For bare-metal SGX on real hardware, the hardware provides guarantees SGX state at reboot. For instance, all pages start out uninitialized. The vepc driver provides a similar guarantee today for freshly-opened vepc instances, but guests such as Windows expect all pages to be in uninitialized state on startup, including after every guest reboot. Some userspace implementations of virtual SGX would rather avoid having to close and reopen the /dev/sgx_vepc file descriptor and re-mmap the virtual EPC. For example, they could sandbox themselves after the guest starts and forbid further calls to open(), in order to mitigate exploits from untrusted guests. Therefore, add a ioctl that does this with EREMOVE. Userspace can invoke the ioctl to bring its vEPC pages back to uninitialized state. There is a possibility that some pages fail to be removed if they are SECS pages, and the child and SECS pages could be in separate vEPC regions. Therefore, the ioctl returns the number of EREMOVE failures, telling userspace to try the ioctl again after it's done with all vEPC regions. A more verbose description of the correct usage and the possible error conditions is documented in sgx.rst. Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20211021201155.1523989-3-pbonzini@redhat.com
432 lines
11 KiB
C
432 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Device driver to expose SGX enclave memory to KVM guests.
|
|
*
|
|
* Copyright(c) 2021 Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/xarray.h>
|
|
#include <asm/sgx.h>
|
|
#include <uapi/asm/sgx.h>
|
|
|
|
#include "encls.h"
|
|
#include "sgx.h"
|
|
|
|
struct sgx_vepc {
|
|
struct xarray page_array;
|
|
struct mutex lock;
|
|
};
|
|
|
|
/*
|
|
* Temporary SECS pages that cannot be EREMOVE'd due to having child in other
|
|
* virtual EPC instances, and the lock to protect it.
|
|
*/
|
|
static struct mutex zombie_secs_pages_lock;
|
|
static struct list_head zombie_secs_pages;
|
|
|
|
static int __sgx_vepc_fault(struct sgx_vepc *vepc,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct sgx_epc_page *epc_page;
|
|
unsigned long index, pfn;
|
|
int ret;
|
|
|
|
WARN_ON(!mutex_is_locked(&vepc->lock));
|
|
|
|
/* Calculate index of EPC page in virtual EPC's page_array */
|
|
index = vma->vm_pgoff + PFN_DOWN(addr - vma->vm_start);
|
|
|
|
epc_page = xa_load(&vepc->page_array, index);
|
|
if (epc_page)
|
|
return 0;
|
|
|
|
epc_page = sgx_alloc_epc_page(vepc, false);
|
|
if (IS_ERR(epc_page))
|
|
return PTR_ERR(epc_page);
|
|
|
|
ret = xa_err(xa_store(&vepc->page_array, index, epc_page, GFP_KERNEL));
|
|
if (ret)
|
|
goto err_free;
|
|
|
|
pfn = PFN_DOWN(sgx_get_epc_phys_addr(epc_page));
|
|
|
|
ret = vmf_insert_pfn(vma, addr, pfn);
|
|
if (ret != VM_FAULT_NOPAGE) {
|
|
ret = -EFAULT;
|
|
goto err_delete;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_delete:
|
|
xa_erase(&vepc->page_array, index);
|
|
err_free:
|
|
sgx_free_epc_page(epc_page);
|
|
return ret;
|
|
}
|
|
|
|
static vm_fault_t sgx_vepc_fault(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct sgx_vepc *vepc = vma->vm_private_data;
|
|
int ret;
|
|
|
|
mutex_lock(&vepc->lock);
|
|
ret = __sgx_vepc_fault(vepc, vma, vmf->address);
|
|
mutex_unlock(&vepc->lock);
|
|
|
|
if (!ret)
|
|
return VM_FAULT_NOPAGE;
|
|
|
|
if (ret == -EBUSY && (vmf->flags & FAULT_FLAG_ALLOW_RETRY)) {
|
|
mmap_read_unlock(vma->vm_mm);
|
|
return VM_FAULT_RETRY;
|
|
}
|
|
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
static const struct vm_operations_struct sgx_vepc_vm_ops = {
|
|
.fault = sgx_vepc_fault,
|
|
};
|
|
|
|
static int sgx_vepc_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct sgx_vepc *vepc = file->private_data;
|
|
|
|
if (!(vma->vm_flags & VM_SHARED))
|
|
return -EINVAL;
|
|
|
|
vma->vm_ops = &sgx_vepc_vm_ops;
|
|
/* Don't copy VMA in fork() */
|
|
vma->vm_flags |= VM_PFNMAP | VM_IO | VM_DONTDUMP | VM_DONTCOPY;
|
|
vma->vm_private_data = vepc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgx_vepc_remove_page(struct sgx_epc_page *epc_page)
|
|
{
|
|
/*
|
|
* Take a previously guest-owned EPC page and return it to the
|
|
* general EPC page pool.
