1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/tools/testing/selftests/kvm/dirty_log_perf_test.c
Peter Xu d4ec586c60 KVM: selftests: Allow specify physical cpu list in demand paging test
Mimic the dirty log test and allow the user to pin demand paging test
tasks to physical CPUs.

Put the help message into a general helper as suggested by Sean.

Signed-off-by: Peter Xu <peterx@redhat.com>
[sean: rebase, tweak arg ordering, add "print" to helper, print program name]
Link: https://lore.kernel.org/r/20230607001226.1398889-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-06-06 17:29:49 -07:00

435 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* KVM dirty page logging performance test
*
* Based on dirty_log_test.c
*
* Copyright (C) 2018, Red Hat, Inc.
* Copyright (C) 2020, Google, Inc.
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
#include <linux/bitmap.h>
#include "kvm_util.h"
#include "test_util.h"
#include "memstress.h"
#include "guest_modes.h"
#ifdef __aarch64__
#include "aarch64/vgic.h"
#define GICD_BASE_GPA 0x8000000ULL
#define GICR_BASE_GPA 0x80A0000ULL
static int gic_fd;
static void arch_setup_vm(struct kvm_vm *vm, unsigned int nr_vcpus)
{
/*
* The test can still run even if hardware does not support GICv3, as it
* is only an optimization to reduce guest exits.
*/
gic_fd = vgic_v3_setup(vm, nr_vcpus, 64, GICD_BASE_GPA, GICR_BASE_GPA);
}
static void arch_cleanup_vm(struct kvm_vm *vm)
{
if (gic_fd > 0)
close(gic_fd);
}
#else /* __aarch64__ */
static void arch_setup_vm(struct kvm_vm *vm, unsigned int nr_vcpus)
{
}
static void arch_cleanup_vm(struct kvm_vm *vm)
{
}
#endif
/* How many host loops to run by default (one KVM_GET_DIRTY_LOG for each loop)*/
#define TEST_HOST_LOOP_N 2UL
static int nr_vcpus = 1;
static uint64_t guest_percpu_mem_size = DEFAULT_PER_VCPU_MEM_SIZE;
static bool run_vcpus_while_disabling_dirty_logging;
/* Host variables */
static u64 dirty_log_manual_caps;
static bool host_quit;
static int iteration;
static int vcpu_last_completed_iteration[KVM_MAX_VCPUS];
static void vcpu_worker(struct memstress_vcpu_args *vcpu_args)
{
struct kvm_vcpu *vcpu = vcpu_args->vcpu;
int vcpu_idx = vcpu_args->vcpu_idx;
uint64_t pages_count = 0;
struct kvm_run *run;
struct timespec start;
struct timespec ts_diff;
struct timespec total = (struct timespec){0};
struct timespec avg;
int ret;
run = vcpu->run;
while (!READ_ONCE(host_quit)) {
int current_iteration = READ_ONCE(iteration);
clock_gettime(CLOCK_MONOTONIC, &start);
ret = _vcpu_run(vcpu);
ts_diff = timespec_elapsed(start);
TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret);
TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
"Invalid guest sync status: exit_reason=%s\n",
exit_reason_str(run->exit_reason));
pr_debug("Got sync event from vCPU %d\n", vcpu_idx);
vcpu_last_completed_iteration[vcpu_idx] = current_iteration;
pr_debug("vCPU %d updated last completed iteration to %d\n",
vcpu_idx, vcpu_last_completed_iteration[vcpu_idx]);
if (current_iteration) {
pages_count += vcpu_args->pages;
total = timespec_add(total, ts_diff);
pr_debug("vCPU %d iteration %d dirty memory time: %ld.%.9lds\n",
vcpu_idx, current_iteration, ts_diff.tv_sec,
ts_diff.tv_nsec);
} else {
pr_debug("vCPU %d iteration %d populate memory time: %ld.%.9lds\n",
vcpu_idx, current_iteration, ts_diff.tv_sec,
ts_diff.tv_nsec);
}
/*
* Keep running the guest while dirty logging is being disabled
* (iteration is negative) so that vCPUs are accessing memory
* for the entire duration of zapping collapsible SPTEs.
