this function is already
* protected by a spin_lock for this DTE).
* - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
*/
arch_cmpxchg128_local(ptr, *ptr, val);
}
static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
{
struct dev_table_entry old;
old.data128[1] = ptr->data128[1];
/*
* Preserve DTE_DATA2_INTR_MASK. This needs to be
* done here since it requires to be inside
* spin_lock(&dev_data->dte_lock) context.
*/
new->data[2] &= ~DTE_DATA2_INTR_MASK;
new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
}
static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
{
amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
}
/*
* Note:
* IOMMU reads the entire Device Table entry in a single 256-bit transaction
* but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
* need to ensure the following:
* - DTE[V|GV] bit is being written last when setting.
* - DTE[V|GV] bit is being written first when clearing.
*
* This function is used only by code, which updates DMA translation part of the DTE.
* So, only consider control bits related to DMA when updating the entry.
*/
static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
struct dev_table_entry *new)
{
unsigned long flags;
struct dev_table_entry *dev_table = get_dev_table(iommu);
struct dev_table_entry *ptr = &dev_table[dev_data->devid];
spin_lock_irqsave(&dev_data->dte_lock, flags);
if (!(ptr->data[0] & DTE_FLAG_V)) {
/* Existing DTE is not valid. */
write_dte_upper128(ptr, new);
write_dte_lower128(ptr, new);
iommu_flush_dte_sync(iommu, dev_data->devid);
} else if (!(new->data[0] & DTE_FLAG_V)) {
/* Existing DTE is valid. New DTE is not valid. */
write_dte_lower128(ptr, new);
write_dte_upper128(ptr, new);
iommu_flush_dte_sync(iommu, dev_data->devid);
} else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
/*
* Both DTEs are valid.
* Existing DTE has no guest page table.
*/
write_dte_upper128(ptr, new);
write_dte_lower128(ptr, new);
iommu_flush_dte_sync(iommu, dev_data->devid);
} else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
/*
* Both DTEs are valid.
* Existing DTE has guest page table,
* new DTE has no guest page table,
*/
write_dte_lower128(ptr, new);
write_dte_upper128(ptr, new);
iommu_flush_dte_sync(iommu, dev_data->devid);
} else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
/*
* Both DTEs are valid and have guest page table,
* but have different number of levels. So, we need
* to upadte both upper and lower 128-bit value, which
* require disabling and flushing.
*/
struct dev_table_entry clear = {};
/* First disable DTE */
write_dte_lower128(ptr, &clear);
iommu_flush_dte_sync(iommu, dev_data->devid);
/* Then update DTE */
write_dte_upper128(ptr, new);
write_dte_lower128(ptr, new);
iommu_flush_dte_sync(iommu, dev_data->devid);
} else {
/*
* Both DTEs are valid and have guest page table,
* and same number of levels. We just need to only
* update the lower 128-bit. So no need to disable DTE.
*/
write_dte_lower128(ptr, new);
}
spin_unlock_irqrestore(&dev_data->dte_lock, flags);
}
static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
struct dev_table_entry *dte)
{
unsigned long flags;
struct dev_table_entry *ptr;
struct dev_table_entry *dev_table = get_dev_table(iommu);
ptr = &dev_table[dev_data->devid];
spin_lock_irqsave(&dev_data->dte_lock, flags);
dte->data128[0] = ptr->data128[0];
dte->data128[1] = ptr->data128[1];
spin_unlock_irqrestore(&dev_data->dte_lock, flags);
}
static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
{
return (pdom && (pdom->pd_mode == PD_MODE_V2));
}
static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
{
return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
}
/*
* We cannot support PASID w/ existing v1 page table in the same domain
* since it will be nested. However, existing domain w/ v2 page table
* or passthrough mode can be used for PASID.
*/
static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
{
return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
}
static inline int get_acpihid_device_id(struct device *dev,
struct acpihid_map_entry **entry)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
struct acpihid_map_entry *p;
if (!adev)
return -ENODEV;
list_for_each_entry(p, &acpihid_map, list) {
if (acpi_dev_hid_uid_match(adev, p->hid,
p->uid[0] ? p->uid : NULL)) {
if (entry)
*entry = p;
return p->devid;
}
}
return -EINVAL;
}
static inline int get_device_sbdf_id(struct device *dev)
{
int sbdf;
if (dev_is_pci(dev))
sbdf = get_pci_sbdf_id(to_pci_dev(dev));
else
sbdf = get_acpihid_device_id(dev, NULL);
return sbdf;
}
struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
{
struct dev_table_entry *dev_table;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
BUG_ON(pci_seg == NULL);
dev_table = pci_seg->dev_table;
BUG_ON(dev_table == NULL);
return dev_table;
}
static inline u16 get_device_segment(struct device *dev)
{
u16 seg;
if (dev_is_pci(dev)) {
struct pci_dev *pdev = to_pci_dev(dev);
seg = pci_domain_nr(pdev->bus);
} else {
u32 devid = get_acpihid_device_id(dev, NULL);
seg = PCI_SBDF_TO_SEGID(devid);
}
return seg;
}
/* Writes the specific IOMMU for a device into the PCI segment rlookup table */
void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
{
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
pci_seg->rlookup_table[devid] = iommu;
}
static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
{
struct amd_iommu_pci_seg *pci_seg;
for_each_pci_segment(pci_seg) {
if (pci_seg->id == seg)
return pci_seg->rlookup_table[devid];
}
return NULL;
}
static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
{
u16 seg = get_device_segment(dev);
int devid = get_device_sbdf_id(dev);
if (devid < 0)
return NULL;
return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
}
static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
{
struct iommu_dev_data *dev_data;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
if (!dev_data)
return NULL;
mutex_init(&dev_data->mutex);
spin_lock_init(&dev_data->dte_lock);
dev_data->devid = devid;
ratelimit_default_init(&dev_data->rs);
llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
return dev_data;
}
struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
{
struct iommu_dev_data *dev_data;
struct llist_node *node;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
if (llist_empty(&pci_seg->dev_data_list))
return NULL;
node = pci_seg->dev_data_list.first;
llist_for_each_entry(dev_data, node, dev_data_list) {
if (dev_data->devid == devid)
return dev_data;
}
return NULL;
}
static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
{
struct dev_table_entry new;
struct amd_iommu *iommu;
struct iommu_dev_data *dev_data, *alias_data;
u16 devid = pci_dev_id(pdev);
int ret = 0;
if (devid == alias)
return 0;
iommu = rlookup_amd_iommu(&pdev->dev);
if (!iommu)
return 0;
/* Copy the data from pdev */
dev_data = dev_iommu_priv_get(&pdev->dev);
if (!dev_data) {
pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
ret = -EINVAL;
goto out;
}
get_dte256(iommu, dev_data, &new);
/* Setup alias */
alias_data = find_dev_data(iommu, alias);
if (!alias_data) {
pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
ret = -EINVAL;
goto out;
}
update_dte256(iommu, alias_data, &new);
amd_iommu_set_rlookup_table(iommu, alias);
out:
return ret;
}
static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
{
struct pci_dev *pdev;
if (!dev_is_pci(dev))
return;
pdev = to_pci_dev(dev);
/*
* The IVRS alias stored in the alias table may not be
* part of the PCI DMA aliases if it's bus differs
* from the original device.
*/
clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
pci_for_each_dma_alias(pdev, clone_alias, NULL);
}
static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
u16 ivrs_alias;
/* For ACPI HID devices, there are no aliases */
if (!dev_is_pci(dev))
return;
/*
* Add the IVRS alias to the pci aliases if it is on the same
* bus. The IVRS table may know about a quirk that we don't.
*/
ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
if (ivrs_alias != pci_dev_id(pdev) &&
PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
clone_aliases(iommu, dev);
}
static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
{
struct iommu_dev_data *dev_data;
dev_data = search_dev_data(iommu, devid);
if (dev_data == NULL) {
dev_data = alloc_dev_data(iommu, devid);
if (!dev_data)
return NULL;
if (translation_pre_enabled(iommu))
dev_data->defer_attach = true;
}
return dev_data;
}
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
{
struct acpihid_map_entry *p, *entry = NULL;
int devid;
devid = get_acpihid_device_id(dev, &entry);
if (devid < 0)
return ERR_PTR(devid);
list_for_each_entry(p, &acpihid_map, list) {
if ((devid == p->devid) && p->group)
entry->group = p->group;
}
if (!entry->group)
entry->group = generic_device_group(dev);
else
iommu_group_ref_get(entry->group);
return entry->group;
}
static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
{
return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
}
static u32 pdev_get_caps(struct pci_dev *pdev)
{
int features;
u32 flags = 0;
if (pci_ats_supported(pdev))
flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
if (pci_pri_supported(pdev))
flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
features = pci_pasid_features(pdev);
if (features >= 0) {
flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
if (features & PCI_PASID_CAP_EXEC)
flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
if (features & PCI_PASID_CAP_PRIV)
flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
}
return flags;
}
static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
int ret = -EINVAL;
if (dev_data->ats_enabled)
return 0;
if (amd_iommu_iotlb_sup &&
(dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
ret = pci_enable_ats(pdev, PAGE_SHIFT);
if (!ret) {
dev_data->ats_enabled = 1;
dev_data->ats_qdep = pci_ats_queue_depth(pdev);
}
}
return ret;
}
static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data->ats_enabled) {
pci_disable_ats(pdev);
dev_data->ats_enabled = 0;
}
}
static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
int ret = -EINVAL;
if (dev_data->pri_enabled)
return 0;
if (!dev_data->ats_enabled)
return 0;
if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
/*
* First reset the PRI state of the device.
* FIXME: Hardcode number of outstanding requests for now
*/
if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
dev_data->pri_enabled = 1;
dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
ret = 0;
}
}
return ret;
}
static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data->pri_enabled) {
pci_disable_pri(pdev);
dev_data->pri_enabled = 0;
}
}
static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
int ret = -EINVAL;
if (dev_data->pasid_enabled)
return 0;
if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
/* Only allow access to user-accessible pages */
ret = pci_enable_pasid(pdev, 0);
if (!ret)
dev_data->pasid_enabled = 1;
}
return ret;
}
static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data->pasid_enabled) {
pci_disable_pasid(pdev);
dev_data->pasid_enabled = 0;
}
}
static void pdev_enable_caps(struct pci_dev *pdev)
{
pdev_enable_cap_ats(pdev);
pdev_enable_cap_pasid(pdev);
pdev_enable_cap_pri(pdev);
}
static void pdev_disable_caps(struct pci_dev *pdev)
{
pdev_disable_cap_ats(pdev);
pdev_disable_cap_pasid(pdev);
pdev_disable_cap_pri(pdev);
}
/*
* This function checks if the driver got a valid device from the caller to
* avoid dereferencing invalid pointers.
