We only consider crtc_state->enable when initially calculating plane visibility. Later on we try to override the plane's state to invisible if the crtc is in DPMS off state (crtc_state->active==false). Unfortunately the code doing that only updates the plane_state.visible flag and the crtc_state.active_planes bimask, but forgets to update some of the other plane bitmasks stored in the crtc_state. Namely crtc_state.nv12_planes is left set up based on the original visibility check which makes icl_check_nv12_planes() pick a slave plane for the flagged plane in the bitmask. Later on we hit the watermark code which sees a plane with a slave assigned and it then makes the logical assumption that the master plane must itself be visible. Since the master's plane_state.visible flag was already cleared we get a WARN. Fix the problem by clearing all the plane bitmasks for DPMS off. This is more or less the wrong approach and instead we should calculate all the plane related state purely based crtc_state->enable (to guarantee that the subsequent DPMS on can't fail). However in the past we definitely had some roadblocks to making that happen. Not sure how many are left these days, but let's stick to the current approach since it's a much simpler fix to the immediate problem (the WARN). v2: Keep the visible=false, it's important (Rodrigo) Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200318174515.31637-1-ville.syrjala@linux.intel.com Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
480 lines
14 KiB
C
480 lines
14 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
* DOC: atomic plane helpers
|
|
*
|
|
* The functions here are used by the atomic plane helper functions to
|
|
* implement legacy plane updates (i.e., drm_plane->update_plane() and
|
|
* drm_plane->disable_plane()). This allows plane updates to use the
|
|
* atomic state infrastructure and perform plane updates as separate
|
|
* prepare/check/commit/cleanup steps.
|
|
*/
|
|
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_fourcc.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
|
|
#include "i915_trace.h"
|
|
#include "intel_atomic_plane.h"
|
|
#include "intel_cdclk.h"
|
|
#include "intel_display_types.h"
|
|
#include "intel_pm.h"
|
|
#include "intel_sprite.h"
|
|
|
|
static void intel_plane_state_reset(struct intel_plane_state *plane_state,
|
|
struct intel_plane *plane)
|
|
{
|
|
memset(plane_state, 0, sizeof(*plane_state));
|
|
|
|
__drm_atomic_helper_plane_state_reset(&plane_state->uapi, &plane->base);
|
|
|
|
plane_state->scaler_id = -1;
|
|
}
|
|
|
|
struct intel_plane *intel_plane_alloc(void)
|
|
{
|
|
struct intel_plane_state *plane_state;
|
|
struct intel_plane *plane;
|
|
|
|
plane = kzalloc(sizeof(*plane), GFP_KERNEL);
|
|
if (!plane)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
plane_state = kzalloc(sizeof(*plane_state), GFP_KERNEL);
|
|
if (!plane_state) {
|
|
kfree(plane);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
intel_plane_state_reset(plane_state, plane);
|
|
|
|
plane->base.state = &plane_state->uapi;
|
|
|
|
return plane;
|
|
}
|
|
|
|
void intel_plane_free(struct intel_plane *plane)
|
|
{
|
|
intel_plane_destroy_state(&plane->base, plane->base.state);
|
|
kfree(plane);
|
|
}
|
|
|
|
/**
|
|
* intel_plane_duplicate_state - duplicate plane state
|
|
* @plane: drm plane
|
|
*
|
|
* Allocates and returns a copy of the plane state (both common and
|
|
* Intel-specific) for the specified plane.
|
|
*
|
|
* Returns: The newly allocated plane state, or NULL on failure.