|
|
*
|
|
* Guests can not be trusted to have left this page in a good
|
|
* state, so run EREMOVE on the page unconditionally. In the
|
|
* case that a guest properly EREMOVE'd this page, a superfluous
|
|
* EREMOVE is harmless.
|
|
*/
|
|
return __eremove(sgx_get_epc_virt_addr(epc_page));
|
|
}
|
|
|
|
static int sgx_vepc_free_page(struct sgx_epc_page *epc_page)
|
|
{
|
|
int ret = sgx_vepc_remove_page(epc_page);
|
|
if (ret) {
|
|
/*
|
|
* Only SGX_CHILD_PRESENT is expected, which is because of
|
|
* EREMOVE'ing an SECS still with child, in which case it can
|
|
* be handled by EREMOVE'ing the SECS again after all pages in
|
|
* virtual EPC have been EREMOVE'd. See comments in below in
|
|
* sgx_vepc_release().
|
|
*
|
|
* The user of virtual EPC (KVM) needs to guarantee there's no
|
|
* logical processor is still running in the enclave in guest,
|
|
* otherwise EREMOVE will get SGX_ENCLAVE_ACT which cannot be
|
|
* handled here.
|
|
*/
|
|
WARN_ONCE(ret != SGX_CHILD_PRESENT, EREMOVE_ERROR_MESSAGE,
|
|
ret, ret);
|
|
return ret;
|
|
}
|
|
|
|
sgx_free_epc_page(epc_page);
|
|
return 0;
|
|
}
|
|
|
|
static long sgx_vepc_remove_all(struct sgx_vepc *vepc)
|
|
{
|
|
struct sgx_epc_page *entry;
|
|
unsigned long index;
|
|
long failures = 0;
|
|
|
|
xa_for_each(&vepc->page_array, index, entry) {
|
|
int ret = sgx_vepc_remove_page(entry);
|
|
if (ret) {
|
|
if (ret == SGX_CHILD_PRESENT) {
|
|
/* The page is a SECS, userspace will retry. */
|
|
failures++;
|
|
} else {
|
|
/*
|
|
* Report errors due to #GP or SGX_ENCLAVE_ACT; do not
|
|
* WARN, as userspace can induce said failures by
|
|
* calling the ioctl concurrently on multiple vEPCs or
|
|
* while one or more CPUs is running the enclave. Only
|
|
* a #PF on EREMOVE indicates a kernel/hardware issue.
|
|
*/
|
|
WARN_ON_ONCE(encls_faulted(ret) &&
|
|
ENCLS_TRAPNR(ret) != X86_TRAP_GP);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
/*
|
|
* Return the number of SECS pages that failed to be removed, so
|
|
* userspace knows that it has to retry.
|
|
*/
|
|
return failures;
|
|
}
|
|
|
|
static int sgx_vepc_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct sgx_vepc *vepc = file->private_data;
|
|
struct sgx_epc_page *epc_page, *tmp, *entry;
|
|
unsigned long index;
|
|
|
|
LIST_HEAD(secs_pages);
|
|
|
|
xa_for_each(&vepc->page_array, index, entry) {
|
|
/*
|
|
* Remove all normal, child pages. sgx_vepc_free_page()
|
|
* will fail if EREMOVE fails, but this is OK and expected on
|
|
* SECS pages. Those can only be EREMOVE'd *after* all their
|
|
* child pages. Retries below will clean them up.
|
|
*/
|
|
if (sgx_vepc_free_page(entry))
|
|
continue;
|
|
|
|
xa_erase(&vepc->page_array, index);
|
|
}
|
|
|
|
/*
|
|
* Retry EREMOVE'ing pages. This will clean up any SECS pages that
|
|
* only had children in this 'epc' area.