*/
static bool check_device(struct device *dev)
{
struct amd_iommu_pci_seg *pci_seg;
struct amd_iommu *iommu;
int devid, sbdf;
if (!dev)
return false;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return false;
devid = PCI_SBDF_TO_DEVID(sbdf);
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return false;
/* Out of our scope? */
pci_seg = iommu->pci_seg;
if (devid > pci_seg->last_bdf)
return false;
return true;
}
static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
{
struct iommu_dev_data *dev_data;
int devid, sbdf;
if (dev_iommu_priv_get(dev))
return 0;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return sbdf;
devid = PCI_SBDF_TO_DEVID(sbdf);
dev_data = find_dev_data(iommu, devid);
if (!dev_data)
return -ENOMEM;
dev_data->dev = dev;
/*
* The dev_iommu_priv_set() needes to be called before setup_aliases.
* Otherwise, subsequent call to dev_iommu_priv_get() will fail.
*/
dev_iommu_priv_set(dev, dev_data);
setup_aliases(iommu, dev);
/*
* By default we use passthrough mode for IOMMUv2 capable device.
* But if amd_iommu=force_isolation is set (e.g. to debug DMA to
* invalid address), we ignore the capability for the device so
* it'll be forced to go into translation mode.
*/
if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
dev_data->flags = pdev_get_caps(to_pci_dev(dev));
}
return 0;
}
static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
{
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
struct dev_table_entry *dev_table = get_dev_table(iommu);
int devid, sbdf;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return;
devid = PCI_SBDF_TO_DEVID(sbdf);
pci_seg->rlookup_table[devid] = NULL;
memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
setup_aliases(iommu, dev);
}
/****************************************************************************
*
* Interrupt handling functions
*
****************************************************************************/
static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
{
int i;
struct dev_table_entry dte;
struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
get_dte256(iommu, dev_data, &dte);
for (i = 0; i < 4; ++i)
pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
}
static void dump_command(unsigned long phys_addr)
{
struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
int i;
for (i = 0; i < 4; ++i)
pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
}
static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
{
struct iommu_dev_data *dev_data = NULL;
int devid, vmg_tag, flags;
struct pci_dev *pdev;
u64 spa;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
vmg_tag = (event[1]) & 0xFFFF;
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
devid & 0xff);
if (pdev)
dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data) {
if (__ratelimit(&dev_data->rs)) {
pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
vmg_tag, spa, flags);
}
} else {
pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
vmg_tag, spa, flags);
}
if (pdev)
pci_dev_put(pdev);
}
static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
{
struct iommu_dev_data *dev_data = NULL;
int devid, flags_rmp, vmg_tag, flags;
struct pci_dev *pdev;
u64 gpa;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
vmg_tag = (event[1]) & 0xFFFF;
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
gpa = ((u64)event[3] << 32) | event[2];
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
devid & 0xff);
if (pdev)
dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data) {
if (__ratelimit(&dev_data->rs)) {
pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
vmg_tag, gpa, flags_rmp, flags);
}
} else {
pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
vmg_tag, gpa, flags_rmp, flags);
}
if (pdev)
pci_dev_put(pdev);
}
#define IS_IOMMU_MEM_TRANSACTION(flags) \
(((flags) & EVENT_FLAG_I) == 0)
#define IS_WRITE_REQUEST(flags) \
((flags) & EVENT_FLAG_RW)
static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
u16 devid, u16 domain_id,
u64 address, int flags)
{
struct iommu_dev_data *dev_data = NULL;
struct pci_dev *pdev;
pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
devid & 0xff);
if (pdev)
dev_data = dev_iommu_priv_get(&pdev->dev);
if (dev_data) {
/*
* If this is a DMA fault (for which the I(nterrupt)
* bit will be unset), allow report_iommu_fault() to
* prevent logging it.
*/
if (IS_IOMMU_MEM_TRANSACTION(flags)) {
/* Device not attached to domain properly */
if (dev_data->domain == NULL) {
pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
PCI_FUNC(devid), domain_id);
goto out;
}
if (!report_iommu_fault(&dev_data->domain->domain,
&pdev->dev, address,
IS_WRITE_REQUEST(flags) ?
IOMMU_FAULT_WRITE :
IOMMU_FAULT_READ))
goto out;
}
if (__ratelimit(&dev_data->rs)) {
pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
domain_id, address, flags);
}
} else {
pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
domain_id, address, flags);
}
out:
if (pdev)
pci_dev_put(pdev);
}
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
{
struct device *dev = iommu->iommu.dev;
int type, devid, flags, tag;
volatile u32 *event = __evt;
int count = 0;
u64 address;
u32 pasid;
retry:
type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
pasid = (event[0] & EVENT_DOMID_MASK_HI) |
(event[1] & EVENT_DOMID_MASK_LO);
flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
address = (u64)(((u64)event[3]) << 32) | event[2];
if (type == 0) {
/* Did we hit the erratum? */
if (++count == LOOP_TIMEOUT) {
pr_err("No event written to event log\n");
return;
}
udelay(1);
goto retry;
}
if (type == EVENT_TYPE_IO_FAULT) {
amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
return;
}
switch (type) {
case EVENT_TYPE_ILL_DEV:
dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags);
dump_dte_entry(iommu, devid);
break;
case EVENT_TYPE_DEV_TAB_ERR:
dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
"address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
break;
case EVENT_TYPE_PAGE_TAB_ERR:
dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags);
break;
case EVENT_TYPE_ILL_CMD:
dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
dump_command(address);
break;
case EVENT_TYPE_CMD_HARD_ERR:
dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
address, flags);
break;
case EVENT_TYPE_IOTLB_INV_TO:
dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address);
break;
case EVENT_TYPE_INV_DEV_REQ:
dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags);
break;
case EVENT_TYPE_RMP_FAULT:
amd_iommu_report_rmp_fault(iommu, event);
break;
case EVENT_TYPE_RMP_HW_ERR:
amd_iommu_report_rmp_hw_error(iommu, event);
break;
case EVENT_TYPE_INV_PPR_REQ:
pasid = PPR_PASID(*((u64 *)__evt));
tag = event[1] & 0x03FF;
dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
pasid, address, flags, tag);
break;
default:
dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
event[0], event[1], event[2], event[3]);
}
/*
* To detect the hardware errata 732 we need to clear the
* entry back to zero. This issue does not exist on SNP
* enabled system. Also this buffer is not writeable on
* SNP enabled system.
*/
if (!amd_iommu_snp_en)
memset(__evt, 0, 4 * sizeof(u32));
}
static void iommu_poll_events(struct amd_iommu *iommu)
{
u32 head, tail;
head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
while (head != tail) {
iommu_print_event(iommu, iommu->evt_buf + head);
/* Update head pointer of hardware ring-buffer */
head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}
}
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);
int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
iommu_ga_log_notifier = notifier;
return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
u32 head, tail;
if (iommu->ga_log == NULL)
return;
head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
while (head != tail) {
volatile u64 *raw;
u64 log_entry;
raw = (u64 *)(iommu->ga_log + head);
/* Avoid memcpy function-call overhead */
log_entry = *raw;
/* Update head pointer of hardware ring-buffer */
head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
/* Handle GA entry */
switch (GA_REQ_TYPE(log_entry)) {
case GA_GUEST_NR:
if (!iommu_ga_log_notifier)
break;
pr_debug("%s: devid=%#x, ga_tag=%#x\n",
__func__, GA_DEVID(log_entry),
GA_TAG(log_entry));
if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
pr_err("GA log notifier failed.\n");
break;
default:
break;
}
}
}
static void
amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
{
if (!irq_remapping_enabled || !dev_is_pci(dev) ||
!pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
return;
dev_set_msi_domain(dev, iommu->ir_domain);
}
#else /* CONFIG_IRQ_REMAP */
static inline void
amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
#endif /* !CONFIG_IRQ_REMAP */
static void amd_iommu_handle_irq(void *data, const char *evt_type,
u32 int_mask, u32 overflow_mask,
void (*int_handler)(struct amd_iommu *),
void (*overflow_handler)(struct amd_iommu *))
{
struct amd_iommu *iommu = (struct amd_iommu *) data;
u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
u32 mask = int_mask | overflow_mask;
while (status & mask) {
/* Enable interrupt sources again */
writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
if (int_handler) {
pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
iommu->index, evt_type);
int_handler(iommu);
}
if ((status & overflow_mask) && overflow_handler)
overflow_handler(iommu);
/*
* Hardware bug: ERBT1312
* When re-enabling interrupt (by writing 1
* to clear the bit), the hardware might also try to set
* the interrupt bit in the event status register.
* In this scenario, the bit will be set, and disable
* subsequent interrupts.
*
* Workaround: The IOMMU driver should read back the
* status register and check if the interrupt bits are cleared.
* If not, driver will need to go through the interrupt handler
* again and re-clear the bits
*/
status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
}
}
irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
{
amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
MMIO_STATUS_EVT_OVERFLOW_MASK,
iommu_poll_events, amd_iommu_restart_event_logging);
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
{
amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
MMIO_STATUS_PPR_OVERFLOW_MASK,
amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
{
#ifdef CONFIG_IRQ_REMAP
amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
MMIO_STATUS_GALOG_OVERFLOW_MASK,
iommu_poll_ga_log, amd_iommu_restart_ga_log);
#endif
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_thread(int irq, void *data)
{
amd_iommu_int_thread_evtlog(irq, data);
amd_iommu_int_thread_pprlog(irq, data);
amd_iommu_int_thread_galog(irq, data);
return IRQ_HANDLED;
}
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
return IRQ_WAKE_THREAD;
}
/****************************************************************************
*
* IOMMU command queuing functions
*
****************************************************************************/
static int wait_on_sem(struct amd_iommu *iommu, u64 data)
{
int i = 0;
while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
udelay(1);
i += 1;
}
if (i == LOOP_TIMEOUT) {
pr_alert("Completion-Wait loop timed out\n");
return -EIO;
}
return 0;
}
static void copy_cmd_to_buffer(struct amd_iommu *iommu,
struct iommu_cmd *cmd)
{
u8 *target;
u32 tail;
/* Copy command to buffer */
tail = iommu->cmd_buf_tail;
target = iommu->cmd_buf + tail;
memcpy(target, cmd, sizeof(*cmd));
tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
iommu->cmd_buf_tail = tail;
/* Tell the IOMMU about it */
writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
}
static void build_completion_wait(struct iommu_cmd *cmd,
struct amd_iommu *iommu,
u64 data)
{
u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
cmd->data[1] = upper_32_bits(paddr);
cmd->data[2] = lower_32_bits(data);
cmd->data[3] = upper_32_bits(data);
CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}
/*
* Builds an invalidation address which is suitable for one page or multiple
* pages. Sets the size bit (S) as needed is more than one page is flushed.