|
|
*/
|
|
struct drm_plane_state *
|
|
intel_plane_duplicate_state(struct drm_plane *plane)
|
|
{
|
|
struct intel_plane_state *intel_state;
|
|
|
|
intel_state = to_intel_plane_state(plane->state);
|
|
intel_state = kmemdup(intel_state, sizeof(*intel_state), GFP_KERNEL);
|
|
|
|
if (!intel_state)
|
|
return NULL;
|
|
|
|
__drm_atomic_helper_plane_duplicate_state(plane, &intel_state->uapi);
|
|
|
|
intel_state->vma = NULL;
|
|
intel_state->flags = 0;
|
|
|
|
/* add reference to fb */
|
|
if (intel_state->hw.fb)
|
|
drm_framebuffer_get(intel_state->hw.fb);
|
|
|
|
return &intel_state->uapi;
|
|
}
|
|
|
|
/**
|
|
* intel_plane_destroy_state - destroy plane state
|
|
* @plane: drm plane
|
|
* @state: state object to destroy
|
|
*
|
|
* Destroys the plane state (both common and Intel-specific) for the
|
|
* specified plane.
|
|
*/
|
|
void
|
|
intel_plane_destroy_state(struct drm_plane *plane,
|
|
struct drm_plane_state *state)
|
|
{
|
|
struct intel_plane_state *plane_state = to_intel_plane_state(state);
|
|
WARN_ON(plane_state->vma);
|
|
|
|
__drm_atomic_helper_plane_destroy_state(&plane_state->uapi);
|
|
if (plane_state->hw.fb)
|
|
drm_framebuffer_put(plane_state->hw.fb);
|
|
kfree(plane_state);
|
|
}
|
|
|
|
unsigned int intel_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
unsigned int src_w, src_h, dst_w, dst_h;
|
|
unsigned int pixel_rate = crtc_state->pixel_rate;
|
|
|
|
src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
|
|
src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
|
|
dst_w = drm_rect_width(&plane_state->uapi.dst);
|
|
dst_h = drm_rect_height(&plane_state->uapi.dst);
|
|
|
|
/* Downscaling limits the maximum pixel rate */
|
|
dst_w = min(src_w, dst_w);
|
|
dst_h = min(src_h, dst_h);
|
|
|
|
return DIV_ROUND_UP_ULL(mul_u32_u32(pixel_rate, src_w * src_h),
|
|
dst_w * dst_h);
|
|
}
|
|
|
|
unsigned int intel_plane_data_rate(const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
const struct drm_framebuffer *fb = plane_state->hw.fb;
|
|
unsigned int cpp;
|
|
unsigned int pixel_rate;
|
|
|
|
if (!plane_state->uapi.visible)
|
|
return 0;
|
|
|
|
pixel_rate = intel_plane_pixel_rate(crtc_state, plane_state);
|
|
|
|
cpp = fb->format->cpp[0];
|
|
|
|
/*
|
|
* Based on HSD#:1408715493
|
|
* NV12 cpp == 4, P010 cpp == 8
|
|
*
|
|
* FIXME what is the logic behind this?
|
|
*/
|
|
if (fb->format->is_yuv && fb->format->num_planes > 1)
|
|
cpp *= 4;
|
|
|
|
return pixel_rate * cpp;
|
|
}
|
|
|
|
int intel_plane_calc_min_cdclk(struct intel_atomic_state *state,
|
|
struct intel_plane *plane,
|
|
bool *need_cdclk_calc)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
|
|
const struct intel_plane_state *plane_state =
|
|
intel_atomic_get_new_plane_state(state, plane);
|
|
struct intel_crtc *crtc = to_intel_crtc(plane_state->hw.crtc);
|
|
const struct intel_cdclk_state *cdclk_state;
|
|
const struct intel_crtc_state *old_crtc_state;
|
|
struct intel_crtc_state *new_crtc_state;
|
|
|
|
if (!plane_state->uapi.visible || !plane->min_cdclk)
|
|
return 0;
|
|
|
|
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
|
|
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
|
|
|
|
new_crtc_state->min_cdclk[plane->id] =
|
|
plane->min_cdclk(new_crtc_state, plane_state);
|
|
|
|
/*
|
|
* No need to check against the cdclk state if
|
|
* the min cdclk for the plane doesn't increase.
