Commit 192b6a7805
("powerpc/book3s64/pkeys: Fix
pkey_access_permitted() for execute disable pkey") fixed a
bug that caused repetitive faults for pkeys with no execute
rights alongside some combination of read and write rights.
This removes the last two cases of the test, which check
the behaviour of pkeys with read, write but no execute
rights and all the rights, in favour of checking all the
possible combinations of read, write and execute rights
to be able to detect bugs like the one mentioned above.
Signed-off-by: Sandipan Das <sandipan@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/db467500f8af47727bba6b35796e8974a78b71e5.1595821792.git.sandipan@linux.ibm.com
294 lines
7.8 KiB
C
294 lines
7.8 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
|
|
/*
|
|
* Copyright 2020, Sandipan Das, IBM Corp.
|
|
*
|
|
* Test if applying execute protection on pages using memory
|
|
* protection keys works as expected.
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include "pkeys.h"
|
|
|
|
#define PPC_INST_NOP 0x60000000
|
|
#define PPC_INST_TRAP 0x7fe00008
|
|
#define PPC_INST_BLR 0x4e800020
|
|
|
|
static volatile sig_atomic_t fault_pkey, fault_code, fault_type;
|
|
static volatile sig_atomic_t remaining_faults;
|
|
static volatile unsigned int *fault_addr;
|
|
static unsigned long pgsize, numinsns;
|
|
static unsigned int *insns;
|
|
|
|
static void trap_handler(int signum, siginfo_t *sinfo, void *ctx)
|
|
{
|
|
/* Check if this fault originated from the expected address */
|
|
if (sinfo->si_addr != (void *) fault_addr)
|
|
sigsafe_err("got a fault for an unexpected address\n");
|
|
|
|
_exit(1);
|
|
}
|
|
|
|
static void segv_handler(int signum, siginfo_t *sinfo, void *ctx)
|
|
{
|
|
int signal_pkey;
|
|
|
|
signal_pkey = siginfo_pkey(sinfo);
|
|
fault_code = sinfo->si_code;
|
|
|
|
/* Check if this fault originated from the expected address */
|
|
if (sinfo->si_addr != (void *) fault_addr) {
|
|
sigsafe_err("got a fault for an unexpected address\n");
|
|
_exit(1);
|
|
}
|
|
|
|
/* Check if too many faults have occurred for a single test case */
|
|
if (!remaining_faults) {
|
|
sigsafe_err("got too many faults for the same address\n");
|
|
_exit(1);
|
|
}
|
|
|
|
|
|
/* Restore permissions in order to continue */
|
|
switch (fault_code) {
|
|
case SEGV_ACCERR:
|
|
if (mprotect(insns, pgsize, PROT_READ | PROT_WRITE)) {
|
|
sigsafe_err("failed to set access permissions\n");
|
|
_exit(1);
|
|
}
|
|
break;
|
|
case SEGV_PKUERR:
|
|
if (signal_pkey != fault_pkey) {
|
|
sigsafe_err("got a fault for an unexpected pkey\n");
|
|
_exit(1);
|
|
}
|
|
|
|
switch (fault_type) {
|
|
case PKEY_DISABLE_ACCESS:
|
|
pkey_set_rights(fault_pkey, 0);
|
|
break;
|
|
case PKEY_DISABLE_EXECUTE:
|
|
/*
|
|
* Reassociate the exec-only pkey with the region
|
|
* to be able to continue. Unlike AMR, we cannot
|
|
* set IAMR directly from userspace to restore the
|
|
* permissions.
|
|
*/
|
|
if (mprotect(insns, pgsize, PROT_EXEC)) {
|
|
sigsafe_err("failed to set execute permissions\n");
|
|
_exit(1);
|
|
}
|
|
break;
|
|
default:
|
|
sigsafe_err("got a fault with an unexpected type\n");
|
|
_exit(1);
|
|
}
|
|
break;
|
|
default:
|
|
sigsafe_err("got a fault with an unexpected code\n");
|
|
_exit(1);
|
|
}
|
|
|
|
remaining_faults--;
|
|
}
|
|
|
|
static int test(void)
|
|
{
|
|
struct sigaction segv_act, trap_act;
|
|
unsigned long rights;
|
|
int pkey, ret, i;
|
|
|
|
ret = pkeys_unsupported();
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup SIGSEGV handler */
|
|
segv_act.sa_handler = 0;
|
|
segv_act.sa_sigaction = segv_handler;
|
|
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &segv_act.sa_mask) != 0);
|
|
segv_act.sa_flags = SA_SIGINFO;
|
|
segv_act.sa_restorer = 0;
|
|
FAIL_IF(sigaction(SIGSEGV, &segv_act, NULL) != 0);
|
|
|
|
/* Setup SIGTRAP handler */
|
|
trap_act.sa_handler = 0;
|
|
trap_act.sa_sigaction = trap_handler;
|
|
FAIL_IF(sigprocmask(SIG_SETMASK, 0, &trap_act.sa_mask) != 0);
|
|
trap_act.sa_flags = SA_SIGINFO;
|
|
trap_act.sa_restorer = 0;
|
|
FAIL_IF(sigaction(SIGTRAP, &trap_act, NULL) != 0);
|
|
|
|
/* Setup executable region */
|
|
pgsize = getpagesize();
|
|
numinsns = pgsize / sizeof(unsigned int);
|
|
insns = (unsigned int *) mmap(NULL, pgsize, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
FAIL_IF(insns == MAP_FAILED);
|
|
|
|
/* Write the instruction words */
|
|
for (i = 1; i < numinsns - 1; i++)
|
|
insns[i] = PPC_INST_NOP;
|
|
|
|
/*
|
|
* Set the first instruction as an unconditional trap. If
|
|
* the last write to this address succeeds, this should
|
|
* get overwritten by a no-op.