*/
static inline u64 build_inv_address(u64 address, size_t size)
{
u64 pages, end, msb_diff;
pages = iommu_num_pages(address, size, PAGE_SIZE);
if (pages == 1)
return address & PAGE_MASK;
end = address + size - 1;
/*
* msb_diff would hold the index of the most significant bit that
* flipped between the start and end.
*/
msb_diff = fls64(end ^ address) - 1;
/*
* Bits 63:52 are sign extended. If for some reason bit 51 is different
* between the start and the end, invalidate everything.
*/
if (unlikely(msb_diff > 51)) {
address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
} else {
/*
* The msb-bit must be clear on the address. Just set all the
* lower bits.
*/
address |= (1ull << msb_diff) - 1;
}
/* Clear bits 11:0 */
address &= PAGE_MASK;
/* Set the size bit - we flush more than one 4kb page */
return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
}
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
size_t size, u16 domid,
ioasid_t pasid, bool gn)
{
u64 inv_address = build_inv_address(address, size);
memset(cmd, 0, sizeof(*cmd));
cmd->data[1] |= domid;
cmd->data[2] = lower_32_bits(inv_address);
cmd->data[3] = upper_32_bits(inv_address);
/* PDE bit - we want to flush everything, not only the PTEs */
cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
if (gn) {
cmd->data[0] |= pasid;
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
}
CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
u64 address, size_t size,
ioasid_t pasid, bool gn)
{
u64 inv_address = build_inv_address(address, size);
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
cmd->data[0] |= (qdep & 0xff) << 24;
cmd->data[1] = devid;
cmd->data[2] = lower_32_bits(inv_address);
cmd->data[3] = upper_32_bits(inv_address);
if (gn) {
cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
cmd->data[1] |= (pasid & 0xff) << 16;
cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
}
CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
int status, int tag, u8 gn)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
if (gn) {
cmd->data[1] = pasid;
cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
}
cmd->data[3] = tag & 0x1ff;
cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}
static void build_inv_all(struct iommu_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
CMD_SET_TYPE(cmd, CMD_INV_ALL);
}
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
memset(cmd, 0, sizeof(*cmd));
cmd->data[0] = devid;
CMD_SET_TYPE(cmd, CMD_INV_IRT);
}
/*
* Writes the command to the IOMMUs command buffer and informs the
* hardware about the new command.
*/
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
bool sync)
{
unsigned int count = 0;
u32 left, next_tail;
next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
again:
left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
if (left <= 0x20) {
/* Skip udelay() the first time around */
if (count++) {
if (count == LOOP_TIMEOUT) {
pr_err("Command buffer timeout\n");
return -EIO;
}
udelay(1);
}
/* Update head and recheck remaining space */
iommu->cmd_buf_head = readl(iommu->mmio_base +
MMIO_CMD_HEAD_OFFSET);
goto again;
}
copy_cmd_to_buffer(iommu, cmd);
/* Do we need to make sure all commands are processed? */
iommu->need_sync = sync;
return 0;
}
static int iommu_queue_command_sync(struct amd_iommu *iommu,
struct iommu_cmd *cmd,
bool sync)
{
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&iommu->lock, flags);
ret = __iommu_queue_command_sync(iommu, cmd, sync);
raw_spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
return iommu_queue_command_sync(iommu, cmd, true);
}
/*
* This function queues a completion wait command into the command
* buffer of an IOMMU
*/
static int iommu_completion_wait(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
unsigned long flags;
int ret;
u64 data;
if (!iommu->need_sync)
return 0;
data = atomic64_inc_return(&iommu->cmd_sem_val);
build_completion_wait(&cmd, iommu, data);
raw_spin_lock_irqsave(&iommu->lock, flags);
ret = __iommu_queue_command_sync(iommu, &cmd, false);
if (ret)
goto out_unlock;
ret = wait_on_sem(iommu, data);
out_unlock:
raw_spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
static void domain_flush_complete(struct protection_domain *domain)
{
struct pdom_iommu_info *pdom_iommu_info;
unsigned long i;
lockdep_assert_held(&domain->lock);
/*
* Devices of this domain are behind this IOMMU
* We need to wait for completion of all commands.
*/
xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
iommu_completion_wait(pdom_iommu_info->iommu);
}
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_dte(&cmd, devid);
return iommu_queue_command(iommu, &cmd);
}
static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
{
int ret;
ret = iommu_flush_dte(iommu, devid);
if (!ret)
iommu_completion_wait(iommu);
}
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
{
u32 devid;
u16 last_bdf = iommu->pci_seg->last_bdf;
for (devid = 0; devid <= last_bdf; ++devid)
iommu_flush_dte(iommu, devid);
iommu_completion_wait(iommu);
}
/*
* This function uses heavy locking and may disable irqs for some time. But
* this is no issue because it is only called during resume.
*/
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
{
u32 dom_id;
u16 last_bdf = iommu->pci_seg->last_bdf;
for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
struct iommu_cmd cmd;
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
dom_id, IOMMU_NO_PASID, false);
iommu_queue_command(iommu, &cmd);
}
iommu_completion_wait(iommu);
}
static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
{
struct iommu_cmd cmd;
build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
dom_id, IOMMU_NO_PASID, false);
iommu_queue_command(iommu, &cmd);
iommu_completion_wait(iommu);
}
static void amd_iommu_flush_all(struct amd_iommu *iommu)
{
struct iommu_cmd cmd;
build_inv_all(&cmd);
iommu_queue_command(iommu, &cmd);
iommu_completion_wait(iommu);
}
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
struct iommu_cmd cmd;
build_inv_irt(&cmd, devid);
iommu_queue_command(iommu, &cmd);
}
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
{
u32 devid;
u16 last_bdf = iommu->pci_seg->last_bdf;
if (iommu->irtcachedis_enabled)
return;
for (devid = 0; devid <= last_bdf; devid++)
iommu_flush_irt(iommu, devid);
iommu_completion_wait(iommu);
}
void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
{
if (check_feature(FEATURE_IA)) {
amd_iommu_flush_all(iommu);
} else {
amd_iommu_flush_dte_all(iommu);
amd_iommu_flush_irt_all(iommu);
amd_iommu_flush_tlb_all(iommu);
}
}
/*
* Command send function for flushing on-device TLB
*/
static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
size_t size, ioasid_t pasid, bool gn)
{
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
struct iommu_cmd cmd;
int qdep = dev_data->ats_qdep;
build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
size, pasid, gn);
return iommu_queue_command(iommu, &cmd);
}
static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
{
struct amd_iommu *iommu = data;
return iommu_flush_dte(iommu, alias);
}
/*
* Command send function for invalidating a device table entry
*/
static int device_flush_dte(struct iommu_dev_data *dev_data)
{
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
struct pci_dev *pdev = NULL;
struct amd_iommu_pci_seg *pci_seg;
u16 alias;
int ret;
if (dev_is_pci(dev_data->dev))
pdev = to_pci_dev(dev_data->dev);
if (pdev)
ret = pci_for_each_dma_alias(pdev,
device_flush_dte_alias, iommu);
else
ret = iommu_flush_dte(iommu, dev_data->devid);
if (ret)
return ret;
pci_seg = iommu->pci_seg;
alias = pci_seg->alias_table[dev_data->devid];
if (alias != dev_data->devid) {
ret = iommu_flush_dte(iommu, alias);
if (ret)
return ret;
}
if (dev_data->ats_enabled) {
/* Invalidate the entire contents of an IOTLB */
ret = device_flush_iotlb(dev_data, 0, ~0UL,
IOMMU_NO_PASID, false);
}
return ret;
}
static int domain_flush_pages_v2(struct protection_domain *pdom,
u64 address, size_t size)
{
struct iommu_dev_data *dev_data;
struct iommu_cmd cmd;
int ret = 0;
lockdep_assert_held(&pdom->lock);
list_for_each_entry(dev_data, &pdom->dev_list, list) {
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
u16 domid = dev_data->gcr3_info.domid;
build_inv_iommu_pages(&cmd, address, size,
domid, IOMMU_NO_PASID, true);
ret |= iommu_queue_command(iommu, &cmd);
}
return ret;
}
static int domain_flush_pages_v1(struct protection_domain *pdom,
u64 address, size_t size)
{
struct pdom_iommu_info *pdom_iommu_info;
struct iommu_cmd cmd;
int ret = 0;
unsigned long i;
lockdep_assert_held(&pdom->lock);
build_inv_iommu_pages(&cmd, address, size,
pdom->id, IOMMU_NO_PASID, false);
xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
/*
* Devices of this domain are behind this IOMMU
* We need a TLB flush
*/
ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
}
return ret;
}
/*
* TLB invalidation function which is called from the mapping functions.
* It flushes range of PTEs of the domain.
*/
static void __domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size)
{
struct iommu_dev_data *dev_data;
int ret = 0;
ioasid_t pasid = IOMMU_NO_PASID;
bool gn = false;
lockdep_assert_held(&domain->lock);
if (pdom_is_v2_pgtbl_mode(domain)) {
gn = true;
ret = domain_flush_pages_v2(domain, address, size);
} else {
ret = domain_flush_pages_v1(domain, address, size);
}
list_for_each_entry(dev_data, &domain->dev_list, list) {
if (!dev_data->ats_enabled)
continue;
ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
}
WARN_ON(ret);
}
void amd_iommu_domain_flush_pages(struct protection_domain *domain,
u64 address, size_t size)
{
lockdep_assert_held(&domain->lock);
if (likely(!amd_iommu_np_cache)) {
__domain_flush_pages(domain, address, size);
/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
domain_flush_complete(domain);
return;
}
/*
* When NpCache is on, we infer that we run in a VM and use a vIOMMU.
* In such setups it is best to avoid flushes of ranges which are not
* naturally aligned, since it would lead to flushes of unmodified
* PTEs. Such flushes would require the hypervisor to do more work than
* necessary. Therefore, perform repeated flushes of aligned ranges
* until you cover the range. Each iteration flushes the smaller
* between the natural alignment of the address that we flush and the
* greatest naturally aligned region that fits in the range.
*/
while (size != 0) {
int addr_alignment = __ffs(address);
int size_alignment = __fls(size);
int min_alignment;
size_t flush_size;
/*
* size is always non-zero, but address might be zero, causing
* addr_alignment to be negative. As the casting of the
* argument in __ffs(address) to long might trim the high bits
* of the address on x86-32, cast to long when doing the check.