|
|
*
|
|
* Ie. we only ever increase the cdclk due to plane
|
|
* requirements. This can reduce back and forth
|
|
* display blinking due to constant cdclk changes.
|
|
*/
|
|
if (new_crtc_state->min_cdclk[plane->id] <=
|
|
old_crtc_state->min_cdclk[plane->id])
|
|
return 0;
|
|
|
|
cdclk_state = intel_atomic_get_cdclk_state(state);
|
|
if (IS_ERR(cdclk_state))
|
|
return PTR_ERR(cdclk_state);
|
|
|
|
/*
|
|
* No need to recalculate the cdclk state if
|
|
* the min cdclk for the pipe doesn't increase.
|
|
*
|
|
* Ie. we only ever increase the cdclk due to plane
|
|
* requirements. This can reduce back and forth
|
|
* display blinking due to constant cdclk changes.
|
|
*/
|
|
if (new_crtc_state->min_cdclk[plane->id] <=
|
|
cdclk_state->min_cdclk[crtc->pipe])
|
|
return 0;
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"[PLANE:%d:%s] min cdclk (%d kHz) > [CRTC:%d:%s] min cdclk (%d kHz)\n",
|
|
plane->base.base.id, plane->base.name,
|
|
new_crtc_state->min_cdclk[plane->id],
|
|
crtc->base.base.id, crtc->base.name,
|
|
cdclk_state->min_cdclk[crtc->pipe]);
|
|
*need_cdclk_calc = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void intel_plane_clear_hw_state(struct intel_plane_state *plane_state)
|
|
{
|
|
if (plane_state->hw.fb)
|
|
drm_framebuffer_put(plane_state->hw.fb);
|
|
|
|
memset(&plane_state->hw, 0, sizeof(plane_state->hw));
|
|
}
|
|
|
|
void intel_plane_copy_uapi_to_hw_state(struct intel_plane_state *plane_state,
|
|
const struct intel_plane_state *from_plane_state)
|
|
{
|
|
intel_plane_clear_hw_state(plane_state);
|
|
|
|
plane_state->hw.crtc = from_plane_state->uapi.crtc;
|
|
plane_state->hw.fb = from_plane_state->uapi.fb;
|
|
if (plane_state->hw.fb)
|
|
drm_framebuffer_get(plane_state->hw.fb);
|
|
|
|
plane_state->hw.alpha = from_plane_state->uapi.alpha;
|
|
plane_state->hw.pixel_blend_mode =
|
|
from_plane_state->uapi.pixel_blend_mode;
|
|
plane_state->hw.rotation = from_plane_state->uapi.rotation;
|
|
plane_state->hw.color_encoding = from_plane_state->uapi.color_encoding;
|
|
plane_state->hw.color_range = from_plane_state->uapi.color_range;
|
|
}
|
|
|
|
void intel_plane_set_invisible(struct intel_crtc_state *crtc_state,
|
|
struct intel_plane_state *plane_state)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
|
|
|
|
crtc_state->active_planes &= ~BIT(plane->id);
|
|
crtc_state->nv12_planes &= ~BIT(plane->id);
|
|
crtc_state->c8_planes &= ~BIT(plane->id);
|
|
crtc_state->data_rate[plane->id] = 0;
|
|
crtc_state->min_cdclk[plane->id] = 0;
|
|
|
|
plane_state->uapi.visible = false;
|
|
}
|
|
|
|
int intel_plane_atomic_check_with_state(const struct intel_crtc_state *old_crtc_state,
|
|
struct intel_crtc_state *new_crtc_state,
|
|
const struct intel_plane_state *old_plane_state,
|
|
struct intel_plane_state *new_plane_state)
|
|
{
|
|
struct intel_plane *plane = to_intel_plane(new_plane_state->uapi.plane);
|
|
const struct drm_framebuffer *fb = new_plane_state->hw.fb;
|
|
int ret;
|
|
|
|
intel_plane_set_invisible(new_crtc_state, new_plane_state);
|
|
|
|