|
|
*/
|
|
xa_for_each(&vepc->page_array, index, entry) {
|
|
epc_page = entry;
|
|
/*
|
|
* An EREMOVE failure here means that the SECS page still
|
|
* has children. But, since all children in this 'sgx_vepc'
|
|
* have been removed, the SECS page must have a child on
|
|
* another instance.
|
|
*/
|
|
if (sgx_vepc_free_page(epc_page))
|
|
list_add_tail(&epc_page->list, &secs_pages);
|
|
|
|
xa_erase(&vepc->page_array, index);
|
|
}
|
|
|
|
/*
|
|
* SECS pages are "pinned" by child pages, and "unpinned" once all
|
|
* children have been EREMOVE'd. A child page in this instance
|
|
* may have pinned an SECS page encountered in an earlier release(),
|
|
* creating a zombie. Since some children were EREMOVE'd above,
|
|
* try to EREMOVE all zombies in the hopes that one was unpinned.
|
|
*/
|
|
mutex_lock(&zombie_secs_pages_lock);
|
|
list_for_each_entry_safe(epc_page, tmp, &zombie_secs_pages, list) {
|
|
/*
|
|
* Speculatively remove the page from the list of zombies,
|
|
* if the page is successfully EREMOVE'd it will be added to
|
|
* the list of free pages. If EREMOVE fails, throw the page
|
|
* on the local list, which will be spliced on at the end.
|
|
*/
|
|
list_del(&epc_page->list);
|
|
|
|
if (sgx_vepc_free_page(epc_page))
|
|
list_add_tail(&epc_page->list, &secs_pages);
|
|
}
|
|
|
|
if (!list_empty(&secs_pages))
|
|
list_splice_tail(&secs_pages, &zombie_secs_pages);
|
|
mutex_unlock(&zombie_secs_pages_lock);
|
|
|
|
xa_destroy(&vepc->page_array);
|
|
kfree(vepc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sgx_vepc_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct sgx_vepc *vepc;
|
|
|
|
vepc = kzalloc(sizeof(struct sgx_vepc), GFP_KERNEL);
|
|
if (!vepc)
|
|
return -ENOMEM;
|
|
mutex_init(&vepc->lock);
|
|
xa_init(&vepc->page_array);
|
|
|
|
file->private_data = vepc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long sgx_vepc_ioctl(struct file *file,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct sgx_vepc *vepc = file->private_data;
|
|
|
|
switch (cmd) {
|
|
case SGX_IOC_VEPC_REMOVE_ALL:
|
|
if (arg)
|
|
return -EINVAL;
|
|
return sgx_vepc_remove_all(vepc);
|
|
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static const struct file_operations sgx_vepc_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = sgx_vepc_open,
|
|
.unlocked_ioctl = sgx_vepc_ioctl,
|
|
.compat_ioctl = sgx_vepc_ioctl,
|
|
.release = sgx_vepc_release,
|
|
.mmap = sgx_vepc_mmap,
|
|
};
|
|
|
|
static struct miscdevice sgx_vepc_dev = {
|
|
.minor = MISC_DYNAMIC_MINOR,
|
|
.name = "sgx_vepc",
|
|
.nodename = "sgx_vepc",
|
|
.fops = &sgx_vepc_fops,
|
|
};
|
|
|
|
int __init sgx_vepc_init(void)
|
|
{
|
|
/* SGX virtualization requires KVM to work */
|
|
if (!cpu_feature_enabled(X86_FEATURE_VMX))
|
|
return -ENODEV;
|
|
|
|
INIT_LIST_HEAD(&zombie_secs_pages);
|
|
mutex_init(&zombie_secs_pages_lock);
|
|
|
|
return misc_register(&sgx_vepc_dev);
|
|
}
|
|
|
|
/**
|
|
* sgx_virt_ecreate() - Run ECREATE on behalf of guest
|
|
* @pageinfo: Pointer to PAGEINFO structure
|
|
* @secs: Userspace pointer to SECS page
|
|
* @trapnr: trap number injected to guest in case of ECREATE error
|
|
*
|
|
* Run ECREATE on behalf of guest after KVM traps ECREATE for the purpose
|
|
* of enforcing policies of guest's enclaves, and return the trap number
|
|
* which should be injected to guest in case of any ECREATE error.