*/
if (likely((unsigned long)address != 0))
min_alignment = min(addr_alignment, size_alignment);
else
min_alignment = size_alignment;
flush_size = 1ul << min_alignment;
__domain_flush_pages(domain, address, flush_size);
address += flush_size;
size -= flush_size;
}
/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
domain_flush_complete(domain);
}
/* Flush the whole IO/TLB for a given protection domain - including PDE */
static void amd_iommu_domain_flush_all(struct protection_domain *domain)
{
amd_iommu_domain_flush_pages(domain, 0,
CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
}
void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
ioasid_t pasid, u64 address, size_t size)
{
struct iommu_cmd cmd;
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
build_inv_iommu_pages(&cmd, address, size,
dev_data->gcr3_info.domid, pasid, true);
iommu_queue_command(iommu, &cmd);
if (dev_data->ats_enabled)
device_flush_iotlb(dev_data, address, size, pasid, true);
iommu_completion_wait(iommu);
}
static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
ioasid_t pasid)
{
amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
}
/* Flush the not present cache if it exists */
static void domain_flush_np_cache(struct protection_domain *domain,
dma_addr_t iova, size_t size)
{
if (unlikely(amd_iommu_np_cache)) {
unsigned long flags;
spin_lock_irqsave(&domain->lock, flags);
amd_iommu_domain_flush_pages(domain, iova, size);
spin_unlock_irqrestore(&domain->lock, flags);
}
}
/*
* This function flushes the DTEs for all devices in domain
*/
void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
{
struct iommu_dev_data *dev_data;
lockdep_assert_held(&domain->lock);
list_for_each_entry(dev_data, &domain->dev_list, list) {
struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
set_dte_entry(iommu, dev_data);
clone_aliases(iommu, dev_data->dev);
}
list_for_each_entry(dev_data, &domain->dev_list, list)
device_flush_dte(dev_data);
domain_flush_complete(domain);
}
int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
{
struct iommu_dev_data *dev_data;
struct amd_iommu *iommu;
struct iommu_cmd cmd;
dev_data = dev_iommu_priv_get(dev);
iommu = get_amd_iommu_from_dev(dev);
build_complete_ppr(&cmd, dev_data->devid, pasid, status,
tag, dev_data->pri_tlp);
return iommu_queue_command(iommu, &cmd);
}
/****************************************************************************
*
* The next functions belong to the domain allocation. A domain is
* allocated for every IOMMU as the default domain. If device isolation
* is enabled, every device get its own domain. The most important thing
* about domains is the page table mapping the DMA address space they
* contain.
*
****************************************************************************/
static int pdom_id_alloc(void)
{
return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
}
static void pdom_id_free(int id)
{
ida_free(&pdom_ids, id);
}
static void free_gcr3_tbl_level1(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
iommu_free_page(ptr);
}
}
static void free_gcr3_tbl_level2(u64 *tbl)
{
u64 *ptr;
int i;
for (i = 0; i < 512; ++i) {
if (!(tbl[i] & GCR3_VALID))
continue;
ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
free_gcr3_tbl_level1(ptr);
}
}
static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
{
if (gcr3_info->glx == 2)
free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
else if (gcr3_info->glx == 1)
free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
else
WARN_ON_ONCE(gcr3_info->glx != 0);
gcr3_info->glx = 0;
/* Free per device domain ID */
pdom_id_free(gcr3_info->domid);
iommu_free_page(gcr3_info->gcr3_tbl);
gcr3_info->gcr3_tbl = NULL;
}
/*
* Number of GCR3 table levels required. Level must be 4-Kbyte
* page and can contain up to 512 entries.
*/
static int get_gcr3_levels(int pasids)
{
int levels;
if (pasids == -1)
return amd_iommu_max_glx_val;
levels = get_count_order(pasids);
return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
}
static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
struct amd_iommu *iommu, int pasids)
{
int levels = get_gcr3_levels(pasids);
int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
int domid;
if (levels > amd_iommu_max_glx_val)
return -EINVAL;
if (gcr3_info->gcr3_tbl)
return -EBUSY;
/* Allocate per device domain ID */
domid = pdom_id_alloc();
if (domid <= 0)
return -ENOSPC;
gcr3_info->domid = domid;
gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
if (gcr3_info->gcr3_tbl == NULL) {
pdom_id_free(domid);
return -ENOMEM;
}
gcr3_info->glx = levels;
return 0;
}
static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
ioasid_t pasid, bool alloc)
{
int index;
u64 *pte;
u64 *root = gcr3_info->gcr3_tbl;
int level = gcr3_info->glx;
while (true) {
index = (pasid >> (9 * level)) & 0x1ff;
pte = &root[index];
if (level == 0)
break;
if (!(*pte & GCR3_VALID)) {
if (!alloc)
return NULL;
root = (void *)get_zeroed_page(GFP_ATOMIC);
if (root == NULL)
return NULL;
*pte = iommu_virt_to_phys(root) | GCR3_VALID;
}
root = iommu_phys_to_virt(*pte & PAGE_MASK);
level -= 1;
}
return pte;
}
static int update_gcr3(struct iommu_dev_data *dev_data,
ioasid_t pasid, unsigned long gcr3, bool set)
{
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
u64 *pte;
pte = __get_gcr3_pte(gcr3_info, pasid, true);
if (pte == NULL)
return -ENOMEM;
if (set)
*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
else
*pte = 0;
dev_flush_pasid_all(dev_data, pasid);
return 0;
}
int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
unsigned long gcr3)
{
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
int ret;
iommu_group_mutex_assert(dev_data->dev);
ret = update_gcr3(dev_data, pasid, gcr3, true);
if (ret)
return ret;
gcr3_info->pasid_cnt++;
return ret;
}
int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
{
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
int ret;
iommu_group_mutex_assert(dev_data->dev);
ret = update_gcr3(dev_data, pasid, 0, false);
if (ret)
return ret;
gcr3_info->pasid_cnt--;
return ret;
}
static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
struct dev_table_entry *new)
{
/* All existing DTE must have V bit set */
new->data128[0] = DTE_FLAG_V;
new->data128[1] = 0;
}
/*
* Note:
* The old value for GCR3 table and GPT have been cleared from caller.
*/
static void set_dte_gcr3_table(struct amd_iommu *iommu,
struct iommu_dev_data *dev_data,
struct dev_table_entry *target)
{
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
u64 gcr3;
if (!gcr3_info->gcr3_tbl)
return;
pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
__func__, dev_data->devid, gcr3_info->glx,
(unsigned long long)gcr3_info->gcr3_tbl);
gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
target->data[0] |= DTE_FLAG_GV |
FIELD_PREP(DTE_GLX, gcr3_info->glx) |
FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
if (pdom_is_v2_pgtbl_mode(dev_data->domain))
target->data[0] |= DTE_FLAG_GIOV;
target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
/* Guest page table can only support 4 and 5 levels */
if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
else
target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
}
static void set_dte_entry(struct amd_iommu *iommu,
struct iommu_dev_data *dev_data)
{
u16 domid;
u32 old_domid;
struct dev_table_entry *initial_dte;
struct dev_table_entry new = {};
struct protection_domain *domain = dev_data->domain;
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
if (gcr3_info && gcr3_info->gcr3_tbl)
domid = dev_data->gcr3_info.domid;
else
domid = domain->id;
make_clear_dte(dev_data, dte, &new);
if (domain->iop.mode != PAGE_MODE_NONE)
new.data[0] |= iommu_virt_to_phys(domain->iop.root);
new.data[0] |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
/*
* When SNP is enabled, we can only support TV=1 with non-zero domain ID.
* This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
* do_iommu_domain_alloc().
*/
WARN_ON(amd_iommu_snp_en && (domid == 0));
new.data[0] |= DTE_FLAG_TV;
if (dev_data->ppr)
new.data[0] |= 1ULL << DEV_ENTRY_PPR;
if (domain->dirty_tracking)
new.data[0] |= DTE_FLAG_HAD;
if (dev_data->ats_enabled)
new.data[1] |= DTE_FLAG_IOTLB;
old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
new.data[1] |= domid;
/*
* Restore cached persistent DTE bits, which can be set by information
* in IVRS table. See set_dev_entry_from_acpi().
*/
initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
if (initial_dte) {
new.data128[0] |= initial_dte->data128[0];
new.data128[1] |= initial_dte->data128[1];
}
set_dte_gcr3_table(iommu, dev_data, &new);
update_dte256(iommu, dev_data, &new);
/*
* A kdump kernel might be replacing a domain ID that was copied from
* the previous kernel--if so, it needs to flush the translation cache
* entries for the old domain ID that is being overwritten
*/
if (old_domid) {
amd_iommu_flush_tlb_domid(iommu, old_domid);
}
}
/*
* Clear DMA-remap related flags to block all DMA (blockeded domain)
*/
static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
{
struct dev_table_entry new = {};
struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
make_clear_dte(dev_data, dte, &new);
update_dte256(iommu, dev_data, &new);
}
/* Update and flush DTE for the given device */
static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
{
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
if (set)
set_dte_entry(iommu, dev_data);
else
clear_dte_entry(iommu, dev_data);
clone_aliases(iommu, dev_data->dev);
device_flush_dte(dev_data);
iommu_completion_wait(iommu);
}
/*
* If domain is SVA capable then initialize GCR3 table. Also if domain is
* in v2 page table mode then update GCR3[0].
*/
static int init_gcr3_table(struct iommu_dev_data *dev_data,
struct protection_domain *pdom)
{
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
int max_pasids = dev_data->max_pasids;
int ret = 0;
/*
* If domain is in pt mode then setup GCR3 table only if device
* is PASID capable
*/
if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
return ret;
/*
* By default, setup GCR3 table to support MAX PASIDs
* supported by the device/IOMMU.