*/
while (current_iteration == READ_ONCE(iteration) &&
READ_ONCE(iteration) >= 0 && !READ_ONCE(host_quit)) {}
}
avg = timespec_div(total, vcpu_last_completed_iteration[vcpu_idx]);
pr_debug("\nvCPU %d dirtied 0x%lx pages over %d iterations in %ld.%.9lds. (Avg %ld.%.9lds/iteration)\n",
vcpu_idx, pages_count, vcpu_last_completed_iteration[vcpu_idx],
total.tv_sec, total.tv_nsec, avg.tv_sec, avg.tv_nsec);
}
struct test_params {
unsigned long iterations;
uint64_t phys_offset;
bool partition_vcpu_memory_access;
enum vm_mem_backing_src_type backing_src;
int slots;
uint32_t write_percent;
uint32_t random_seed;
bool random_access;
};
static void run_test(enum vm_guest_mode mode, void *arg)
{
struct test_params *p = arg;
struct kvm_vm *vm;
unsigned long **bitmaps;
uint64_t guest_num_pages;
uint64_t host_num_pages;
uint64_t pages_per_slot;
struct timespec start;
struct timespec ts_diff;
struct timespec get_dirty_log_total = (struct timespec){0};
struct timespec vcpu_dirty_total = (struct timespec){0};
struct timespec avg;
struct timespec clear_dirty_log_total = (struct timespec){0};
int i;
vm = memstress_create_vm(mode, nr_vcpus, guest_percpu_mem_size,
p->slots, p->backing_src,
p->partition_vcpu_memory_access);
pr_info("Random seed: %u\n", p->random_seed);
memstress_set_random_seed(vm, p->random_seed);
memstress_set_write_percent(vm, p->write_percent);
guest_num_pages = (nr_vcpus * guest_percpu_mem_size) >> vm->page_shift;
guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages);
host_num_pages = vm_num_host_pages(mode, guest_num_pages);
pages_per_slot = host_num_pages / p->slots;
bitmaps = memstress_alloc_bitmaps(p->slots, pages_per_slot);
if (dirty_log_manual_caps)
vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2,
dirty_log_manual_caps);
arch_setup_vm(vm, nr_vcpus);
/* Start the iterations */
iteration = 0;
host_quit = false;
clock_gettime(CLOCK_MONOTONIC, &start);
for (i = 0; i < nr_vcpus; i++)
vcpu_last_completed_iteration[i] = -1;
/*
* Use 100% writes during the population phase to ensure all
* memory is actually populated and not just mapped to the zero
* page. The prevents expensive copy-on-write faults from
* occurring during the dirty memory iterations below, which
* would pollute the performance results.
*/
memstress_set_write_percent(vm, 100);
memstress_set_random_access(vm, false);
memstress_start_vcpu_threads(nr_vcpus, vcpu_worker);
/* Allow the vCPUs to populate memory */
pr_debug("Starting iteration %d - Populating\n", iteration);
for (i = 0; i < nr_vcpus; i++) {
while (READ_ONCE(vcpu_last_completed_iteration[i]) !=
iteration)
;
}
ts_diff = timespec_elapsed(start);
pr_info("Populate memory time: %ld.%.9lds\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Enable dirty logging */
clock_gettime(CLOCK_MONOTONIC, &start);
memstress_enable_dirty_logging(vm, p->slots);
ts_diff = timespec_elapsed(start);
pr_info("Enabling dirty logging time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
memstress_set_write_percent(vm, p->write_percent);
memstress_set_random_access(vm, p->random_access);
while (iteration < p->iterations) {
/*
* Incrementing the iteration number will start the vCPUs
* dirtying memory again.