if (!new_plane_state->hw.crtc && !old_plane_state->hw.crtc)
|
|
return 0;
|
|
|
|
ret = plane->check_plane(new_crtc_state, new_plane_state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* FIXME pre-g4x don't work like this */
|
|
if (new_plane_state->uapi.visible)
|
|
new_crtc_state->active_planes |= BIT(plane->id);
|
|
|
|
if (new_plane_state->uapi.visible &&
|
|
intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
|
|
new_crtc_state->nv12_planes |= BIT(plane->id);
|
|
|
|
if (new_plane_state->uapi.visible &&
|
|
fb->format->format == DRM_FORMAT_C8)
|
|
new_crtc_state->c8_planes |= BIT(plane->id);
|
|
|
|
if (new_plane_state->uapi.visible || old_plane_state->uapi.visible)
|
|
new_crtc_state->update_planes |= BIT(plane->id);
|
|
|
|
new_crtc_state->data_rate[plane->id] =
|
|
intel_plane_data_rate(new_crtc_state, new_plane_state);
|
|
|
|
return intel_plane_atomic_calc_changes(old_crtc_state, new_crtc_state,
|
|
old_plane_state, new_plane_state);
|
|
}
|
|
|
|
static struct intel_crtc *
|
|
get_crtc_from_states(const struct intel_plane_state *old_plane_state,
|
|
const struct intel_plane_state *new_plane_state)
|
|
{
|
|
if (new_plane_state->uapi.crtc)
|
|
return to_intel_crtc(new_plane_state->uapi.crtc);
|
|
|
|
if (old_plane_state->uapi.crtc)
|
|
return to_intel_crtc(old_plane_state->uapi.crtc);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int intel_plane_atomic_check(struct intel_atomic_state *state,
|
|
struct intel_plane *plane)
|
|
{
|
|
struct intel_plane_state *new_plane_state =
|
|
intel_atomic_get_new_plane_state(state, plane);
|
|
const struct intel_plane_state *old_plane_state =
|
|
intel_atomic_get_old_plane_state(state, plane);
|
|
struct intel_crtc *crtc =
|
|
get_crtc_from_states(old_plane_state, new_plane_state);
|
|
const struct intel_crtc_state *old_crtc_state;
|
|
struct intel_crtc_state *new_crtc_state;
|
|
|
|
intel_plane_copy_uapi_to_hw_state(new_plane_state, new_plane_state);
|
|
new_plane_state->uapi.visible = false;
|
|
if (!crtc)
|
|
return 0;
|
|
|
|
old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
|
|
new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
|
|
|
|
return intel_plane_atomic_check_with_state(old_crtc_state,
|
|
new_crtc_state,
|
|
old_plane_state,
|
|
new_plane_state);
|
|
}
|
|
|
|
static struct intel_plane *
|
|
skl_next_plane_to_commit(struct intel_atomic_state *state,
|
|
struct intel_crtc *crtc,
|
|
struct skl_ddb_entry entries_y[I915_MAX_PLANES],
|
|
struct skl_ddb_entry entries_uv[I915_MAX_PLANES],
|
|
unsigned int *update_mask)
|
|
{
|
|
struct intel_crtc_state *crtc_state =
|
|
intel_atomic_get_new_crtc_state(state, crtc);
|
|
struct intel_plane_state *plane_state;
|
|
struct intel_plane *plane;
|
|
int i;
|
|
|
|
if (*update_mask == 0)
|
|
return NULL;
|
|
|
|
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
|
|
enum plane_id plane_id = plane->id;
|
|
|
|
if (crtc->pipe != plane->pipe ||
|
|
!(*update_mask & BIT(plane_id)))
|
|
continue;
|
|
|
|
if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_y[plane_id],