*/
ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
max_pasids > 0 ? max_pasids : 1);
if (ret)
return ret;
/* Setup GCR3[0] only if domain is setup with v2 page table mode */
if (!pdom_is_v2_pgtbl_mode(pdom))
return ret;
ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
if (ret)
free_gcr3_table(&dev_data->gcr3_info);
return ret;
}
static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
struct protection_domain *pdom)
{
struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
if (pdom_is_v2_pgtbl_mode(pdom))
update_gcr3(dev_data, 0, 0, false);
if (gcr3_info->gcr3_tbl == NULL)
return;
free_gcr3_table(gcr3_info);
}
static int pdom_attach_iommu(struct amd_iommu *iommu,
struct protection_domain *pdom)
{
struct pdom_iommu_info *pdom_iommu_info, *curr;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&pdom->lock, flags);
pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
if (pdom_iommu_info) {
pdom_iommu_info->refcnt++;
goto out_unlock;
}
pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
if (!pdom_iommu_info) {
ret = -ENOMEM;
goto out_unlock;
}
pdom_iommu_info->iommu = iommu;
pdom_iommu_info->refcnt = 1;
curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
NULL, pdom_iommu_info, GFP_ATOMIC);
if (curr) {
kfree(pdom_iommu_info);
ret = -ENOSPC;
goto out_unlock;
}
out_unlock:
spin_unlock_irqrestore(&pdom->lock, flags);
return ret;
}
static void pdom_detach_iommu(struct amd_iommu *iommu,
struct protection_domain *pdom)
{
struct pdom_iommu_info *pdom_iommu_info;
unsigned long flags;
spin_lock_irqsave(&pdom->lock, flags);
pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
if (!pdom_iommu_info) {
spin_unlock_irqrestore(&pdom->lock, flags);
return;
}
pdom_iommu_info->refcnt--;
if (pdom_iommu_info->refcnt == 0) {
xa_erase(&pdom->iommu_array, iommu->index);
kfree(pdom_iommu_info);
}
spin_unlock_irqrestore(&pdom->lock, flags);
}
/*
* If a device is not yet associated with a domain, this function makes the
* device visible in the domain
*/
static int attach_device(struct device *dev,
struct protection_domain *domain)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
struct pci_dev *pdev;
unsigned long flags;
int ret = 0;
mutex_lock(&dev_data->mutex);
if (dev_data->domain != NULL) {
ret = -EBUSY;
goto out;
}
/* Do reference counting */
ret = pdom_attach_iommu(iommu, domain);
if (ret)
goto out;
/* Setup GCR3 table */
if (pdom_is_sva_capable(domain)) {
ret = init_gcr3_table(dev_data, domain);
if (ret) {
pdom_detach_iommu(iommu, domain);
goto out;
}
}
pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
if (pdev && pdom_is_sva_capable(domain)) {
pdev_enable_caps(pdev);
/*
* Device can continue to function even if IOPF
* enablement failed. Hence in error path just
* disable device PRI support.
*/
if (amd_iommu_iopf_add_device(iommu, dev_data))
pdev_disable_cap_pri(pdev);
} else if (pdev) {
pdev_enable_cap_ats(pdev);
}
/* Update data structures */
dev_data->domain = domain;
spin_lock_irqsave(&domain->lock, flags);
list_add(&dev_data->list, &domain->dev_list);
spin_unlock_irqrestore(&domain->lock, flags);
/* Update device table */
dev_update_dte(dev_data, true);
out:
mutex_unlock(&dev_data->mutex);
return ret;
}
/*
* Removes a device from a protection domain (with devtable_lock held)
*/
static void detach_device(struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
struct protection_domain *domain = dev_data->domain;
unsigned long flags;
mutex_lock(&dev_data->mutex);
/*
* First check if the device is still attached. It might already
* be detached from its domain because the generic
* iommu_detach_group code detached it and we try again here in
* our alias handling.
*/
if (WARN_ON(!dev_data->domain))
goto out;
/* Remove IOPF handler */
if (dev_data->ppr) {
iopf_queue_flush_dev(dev);
amd_iommu_iopf_remove_device(iommu, dev_data);
}
if (dev_is_pci(dev))
pdev_disable_caps(to_pci_dev(dev));
/* Clear DTE and flush the entry */
dev_update_dte(dev_data, false);
/* Flush IOTLB and wait for the flushes to finish */
spin_lock_irqsave(&domain->lock, flags);
amd_iommu_domain_flush_all(domain);
list_del(&dev_data->list);
spin_unlock_irqrestore(&domain->lock, flags);
/* Clear GCR3 table */
if (pdom_is_sva_capable(domain))
destroy_gcr3_table(dev_data, domain);
/* Update data structures */
dev_data->domain = NULL;
/* decrease reference counters - needs to happen after the flushes */
pdom_detach_iommu(iommu, domain);
out:
mutex_unlock(&dev_data->mutex);
}
static struct iommu_device *amd_iommu_probe_device(struct device *dev)
{
struct iommu_device *iommu_dev;
struct amd_iommu *iommu;
struct iommu_dev_data *dev_data;
int ret;
if (!check_device(dev))
return ERR_PTR(-ENODEV);
iommu = rlookup_amd_iommu(dev);
if (!iommu)
return ERR_PTR(-ENODEV);
/* Not registered yet? */
if (!iommu->iommu.ops)
return ERR_PTR(-ENODEV);
if (dev_iommu_priv_get(dev))
return &iommu->iommu;
ret = iommu_init_device(iommu, dev);
if (ret) {
dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
iommu_dev = ERR_PTR(ret);
iommu_ignore_device(iommu, dev);
goto out_err;
}
amd_iommu_set_pci_msi_domain(dev, iommu);
iommu_dev = &iommu->iommu;
/*
* If IOMMU and device supports PASID then it will contain max
* supported PASIDs, else it will be zero.
*/
dev_data = dev_iommu_priv_get(dev);
if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
pdev_pasid_supported(dev_data)) {
dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
pci_max_pasids(to_pci_dev(dev)));
}
out_err:
iommu_completion_wait(iommu);
if (dev_is_pci(dev))
pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
return iommu_dev;
}
static void amd_iommu_release_device(struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
WARN_ON(dev_data->domain);
/*
* We keep dev_data around for unplugged devices and reuse it when the
* device is re-plugged - not doing so would introduce a ton of races.
*/
}
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
if (dev_is_pci(dev))
return pci_device_group(dev);
return acpihid_device_group(dev);
}
/*****************************************************************************
*
* The following functions belong to the exported interface of AMD IOMMU
*
* This interface allows access to lower level functions of the IOMMU
* like protection domain handling and assignement of devices to domains
* which is not possible with the dma_ops interface.
*
*****************************************************************************/
void protection_domain_free(struct protection_domain *domain)
{
WARN_ON(!list_empty(&domain->dev_list));
if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
free_io_pgtable_ops(&domain->iop.pgtbl.ops);
pdom_id_free(domain->id);
kfree(domain);
}
static void protection_domain_init(struct protection_domain *domain)
{
spin_lock_init(&domain->lock);
INIT_LIST_HEAD(&domain->dev_list);
INIT_LIST_HEAD(&domain->dev_data_list);
xa_init(&domain->iommu_array);
}
struct protection_domain *protection_domain_alloc(void)
{
struct protection_domain *domain;
int domid;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return NULL;
domid = pdom_id_alloc();
if (domid <= 0) {
kfree(domain);
return NULL;
}
domain->id = domid;
protection_domain_init(domain);
return domain;
}
static int pdom_setup_pgtable(struct protection_domain *domain,
struct device *dev)
{
struct io_pgtable_ops *pgtbl_ops;
enum io_pgtable_fmt fmt;
switch (domain->pd_mode) {
case PD_MODE_V1:
fmt = AMD_IOMMU_V1;
break;
case PD_MODE_V2:
fmt = AMD_IOMMU_V2;
break;
}
domain->iop.pgtbl.cfg.amd.nid = dev_to_node(dev);
pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain);
if (!pgtbl_ops)
return -ENOMEM;
return 0;
}
static inline u64 dma_max_address(enum protection_domain_mode pgtable)
{
if (pgtable == PD_MODE_V1)
return ~0ULL;
/* V2 with 4/5 level page table */
return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
}
static bool amd_iommu_hd_support(struct amd_iommu *iommu)
{
return iommu && (iommu->features & FEATURE_HDSUP);
}
static struct iommu_domain *
do_iommu_domain_alloc(struct device *dev, u32 flags,
enum protection_domain_mode pgtable)
{
bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
struct protection_domain *domain;
int ret;
domain = protection_domain_alloc();
if (!domain)
return ERR_PTR(-ENOMEM);
domain->pd_mode = pgtable;
ret = pdom_setup_pgtable(domain, dev);
if (ret) {
pdom_id_free(domain->id);
kfree(domain);
return ERR_PTR(ret);
}
domain->domain.geometry.aperture_start = 0;
domain->domain.geometry.aperture_end = dma_max_address(pgtable);
domain->domain.geometry.force_aperture = true;
domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
domain->domain.ops = iommu->iommu.ops->default_domain_ops;
if (dirty_tracking)
domain->domain.dirty_ops = &amd_dirty_ops;
return &domain->domain;
}
static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
const struct iommu_user_data *user_data)
{
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
IOMMU_HWPT_ALLOC_PASID;
if ((flags & ~supported_flags) || user_data)
return ERR_PTR(-EOPNOTSUPP);
switch (flags & supported_flags) {
case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
/* Allocate domain with v1 page table for dirty tracking */
if (!amd_iommu_hd_support(iommu))
break;
return do_iommu_domain_alloc(dev, flags, PD_MODE_V1);
case IOMMU_HWPT_ALLOC_PASID:
/* Allocate domain with v2 page table if IOMMU supports PASID. */
if (!amd_iommu_pasid_supported())
break;
return do_iommu_domain_alloc(dev, flags, PD_MODE_V2);
case 0:
/* If nothing specific is required use the kernel commandline default */
return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable);
default:
break;
}
return ERR_PTR(-EOPNOTSUPP);
}
void amd_iommu_domain_free(struct iommu_domain *dom)
{
struct protection_domain *domain = to_pdomain(dom);
protection_domain_free(domain);
}
static int blocked_domain_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
if (dev_data->domain)
detach_device(dev);
/* Clear DTE and flush the entry */
mutex_lock(&dev_data->mutex);
dev_update_dte(dev_data, false);
mutex_unlock(&dev_data->mutex);
return 0;
}
static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
struct device *dev, ioasid_t pasid,
struct iommu_domain *old)
{
amd_iommu_remove_dev_pasid(dev, pasid, old);
return 0;
}
static struct iommu_domain blocked_domain = {
.type = IOMMU_DOMAIN_BLOCKED,
.ops = &(const struct iommu_domain_ops) {
.attach_dev = blocked_domain_attach_device,
.set_dev_pasid = blocked_domain_set_dev_pasid,
}
};
static struct protection_domain identity_domain;
static const struct iommu_domain_ops identity_domain_ops = {
.attach_dev = amd_iommu_attach_device,
};
void amd_iommu_init_identity_domain(void)
{
struct iommu_domain *domain = &identity_domain.domain;
domain->type = IOMMU_DOMAIN_IDENTITY;
domain->ops = &identity_domain_ops;
domain->owner = &amd_iommu_ops;
identity_domain.id = pdom_id_alloc();
protection_domain_init(&identity_domain);
}
/* Same as blocked domain except it supports only ops->attach_dev() */
static struct iommu_domain release_domain = {
.type = IOMMU_DOMAIN_BLOCKED,
.ops = &(const struct iommu_domain_ops) {
.attach_dev = blocked_domain_attach_device,
}
};
static int amd_iommu_attach_device(struct iommu_domain *dom,
struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
struct protection_domain *domain = to_pdomain(dom);
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
int ret;
/*
* Skip attach device to domain if new domain is same as
* devices current domain
*/
if (dev_data->domain == domain)
return 0;
dev_data->defer_attach = false;
/*
* Restrict to devices with compatible IOMMU hardware support
* when enforcement of dirty tracking is enabled.