|
|
*
|
|
* Return:
|
|
* - 0: ECREATE was successful.
|
|
* - <0: on error.
|
|
*/
|
|
int sgx_virt_ecreate(struct sgx_pageinfo *pageinfo, void __user *secs,
|
|
int *trapnr)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* @secs is an untrusted, userspace-provided address. It comes from
|
|
* KVM and is assumed to be a valid pointer which points somewhere in
|
|
* userspace. This can fault and call SGX or other fault handlers when
|
|
* userspace mapping @secs doesn't exist.
|
|
*
|
|
* Add a WARN() to make sure @secs is already valid userspace pointer
|
|
* from caller (KVM), who should already have handled invalid pointer
|
|
* case (for instance, made by malicious guest). All other checks,
|
|
* such as alignment of @secs, are deferred to ENCLS itself.
|
|
*/
|
|
if (WARN_ON_ONCE(!access_ok(secs, PAGE_SIZE)))
|
|
return -EINVAL;
|
|
|
|
__uaccess_begin();
|
|
ret = __ecreate(pageinfo, (void *)secs);
|
|
__uaccess_end();
|
|
|
|
if (encls_faulted(ret)) {
|
|
*trapnr = ENCLS_TRAPNR(ret);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* ECREATE doesn't return an error code, it faults or succeeds. */
|
|
WARN_ON_ONCE(ret);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sgx_virt_ecreate);
|
|
|
|
static int __sgx_virt_einit(void __user *sigstruct, void __user *token,
|
|
void __user *secs)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Make sure all userspace pointers from caller (KVM) are valid.
|
|
* All other checks deferred to ENCLS itself. Also see comment
|
|
* for @secs in sgx_virt_ecreate().
|
|
*/
|
|
#define SGX_EINITTOKEN_SIZE 304
|
|
if (WARN_ON_ONCE(!access_ok(sigstruct, sizeof(struct sgx_sigstruct)) ||
|
|
!access_ok(token, SGX_EINITTOKEN_SIZE) ||
|
|
!access_ok(secs, PAGE_SIZE)))
|
|
return -EINVAL;
|
|
|
|
__uaccess_begin();
|
|
ret = __einit((void *)sigstruct, (void *)token, (void *)secs);
|
|
__uaccess_end();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sgx_virt_einit() - Run EINIT on behalf of guest
|
|
* @sigstruct: Userspace pointer to SIGSTRUCT structure
|
|
* @token: Userspace pointer to EINITTOKEN structure
|
|
* @secs: Userspace pointer to SECS page
|
|
* @lepubkeyhash: Pointer to guest's *virtual* SGX_LEPUBKEYHASH MSR values
|
|
* @trapnr: trap number injected to guest in case of EINIT error
|
|
*
|
|
* Run EINIT on behalf of guest after KVM traps EINIT. If SGX_LC is available
|
|
* in host, SGX driver may rewrite the hardware values at wish, therefore KVM
|
|
* needs to update hardware values to guest's virtual MSR values in order to
|
|
* ensure EINIT is executed with expected hardware values.
|
|
*
|
|
* Return:
|
|
* - 0: EINIT was successful.
|
|
* - <0: on error.
|
|
*/
|
|
int sgx_virt_einit(void __user *sigstruct, void __user *token,
|
|
void __user *secs, u64 *lepubkeyhash, int *trapnr)
|
|
{
|
|
int ret;
|
|
|
|
if (!cpu_feature_enabled(X86_FEATURE_SGX_LC)) {
|
|
ret = __sgx_virt_einit(sigstruct, token, secs);
|
|
} else {
|
|
preempt_disable();
|
|
|
|
sgx_update_lepubkeyhash(lepubkeyhash);
|
|
|
|
ret = __sgx_virt_einit(sigstruct, token, secs);
|
|
preempt_enable();
|
|
}
|
|
|
|
/* Propagate up the error from the WARN_ON_ONCE in __sgx_virt_einit() */
|
|
if (ret == -EINVAL)
|
|
return ret;
|
|
|
|
if (encls_faulted(ret)) {
|
|
*trapnr = ENCLS_TRAPNR(ret);
|
|
return -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sgx_virt_einit);
|