|
|
*/
|
|
insns[0] = PPC_INST_TRAP;
|
|
|
|
/*
|
|
* Later, to jump to the executable region, we use a branch
|
|
* and link instruction (bctrl) which sets the return address
|
|
* automatically in LR. Use that to return back.
|
|
*/
|
|
insns[numinsns - 1] = PPC_INST_BLR;
|
|
|
|
/* Allocate a pkey that restricts execution */
|
|
rights = PKEY_DISABLE_EXECUTE;
|
|
pkey = sys_pkey_alloc(0, rights);
|
|
FAIL_IF(pkey < 0);
|
|
|
|
/*
|
|
* Pick the first instruction's address from the executable
|
|
* region.
|
|
*/
|
|
fault_addr = insns;
|
|
|
|
/* The following two cases will avoid SEGV_PKUERR */
|
|
fault_type = -1;
|
|
fault_pkey = -1;
|
|
|
|
/*
|
|
* Read an instruction word from the address when AMR bits
|
|
* are not set i.e. the pkey permits both read and write
|
|
* access.
|
|
*
|
|
* This should not generate a fault as having PROT_EXEC
|
|
* implies PROT_READ on GNU systems. The pkey currently
|
|
* restricts execution only based on the IAMR bits. The
|
|
* AMR bits are cleared.
|
|
*/
|
|
remaining_faults = 0;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
printf("read from %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
i = *fault_addr;
|
|
FAIL_IF(remaining_faults != 0);
|
|
|
|
/*
|
|
* Write an instruction word to the address when AMR bits
|
|
* are not set i.e. the pkey permits both read and write
|
|
* access.
|
|
*
|
|
* This should generate an access fault as having just
|
|
* PROT_EXEC also restricts writes. The pkey currently
|
|
* restricts execution only based on the IAMR bits. The
|
|
* AMR bits are cleared.
|
|
*/
|
|
remaining_faults = 1;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
printf("write to %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
*fault_addr = PPC_INST_TRAP;
|
|
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR);
|
|
|
|
/* The following three cases will generate SEGV_PKUERR */
|
|
rights |= PKEY_DISABLE_ACCESS;
|
|
fault_type = PKEY_DISABLE_ACCESS;
|
|
fault_pkey = pkey;
|
|
|
|
/*
|
|
* Read an instruction word from the address when AMR bits
|
|
* are set i.e. the pkey permits neither read nor write
|
|
* access.
|
|
*
|
|
* This should generate a pkey fault based on AMR bits only
|
|
* as having PROT_EXEC implicitly allows reads.
|
|
*/
|
|
remaining_faults = 1;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
pkey_set_rights(pkey, rights);
|
|
printf("read from %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
i = *fault_addr;
|
|
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_PKUERR);
|
|
|
|
/*
|
|
* Write an instruction word to the address when AMR bits
|
|
* are set i.e. the pkey permits neither read nor write
|
|
* access.
|
|
*
|
|
* This should generate two faults. First, a pkey fault
|
|
* based on AMR bits and then an access fault since
|
|
* PROT_EXEC does not allow writes.
|
|
*/
|
|
remaining_faults = 2;
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
pkey_set_rights(pkey, rights);
|
|
printf("write to %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
*fault_addr = PPC_INST_NOP;
|
|
FAIL_IF(remaining_faults != 0 || fault_code != SEGV_ACCERR);
|
|
|
|
/* Free the current pkey */
|
|
sys_pkey_free(pkey);
|
|
|
|
rights = 0;
|
|
do {
|
|
/*
|
|
* Allocate pkeys with all valid combinations of read,
|
|
* write and execute restrictions.
|
|
*/
|
|
pkey = sys_pkey_alloc(0, rights);
|
|
FAIL_IF(pkey < 0);
|
|
|
|
/*
|
|
* Jump to the executable region. AMR bits may or may not
|
|
* be set but they should not affect execution.
|
|
*
|
|
* This should generate pkey faults based on IAMR bits which
|
|
* may be set to restrict execution.
|
|
*
|
|
* The first iteration also checks if the overwrite of the
|
|
* first instruction word from a trap to a no-op succeeded.
|
|
*/
|
|
fault_pkey = pkey;
|
|
fault_type = -1;
|
|
remaining_faults = 0;
|
|
if (rights & PKEY_DISABLE_EXECUTE) {
|
|
fault_type = PKEY_DISABLE_EXECUTE;
|
|
remaining_faults = 1;
|
|
}
|
|
|
|
FAIL_IF(sys_pkey_mprotect(insns, pgsize, PROT_EXEC, pkey) != 0);
|
|
printf("execute at %p, pkey permissions are %s\n", fault_addr,
|
|
pkey_rights(rights));
|
|
asm volatile("mtctr %0; bctrl" : : "r"(insns));
|
|
FAIL_IF(remaining_faults != 0);
|
|
if (rights & PKEY_DISABLE_EXECUTE)
|
|
FAIL_IF(fault_code != SEGV_PKUERR);
|
|
|
|
/* Free the current pkey */
|
|
sys_pkey_free(pkey);
|
|
|
|
/* Find next valid combination of pkey rights */
|
|
rights = next_pkey_rights(rights);
|
|
} while (rights);
|
|
|
|
/* Cleanup */
|
|
munmap((void *) insns, pgsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
test_harness(test, "pkey_exec_prot");
|
|
}
|