*/
if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
return -EINVAL;
if (dev_data->domain)
detach_device(dev);
ret = attach_device(dev, domain);
#ifdef CONFIG_IRQ_REMAP
if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
if (dom->type == IOMMU_DOMAIN_UNMANAGED)
dev_data->use_vapic = 1;
else
dev_data->use_vapic = 0;
}
#endif
return ret;
}
static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
unsigned long iova, size_t size)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
if (ops->map_pages)
domain_flush_np_cache(domain, iova, size);
return 0;
}
static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
phys_addr_t paddr, size_t pgsize, size_t pgcount,
int iommu_prot, gfp_t gfp, size_t *mapped)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
int prot = 0;
int ret = -EINVAL;
if ((domain->pd_mode == PD_MODE_V1) &&
(domain->iop.mode == PAGE_MODE_NONE))
return -EINVAL;
if (iommu_prot & IOMMU_READ)
prot |= IOMMU_PROT_IR;
if (iommu_prot & IOMMU_WRITE)
prot |= IOMMU_PROT_IW;
if (ops->map_pages) {
ret = ops->map_pages(ops, iova, paddr, pgsize,
pgcount, prot, gfp, mapped);
}
return ret;
}
static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather,
unsigned long iova, size_t size)
{
/*
* AMD's IOMMU can flush as many pages as necessary in a single flush.
* Unless we run in a virtual machine, which can be inferred according
* to whether "non-present cache" is on, it is probably best to prefer
* (potentially) too extensive TLB flushing (i.e., more misses) over
* mutliple TLB flushes (i.e., more flushes). For virtual machines the
* hypervisor needs to synchronize the host IOMMU PTEs with those of
* the guest, and the trade-off is different: unnecessary TLB flushes
* should be avoided.
*/
if (amd_iommu_np_cache &&
iommu_iotlb_gather_is_disjoint(gather, iova, size))
iommu_iotlb_sync(domain, gather);
iommu_iotlb_gather_add_range(gather, iova, size);
}
static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
size_t pgsize, size_t pgcount,
struct iommu_iotlb_gather *gather)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
size_t r;
if ((domain->pd_mode == PD_MODE_V1) &&
(domain->iop.mode == PAGE_MODE_NONE))
return 0;
r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
if (r)
amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
return r;
}
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
dma_addr_t iova)
{
struct protection_domain *domain = to_pdomain(dom);
struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
return ops->iova_to_phys(ops, iova);
}
static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
{
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return true;
case IOMMU_CAP_NOEXEC:
return false;
case IOMMU_CAP_PRE_BOOT_PROTECTION:
return amdr_ivrs_remap_support;
case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
return true;
case IOMMU_CAP_DEFERRED_FLUSH:
return true;
case IOMMU_CAP_DIRTY_TRACKING: {
struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
return amd_iommu_hd_support(iommu);
}
default:
break;
}
return false;
}
static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
bool enable)
{
struct protection_domain *pdomain = to_pdomain(domain);
struct dev_table_entry *dte;
struct iommu_dev_data *dev_data;
bool domain_flush = false;
struct amd_iommu *iommu;
unsigned long flags;
u64 new;
spin_lock_irqsave(&pdomain->lock, flags);
if (!(pdomain->dirty_tracking ^ enable)) {
spin_unlock_irqrestore(&pdomain->lock, flags);
return 0;
}
list_for_each_entry(dev_data, &pdomain->dev_list, list) {
spin_lock(&dev_data->dte_lock);
iommu = get_amd_iommu_from_dev_data(dev_data);
dte = &get_dev_table(iommu)[dev_data->devid];
new = dte->data[0];
new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
dte->data[0] = new;
spin_unlock(&dev_data->dte_lock);
/* Flush device DTE */
device_flush_dte(dev_data);
domain_flush = true;
}
/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
if (domain_flush)
amd_iommu_domain_flush_all(pdomain);
pdomain->dirty_tracking = enable;
spin_unlock_irqrestore(&pdomain->lock, flags);
return 0;
}
static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
unsigned long iova, size_t size,
unsigned long flags,
struct iommu_dirty_bitmap *dirty)
{
struct protection_domain *pdomain = to_pdomain(domain);
struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
unsigned long lflags;
if (!ops || !ops->read_and_clear_dirty)
return -EOPNOTSUPP;
spin_lock_irqsave(&pdomain->lock, lflags);
if (!pdomain->dirty_tracking && dirty->bitmap) {
spin_unlock_irqrestore(&pdomain->lock, lflags);
return -EINVAL;
}
spin_unlock_irqrestore(&pdomain->lock, lflags);
return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
}
static void amd_iommu_get_resv_regions(struct device *dev,
struct list_head *head)
{
struct iommu_resv_region *region;
struct unity_map_entry *entry;
struct amd_iommu *iommu;
struct amd_iommu_pci_seg *pci_seg;
int devid, sbdf;
sbdf = get_device_sbdf_id(dev);
if (sbdf < 0)
return;
devid = PCI_SBDF_TO_DEVID(sbdf);
iommu = get_amd_iommu_from_dev(dev);
pci_seg = iommu->pci_seg;
list_for_each_entry(entry, &pci_seg->unity_map, list) {
int type, prot = 0;
size_t length;
if (devid < entry->devid_start || devid > entry->devid_end)
continue;
type = IOMMU_RESV_DIRECT;
length = entry->address_end - entry->address_start;
if (entry->prot & IOMMU_PROT_IR)
prot |= IOMMU_READ;
if (entry->prot & IOMMU_PROT_IW)
prot |= IOMMU_WRITE;
if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
/* Exclusion range */
type = IOMMU_RESV_RESERVED;
region = iommu_alloc_resv_region(entry->address_start,
length, prot, type,
GFP_KERNEL);
if (!region) {
dev_err(dev, "Out of memory allocating dm-regions\n");
return;
}
list_add_tail(&region->list, head);
}
region = iommu_alloc_resv_region(MSI_RANGE_START,
MSI_RANGE_END - MSI_RANGE_START + 1,
0, IOMMU_RESV_MSI, GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, head);
region = iommu_alloc_resv_region(HT_RANGE_START,
HT_RANGE_END - HT_RANGE_START + 1,
0, IOMMU_RESV_RESERVED, GFP_KERNEL);
if (!region)
return;
list_add_tail(&region->list, head);
}
static bool amd_iommu_is_attach_deferred(struct device *dev)
{
struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
return dev_data->defer_attach;
}
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
struct protection_domain *dom = to_pdomain(domain);
unsigned long flags;
spin_lock_irqsave(&dom->lock, flags);
amd_iommu_domain_flush_all(dom);
spin_unlock_irqrestore(&dom->lock, flags);
}
static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather)
{
struct protection_domain *dom = to_pdomain(domain);
unsigned long flags;
spin_lock_irqsave(&dom->lock, flags);
amd_iommu_domain_flush_pages(dom, gather->start,
gather->end - gather->start + 1);
spin_unlock_irqrestore(&dom->lock, flags);
}
static int amd_iommu_def_domain_type(struct device *dev)
{
struct iommu_dev_data *dev_data;
dev_data = dev_iommu_priv_get(dev);
if (!dev_data)
return 0;
/* Always use DMA domain for untrusted device */
if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
return IOMMU_DOMAIN_DMA;
/*
* Do not identity map IOMMUv2 capable devices when:
* - memory encryption is active, because some of those devices
* (AMD GPUs) don't have the encryption bit in their DMA-mask
* and require remapping.
* - SNP is enabled, because it prohibits DTE[Mode]=0.