|
|
entries_y,
|
|
I915_MAX_PLANES, plane_id) ||
|
|
skl_ddb_allocation_overlaps(&crtc_state->wm.skl.plane_ddb_uv[plane_id],
|
|
entries_uv,
|
|
I915_MAX_PLANES, plane_id))
|
|
continue;
|
|
|
|
*update_mask &= ~BIT(plane_id);
|
|
entries_y[plane_id] = crtc_state->wm.skl.plane_ddb_y[plane_id];
|
|
entries_uv[plane_id] = crtc_state->wm.skl.plane_ddb_uv[plane_id];
|
|
|
|
return plane;
|
|
}
|
|
|
|
/* should never happen */
|
|
WARN_ON(1);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void intel_update_plane(struct intel_plane *plane,
|
|
const struct intel_crtc_state *crtc_state,
|
|
const struct intel_plane_state *plane_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
|
|
trace_intel_update_plane(&plane->base, crtc);
|
|
plane->update_plane(plane, crtc_state, plane_state);
|
|
}
|
|
|
|
void intel_disable_plane(struct intel_plane *plane,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
|
|
trace_intel_disable_plane(&plane->base, crtc);
|
|
plane->disable_plane(plane, crtc_state);
|
|
}
|
|
|
|
void skl_update_planes_on_crtc(struct intel_atomic_state *state,
|
|
struct intel_crtc *crtc)
|
|
{
|
|
struct intel_crtc_state *old_crtc_state =
|
|
intel_atomic_get_old_crtc_state(state, crtc);
|
|
struct intel_crtc_state *new_crtc_state =
|
|
intel_atomic_get_new_crtc_state(state, crtc);
|
|
struct skl_ddb_entry entries_y[I915_MAX_PLANES];
|
|
struct skl_ddb_entry entries_uv[I915_MAX_PLANES];
|
|
u32 update_mask = new_crtc_state->update_planes;
|
|
struct intel_plane *plane;
|
|
|
|
memcpy(entries_y, old_crtc_state->wm.skl.plane_ddb_y,
|
|
sizeof(old_crtc_state->wm.skl.plane_ddb_y));
|
|
memcpy(entries_uv, old_crtc_state->wm.skl.plane_ddb_uv,
|
|
sizeof(old_crtc_state->wm.skl.plane_ddb_uv));
|
|
|
|
while ((plane = skl_next_plane_to_commit(state, crtc,
|
|
entries_y, entries_uv,
|
|
&update_mask))) {
|
|
struct intel_plane_state *new_plane_state =
|
|
intel_atomic_get_new_plane_state(state, plane);
|
|
|
|
if (new_plane_state->uapi.visible ||
|
|
new_plane_state->planar_slave) {
|
|
intel_update_plane(plane, new_crtc_state, new_plane_state);
|
|
} else {
|
|
intel_disable_plane(plane, new_crtc_state);
|
|
}
|
|
}
|
|
}
|
|
|
|
void i9xx_update_planes_on_crtc(struct intel_atomic_state *state,
|
|
struct intel_crtc *crtc)
|
|
{
|
|
struct intel_crtc_state *new_crtc_state =
|
|
intel_atomic_get_new_crtc_state(state, crtc);
|
|
u32 update_mask = new_crtc_state->update_planes;
|
|
struct intel_plane_state *new_plane_state;
|
|
struct intel_plane *plane;
|
|
int i;
|
|
|
|
for_each_new_intel_plane_in_state(state, plane, new_plane_state, i) {
|
|
if (crtc->pipe != plane->pipe ||
|
|
!(update_mask & BIT(plane->id)))
|
|
continue;
|
|
|
|
if (new_plane_state->uapi.visible)
|
|
intel_update_plane(plane, new_crtc_state, new_plane_state);
|
|
else
|
|
intel_disable_plane(plane, new_crtc_state);
|
|
}
|
|
}
|
|
|
|
const struct drm_plane_helper_funcs intel_plane_helper_funcs = {
|
|
.prepare_fb = intel_prepare_plane_fb,
|
|
.cleanup_fb = intel_cleanup_plane_fb,
|
|
};
|