*/
if (pdev_pasid_supported(dev_data) &&
!cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
!amd_iommu_snp_en) {
return IOMMU_DOMAIN_IDENTITY;
}
return 0;
}
static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
{
/* IOMMU_PTE_FC is always set */
return true;
}
static const struct iommu_dirty_ops amd_dirty_ops = {
.set_dirty_tracking = amd_iommu_set_dirty_tracking,
.read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
};
static int amd_iommu_dev_enable_feature(struct device *dev,
enum iommu_dev_features feat)
{
int ret = 0;
switch (feat) {
case IOMMU_DEV_FEAT_IOPF:
case IOMMU_DEV_FEAT_SVA:
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int amd_iommu_dev_disable_feature(struct device *dev,
enum iommu_dev_features feat)
{
int ret = 0;
switch (feat) {
case IOMMU_DEV_FEAT_IOPF:
case IOMMU_DEV_FEAT_SVA:
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
const struct iommu_ops amd_iommu_ops = {
.capable = amd_iommu_capable,
.blocked_domain = &blocked_domain,
.release_domain = &release_domain,
.identity_domain = &identity_domain.domain,
.domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
.domain_alloc_sva = amd_iommu_domain_alloc_sva,
.probe_device = amd_iommu_probe_device,
.release_device = amd_iommu_release_device,
.device_group = amd_iommu_device_group,
.get_resv_regions = amd_iommu_get_resv_regions,
.is_attach_deferred = amd_iommu_is_attach_deferred,
.def_domain_type = amd_iommu_def_domain_type,
.dev_enable_feat = amd_iommu_dev_enable_feature,
.dev_disable_feat = amd_iommu_dev_disable_feature,
.page_response = amd_iommu_page_response,
.default_domain_ops = &(const struct iommu_domain_ops) {
.attach_dev = amd_iommu_attach_device,
.map_pages = amd_iommu_map_pages,
.unmap_pages = amd_iommu_unmap_pages,
.iotlb_sync_map = amd_iommu_iotlb_sync_map,
.iova_to_phys = amd_iommu_iova_to_phys,
.flush_iotlb_all = amd_iommu_flush_iotlb_all,
.iotlb_sync = amd_iommu_iotlb_sync,
.free = amd_iommu_domain_free,
.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
}
};
#ifdef CONFIG_IRQ_REMAP
/*****************************************************************************
*
* Interrupt Remapping Implementation
*
*****************************************************************************/
static struct irq_chip amd_ir_chip;
static DEFINE_SPINLOCK(iommu_table_lock);
static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
{
int ret;
u64 data;
unsigned long flags;
struct iommu_cmd cmd, cmd2;
if (iommu->irtcachedis_enabled)
return;
build_inv_irt(&cmd, devid);
data = atomic64_inc_return(&iommu->cmd_sem_val);
build_completion_wait(&cmd2, iommu, data);
raw_spin_lock_irqsave(&iommu->lock, flags);
ret = __iommu_queue_command_sync(iommu, &cmd, true);
if (ret)
goto out;
ret = __iommu_queue_command_sync(iommu, &cmd2, false);
if (ret)
goto out;
wait_on_sem(iommu, data);
out:
raw_spin_unlock_irqrestore(&iommu->lock, flags);
}
static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
struct irq_remap_table *table)
{
u64 new;
struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
if (dev_data)
spin_lock(&dev_data->dte_lock);
new = READ_ONCE(dte->data[2]);
new &= ~DTE_IRQ_PHYS_ADDR_MASK;
new |= iommu_virt_to_phys(table->table);
new |= DTE_IRQ_REMAP_INTCTL;
new |= DTE_INTTABLEN;
new |= DTE_IRQ_REMAP_ENABLE;
WRITE_ONCE(dte->data[2], new);
if (dev_data)
spin_unlock(&dev_data->dte_lock);
}
static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
{
struct irq_remap_table *table;
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
if (WARN_ONCE(!pci_seg->rlookup_table[devid],
"%s: no iommu for devid %x:%x\n",
__func__, pci_seg->id, devid))
return NULL;
table = pci_seg->irq_lookup_table[devid];
if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
__func__, pci_seg->id, devid))
return NULL;
return table;
}
static struct irq_remap_table *__alloc_irq_table(void)
{
struct irq_remap_table *table;
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return NULL;
table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
if (!table->table) {
kfree(table);
return NULL;
}
raw_spin_lock_init(&table->lock);
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
memset(table->table, 0,
MAX_IRQS_PER_TABLE * sizeof(u32));
else
memset(table->table, 0,
(MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
return table;
}
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
struct irq_remap_table *table)
{
struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
pci_seg->irq_lookup_table[devid] = table;
set_dte_irq_entry(iommu, devid, table);
iommu_flush_dte(iommu, devid);
}
static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
void *data)
{
struct irq_remap_table *table = data;
struct amd_iommu_pci_seg *pci_seg;
struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
if (!iommu)
return -EINVAL;
pci_seg = iommu->pci_seg;
pci_seg->irq_lookup_table[alias] = table;
set_dte_irq_entry(iommu, alias, table);
iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
return 0;
}
static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
u16 devid, struct pci_dev *pdev)
{
struct irq_remap_table *table = NULL;
struct irq_remap_table *new_table = NULL;
struct amd_iommu_pci_seg *pci_seg;
unsigned long flags;
u16 alias;
spin_lock_irqsave(&iommu_table_lock, flags);
pci_seg = iommu->pci_seg;
table = pci_seg->irq_lookup_table[devid];
if (table)
goto out_unlock;
alias = pci_seg->alias_table[devid];
table = pci_seg->irq_lookup_table[alias];
if (table) {
set_remap_table_entry(iommu, devid, table);
goto out_wait;
}
spin_unlock_irqrestore(&iommu_table_lock, flags);
/* Nothing there yet, allocate new irq remapping table */
new_table = __alloc_irq_table();
if (!new_table)
return NULL;
spin_lock_irqsave(&iommu_table_lock, flags);
table = pci_seg->irq_lookup_table[devid];
if (table)
goto out_unlock;
table = pci_seg->irq_lookup_table[alias];
if (table) {
set_remap_table_entry(iommu, devid, table);
goto out_wait;
}
table = new_table;
new_table = NULL;
if (pdev)
pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
table);
else
set_remap_table_entry(iommu, devid, table);
if (devid != alias)
set_remap_table_entry(iommu, alias, table);
out_wait:
iommu_completion_wait(iommu);
out_unlock:
spin_unlock_irqrestore(&iommu_table_lock, flags);
if (new_table) {
kmem_cache_free(amd_iommu_irq_cache, new_table->table);
kfree(new_table);
}
return table;
}
static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
bool align, struct pci_dev *pdev)
{
struct irq_remap_table *table;
int index, c, alignment = 1;
unsigned long flags;
table = alloc_irq_table(iommu, devid, pdev);
if (!table)
return -ENODEV;
if (align)
alignment = roundup_pow_of_two(count);
raw_spin_lock_irqsave(&table->lock, flags);
/* Scan table for free entries */
for (index = ALIGN(table->min_index, alignment), c = 0;
index < MAX_IRQS_PER_TABLE;) {
if (!iommu->irte_ops->is_allocated(table, index)) {
c += 1;
} else {
c = 0;
index = ALIGN(index + 1, alignment);
continue;
}
if (c == count) {
for (; c != 0; --c)
iommu->irte_ops->set_allocated(table, index - c + 1);
index -= count - 1;
goto out;
}
index++;
}
index = -ENOSPC;
out:
raw_spin_unlock_irqrestore(&table->lock, flags);
return index;
}
static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
struct irte_ga *irte)
{
struct irq_remap_table *table;
struct irte_ga *entry;
unsigned long flags;
u128 old;
table = get_irq_table(iommu, devid);
if (!table)
return -ENOMEM;
raw_spin_lock_irqsave(&table->lock, flags);
entry = (struct irte_ga *)table->table;
entry = &entry[index];
/*
* We use cmpxchg16 to atomically update the 128-bit IRTE,
* and it cannot be updated by the hardware or other processors
* behind us, so the return value of cmpxchg16 should be the
* same as the old value.
*/
old = entry->irte;
WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
raw_spin_unlock_irqrestore(&table->lock, flags);
return 0;
}
static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
struct irte_ga *irte)
{
bool ret;
ret = __modify_irte_ga(iommu, devid, index, irte);
if (ret)
return ret;
iommu_flush_irt_and_complete(iommu, devid);
return 0;
}
static int modify_irte(struct amd_iommu *iommu,
u16 devid, int index, union irte *irte)
{
struct irq_remap_table *table;
unsigned long flags;
table = get_irq_table(iommu, devid);
if (!table)
return -ENOMEM;
raw_spin_lock_irqsave(&table->lock, flags);
table->table[index] = irte->val;
raw_spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt_and_complete(iommu, devid);
return 0;
}
static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
{
struct irq_remap_table *table;
unsigned long flags;
table = get_irq_table(iommu, devid);
if (!table)
return;
raw_spin_lock_irqsave(&table->lock, flags);
iommu->irte_ops->clear_allocated(table, index);
raw_spin_unlock_irqrestore(&table->lock, flags);
iommu_flush_irt_and_complete(iommu, devid);
}
static void irte_prepare(void *entry,
u32 delivery_mode, bool dest_mode,
u8 vector, u32 dest_apicid, int devid)
{
union irte *irte = (union irte *) entry;
irte->val = 0;
irte->fields.vector = vector;
irte->fields.int_type = delivery_mode;
irte->fields.destination = dest_apicid;
irte->fields.dm = dest_mode;
irte->fields.valid = 1;
}
static void irte_ga_prepare(void *entry,
u32 delivery_mode, bool dest_mode,
u8 vector, u32 dest_apicid, int devid)
{
struct irte_ga *irte = (struct irte_ga *) entry;
irte->lo.val = 0;
irte->hi.val = 0;
irte->lo.fields_remap.int_type = delivery_mode;
irte->lo.fields_remap.dm = dest_mode;
irte->hi.fields.vector = vector;
irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
irte->lo.fields_remap.valid = 1;
}
static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
union irte *irte = (union irte *) entry;
irte->fields.valid = 1;
modify_irte(iommu, devid, index, irte);
}
static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
struct irte_ga *irte = (struct irte_ga *) entry;
irte->lo.fields_remap.valid = 1;
modify_irte_ga(iommu, devid, index, irte);
}
static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
union irte *irte = (union irte *) entry;
irte->fields.valid = 0;
modify_irte(iommu, devid, index, irte);
}
static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
{
struct irte_ga *irte = (struct irte_ga *) entry;
irte->lo.fields_remap.valid = 0;
modify_irte_ga(iommu, devid, index, irte);
}
static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
u8 vector, u32 dest_apicid)
{
union irte *irte = (union irte *) entry;
irte->fields.vector = vector;
irte->fields.destination = dest_apicid;
modify_irte(iommu, devid, index, irte);
}
static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
u8 vector, u32 dest_apicid)
{
struct irte_ga *irte = (struct irte_ga *) entry;
if (!irte->lo.fields_remap.guest_mode) {
irte->hi.fields.vector = vector;
irte->lo.fields_remap.destination =
APICID_TO_IRTE_DEST_LO(dest_apicid);
irte->hi.fields.destination =
APICID_TO_IRTE_DEST_HI(dest_apicid);
modify_irte_ga(iommu, devid, index, irte);
}
}
#define IRTE_ALLOCATED (~1U)
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
table->table[index] = IRTE_ALLOCATED;
}
static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
struct irte_ga *ptr = (struct irte_ga *)table->table;
struct irte_ga *irte = &ptr[index];
memset(&irte->lo.val, 0, sizeof(u64));
memset(&irte->hi.val, 0, sizeof(u64));
irte->hi.fields.vector = 0xff;
}
static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
union irte *ptr = (union irte *)table->table;
union irte *irte = &ptr[index];
return irte->val != 0;
}
static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
struct irte_ga *ptr = (struct irte_ga *)table->table;
struct irte_ga *irte = &ptr[index];
return irte->hi.fields.vector != 0;
}
static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
table->table[index] = 0;
}
static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
struct irte_ga *ptr = (struct irte_ga *)table->table;
struct irte_ga *irte = &ptr[index];
memset(&irte->lo.val, 0, sizeof(u64));
memset(&irte->hi.val, 0, sizeof(u64));
}
static int get_devid(struct irq_alloc_info *info)
{
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
return get_ioapic_devid(info->devid);
case X86_IRQ_ALLOC_TYPE_HPET:
return get_hpet_devid(info->devid);
case X86_IRQ_ALLOC_TYPE_PCI_MSI:
case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
return get_device_sbdf_id(msi_desc_to_dev(info->desc));
default:
WARN_ON_ONCE(1);
return -1;
}
}
struct irq_remap_ops amd_iommu_irq_ops = {
.prepare = amd_iommu_prepare,
.enable = amd_iommu_enable,
.disable = amd_iommu_disable,
.reenable = amd_iommu_reenable,
.enable_faulting = amd_iommu_enable_faulting,
};
static void fill_msi_msg(struct msi_msg *msg, u32 index)
{
msg->data = index;
msg->address_lo = 0;
msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
}
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
struct irq_cfg *irq_cfg,
struct irq_alloc_info *info,
int devid, int index, int sub_handle)
{
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct amd_iommu *iommu = data->iommu;
if (!iommu)
return;
data->irq_2_irte.devid = devid;
data->irq_2_irte.index = index + sub_handle;
iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
apic->dest_mode_logical, irq_cfg->vector,
irq_cfg->dest_apicid, devid);
switch (info->type) {
case X86_IRQ_ALLOC_TYPE_IOAPIC:
case X86_IRQ_ALLOC_TYPE_HPET:
case X86_IRQ_ALLOC_TYPE_PCI_MSI:
case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
fill_msi_msg(&data->msi_entry, irte_info->index);
break;
default:
BUG_ON(1);
break;
}
}
struct amd_irte_ops irte_32_ops = {
.prepare = irte_prepare,
.activate = irte_activate,
.deactivate = irte_deactivate,
.set_affinity = irte_set_affinity,
.set_allocated = irte_set_allocated,
.is_allocated = irte_is_allocated,
.clear_allocated = irte_clear_allocated,
};
struct amd_irte_ops irte_128_ops = {
.prepare = irte_ga_prepare,
.activate = irte_ga_activate,
.deactivate = irte_ga_deactivate,
.set_affinity = irte_ga_set_affinity,
.set_allocated = irte_ga_set_allocated,
.is_allocated = irte_ga_is_allocated,
.clear_allocated = irte_ga_clear_allocated,
};
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
struct irq_alloc_info *info = arg;
struct irq_data *irq_data;
struct amd_ir_data *data = NULL;
struct amd_iommu *iommu;
struct irq_cfg *cfg;
int i, ret, devid, seg, sbdf;
int index;
if (!info)
return -EINVAL;
if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
return -EINVAL;
sbdf = get_devid(info);
if (sbdf < 0)
return -EINVAL;
seg = PCI_SBDF_TO_SEGID(sbdf);
devid = PCI_SBDF_TO_DEVID(sbdf);
iommu = __rlookup_amd_iommu(seg, devid);
if (!iommu)
return -EINVAL;
ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
if (ret < 0)
return ret;
if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
struct irq_remap_table *table;
table = alloc_irq_table(iommu, devid, NULL);
if (table) {
if (!table->min_index) {
/*
* Keep the first 32 indexes free for IOAPIC
* interrupts.
*/
table->min_index = 32;
for (i = 0; i < 32; ++i)
iommu->irte_ops->set_allocated(table, i);
}
WARN_ON(table->min_index != 32);
index = info->ioapic.pin;
} else {
index = -ENOMEM;
}
} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
index = alloc_irq_index(iommu, devid, nr_irqs, align,
msi_desc_to_pci_dev(info->desc));
} else {
index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
}
if (index < 0) {
pr_warn("Failed to allocate IRTE\n");
ret = index;
goto out_free_parent;
}
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
cfg = irq_data ? irqd_cfg(irq_data) : NULL;
if (!cfg) {
ret = -EINVAL;
goto out_free_data;
}
ret = -ENOMEM;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
goto out_free_data;
if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
else
data->entry = kzalloc(sizeof(struct irte_ga),
GFP_KERNEL);
if (!data->entry) {
kfree(data);
goto out_free_data;
}
data->iommu = iommu;
irq_data->hwirq = (devid << 16) + i;
irq_data->chip_data = data;
irq_data->chip = &amd_ir_chip;
irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
}
return 0;
out_free_data:
for (i--; i >= 0; i--) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data)
kfree(irq_data->chip_data);
}
for (i = 0; i < nr_irqs; i++)
free_irte(iommu, devid, index + i);
out_free_parent:
irq_domain_free_irqs_common(domain, virq, nr_irqs);
return ret;
}
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_2_irte *irte_info;
struct irq_data *irq_data;
struct amd_ir_data *data;
int i;
for (i = 0; i < nr_irqs; i++) {
irq_data = irq_domain_get_irq_data(domain, virq + i);
if (irq_data && irq_data->chip_data) {
data = irq_data->chip_data;
irte_info = &data->irq_2_irte;
free_irte(data->iommu, irte_info->devid, irte_info->index);
kfree(data->entry);
kfree(data);
}
}
irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
struct amd_ir_data *ir_data,
struct irq_2_irte *irte_info,
struct irq_cfg *cfg);
static int irq_remapping_activate(struct irq_domain *domain,
struct irq_data *irq_data, bool reserve)
{
struct amd_ir_data *data = irq_data->chip_data;
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct amd_iommu *iommu = data->iommu;
struct irq_cfg *cfg = irqd_cfg(irq_data);
if (!iommu)
return 0;
iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
irte_info->index);
amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
return 0;
}
static void irq_remapping_deactivate(struct irq_domain *domain,
struct irq_data *irq_data)
{
struct amd_ir_data *data = irq_data->chip_data;
struct irq_2_irte *irte_info = &data->irq_2_irte;
struct amd_iommu *iommu = data->iommu;
if (iommu)
iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
irte_info->index);
}
static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
enum irq_domain_bus_token bus_token)
{
struct amd_iommu *iommu;
int devid = -1;
if (!amd_iommu_irq_remap)
return 0;
if (x86_fwspec_is_ioapic(fwspec))
devid = get_ioapic_devid(fwspec->param[0]);
else if (x86_fwspec_is_hpet(fwspec))
devid = get_hpet_devid(fwspec->param[0]);
if (devid < 0)
return 0;
iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
return iommu && iommu->ir_domain == d;
}
static const struct irq_domain_ops amd_ir_domain_ops = {
.select = irq_remapping_select,
.alloc = irq_remapping_alloc,
.free = irq_remapping_free,
.activate = irq_remapping_activate,
.deactivate = irq_remapping_deactivate,
};
int amd_iommu_activate_guest_mode(void *data)
{
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
u64 valid;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
return 0;
valid = entry->lo.fields_vapic.valid;
entry->lo.val = 0;
entry->hi.val = 0;
entry->lo.fields_vapic.valid = valid;
entry->lo.fields_vapic.guest_mode = 1;
entry->lo.fields_vapic.ga_log_intr = 1;
entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
entry->hi.fields.vector = ir_data->ga_vector;
entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
ir_data->irq_2_irte.index, entry);
}
EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
int amd_iommu_deactivate_guest_mode(void *data)
{
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
struct irq_cfg *cfg = ir_data->cfg;
u64 valid;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
!entry || !entry->lo.fields_vapic.guest_mode)
return 0;
valid = entry->lo.fields_remap.valid;
entry->lo.val = 0;
entry->hi.val = 0;
entry->lo.fields_remap.valid = valid;
entry->lo.fields_remap.dm = apic->dest_mode_logical;
entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
entry->hi.fields.vector = cfg->vector;
entry->lo.fields_remap.destination =
APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
entry->hi.fields.destination =
APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
ir_data->irq_2_irte.index, entry);
}
EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
int ret;
struct amd_iommu_pi_data *pi_data = vcpu_info;
struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
struct amd_ir_data *ir_data = data->chip_data;
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
struct iommu_dev_data *dev_data;
if (ir_data->iommu == NULL)
return -EINVAL;
dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
/* Note:
* This device has never been set up for guest mode.
* we should not modify the IRTE
*/
if (!dev_data || !dev_data->use_vapic)
return 0;
ir_data->cfg = irqd_cfg(data);
pi_data->ir_data = ir_data;
/* Note:
* SVM tries to set up for VAPIC mode, but we are in
* legacy mode. So, we force legacy mode instead.
*/
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
pr_debug("%s: Fall back to using intr legacy remap\n",
__func__);
pi_data->is_guest_mode = false;
}
pi_data->prev_ga_tag = ir_data->cached_ga_tag;
if (pi_data->is_guest_mode) {
ir_data->ga_root_ptr = (pi_data->base >> 12);
ir_data->ga_vector = vcpu_pi_info->vector;
ir_data->ga_tag = pi_data->ga_tag;
ret = amd_iommu_activate_guest_mode(ir_data);
if (!ret)
ir_data->cached_ga_tag = pi_data->ga_tag;
} else {
ret = amd_iommu_deactivate_guest_mode(ir_data);
/*
* This communicates the ga_tag back to the caller
* so that it can do all the necessary clean up.
*/
if (!ret)
ir_data->cached_ga_tag = 0;
}
return ret;
}
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
struct amd_ir_data *ir_data,
struct irq_2_irte *irte_info,
struct irq_cfg *cfg)
{
/*
* Atomically updates the IRTE with the new destination, vector
* and flushes the interrupt entry cache.
*/
iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
irte_info->index, cfg->vector,
cfg->dest_apicid);
}
static int amd_ir_set_affinity(struct irq_data *data,
const struct cpumask *mask, bool force)
{
struct amd_ir_data *ir_data = data->chip_data;
struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
struct irq_cfg *cfg = irqd_cfg(data);
struct irq_data *parent = data->parent_data;
struct amd_iommu *iommu = ir_data->iommu;
int ret;
if (!iommu)
return -ENODEV;
ret = parent->chip->irq_set_affinity(parent, mask, force);
if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
return ret;
amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
/*
* After this point, all the interrupts will start arriving
* at the new destination. So, time to cleanup the previous
* vector allocation.
*/
vector_schedule_cleanup(cfg);
return IRQ_SET_MASK_OK_DONE;
}
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
{
struct amd_ir_data *ir_data = irq_data->chip_data;
*msg = ir_data->msi_entry;
}
static struct irq_chip amd_ir_chip = {
.name = "AMD-IR",
.irq_ack = apic_ack_irq,
.irq_set_affinity = amd_ir_set_affinity,
.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
.irq_compose_msi_msg = ir_compose_msi_msg,
};
static const struct msi_parent_ops amdvi_msi_parent_ops = {
.supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
.prefix = "IR-",
.init_dev_msi_info = msi_parent_init_dev_msi_info,
};
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
struct fwnode_handle *fn;
fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
if (!fn)
return -ENOMEM;
iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
fn, &amd_ir_domain_ops, iommu);
if (!iommu->ir_domain) {
irq_domain_free_fwnode(fn);
return -ENOMEM;
}
irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
IRQ_DOMAIN_FLAG_ISOLATED_MSI;
iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
return 0;
}
int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
!entry || !entry->lo.fields_vapic.guest_mode)
return 0;
if (!ir_data->iommu)
return -ENODEV;
if (cpu >= 0) {
entry->lo.fields_vapic.destination =
APICID_TO_IRTE_DEST_LO(cpu);
entry->hi.fields.destination =
APICID_TO_IRTE_DEST_HI(cpu);
}
entry->lo.fields_vapic.is_run = is_run;
return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
ir_data->irq_2_irte.index, entry);
}
EXPORT_SYMBOL(amd_iommu_update_ga);
#endif