*/
clock_gettime(CLOCK_MONOTONIC, &start);
iteration++;
pr_debug("Starting iteration %d\n", iteration);
for (i = 0; i < nr_vcpus; i++) {
while (READ_ONCE(vcpu_last_completed_iteration[i])
!= iteration)
;
}
ts_diff = timespec_elapsed(start);
vcpu_dirty_total = timespec_add(vcpu_dirty_total, ts_diff);
pr_info("Iteration %d dirty memory time: %ld.%.9lds\n",
iteration, ts_diff.tv_sec, ts_diff.tv_nsec);
clock_gettime(CLOCK_MONOTONIC, &start);
memstress_get_dirty_log(vm, bitmaps, p->slots);
ts_diff = timespec_elapsed(start);
get_dirty_log_total = timespec_add(get_dirty_log_total,
ts_diff);
pr_info("Iteration %d get dirty log time: %ld.%.9lds\n",
iteration, ts_diff.tv_sec, ts_diff.tv_nsec);
if (dirty_log_manual_caps) {
clock_gettime(CLOCK_MONOTONIC, &start);
memstress_clear_dirty_log(vm, bitmaps, p->slots,
pages_per_slot);
ts_diff = timespec_elapsed(start);
clear_dirty_log_total = timespec_add(clear_dirty_log_total,
ts_diff);
pr_info("Iteration %d clear dirty log time: %ld.%.9lds\n",
iteration, ts_diff.tv_sec, ts_diff.tv_nsec);
}
}
/*
* Run vCPUs while dirty logging is being disabled to stress disabling
* in terms of both performance and correctness. Opt-in via command
* line as this significantly increases time to disable dirty logging.
*/
if (run_vcpus_while_disabling_dirty_logging)
WRITE_ONCE(iteration, -1);
/* Disable dirty logging */
clock_gettime(CLOCK_MONOTONIC, &start);
memstress_disable_dirty_logging(vm, p->slots);
ts_diff = timespec_elapsed(start);
pr_info("Disabling dirty logging time: %ld.%.9lds\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/*
* Tell the vCPU threads to quit. No need to manually check that vCPUs
* have stopped running after disabling dirty logging, the join will
* wait for them to exit.
*/
host_quit = true;
memstress_join_vcpu_threads(nr_vcpus);
avg = timespec_div(get_dirty_log_total, p->iterations);
pr_info("Get dirty log over %lu iterations took %ld.%.9lds. (Avg %ld.%.9lds/iteration)\n",
p->iterations, get_dirty_log_total.tv_sec,
get_dirty_log_total.tv_nsec, avg.tv_sec, avg.tv_nsec);
if (dirty_log_manual_caps) {
avg = timespec_div(clear_dirty_log_total, p->iterations);
pr_info("Clear dirty log over %lu iterations took %ld.%.9lds. (Avg %ld.%.9lds/iteration)\n",
p->iterations, clear_dirty_log_total.tv_sec,
clear_dirty_log_total.tv_nsec, avg.tv_sec, avg.tv_nsec);
}
memstress_free_bitmaps(bitmaps, p->slots);
arch_cleanup_vm(vm);
memstress_destroy_vm(vm);
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-a] [-i iterations] [-p offset] [-g] "
"[-m mode] [-n] [-b vcpu bytes] [-v vcpus] [-o] [-r random seed ] [-s mem type]"
"[-x memslots] [-w percentage] [-c physical cpus to run test on]\n", name);
puts("");
printf(" -a: access memory randomly rather than in order.\n");
printf(" -i: specify iteration counts (default: %"PRIu64")\n",
TEST_HOST_LOOP_N);
printf(" -g: Do not enable KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2. This\n"
" makes KVM_GET_DIRTY_LOG clear the dirty log (i.e.\n"
" KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE is not enabled)\n"
" and writes will be tracked as soon as dirty logging is\n"
" enabled on the memslot (i.e. KVM_DIRTY_LOG_INITIALLY_SET\n"
" is not enabled).\n");
printf(" -p: specify guest physical test memory offset\n"
" Warning: a low offset can conflict with the loaded test code.\n");
guest_modes_help();
printf(" -n: Run the vCPUs in nested mode (L2)\n");
printf(" -e: Run vCPUs while dirty logging is being disabled. This\n"
" can significantly increase runtime, especially if there\n"
" isn't a dedicated pCPU for the main thread.\n");
printf(" -b: specify the size of the memory region which should be\n"
" dirtied by each vCPU. e.g. 10M or 3G.\n"
" (default: 1G)\n");
printf(" -v: specify the number of vCPUs to run.\n");
printf(" -o: Overlap guest memory accesses instead of partitioning\n"
" them into a separate region of memory for each vCPU.\n");
printf(" -r: specify the starting random seed.\n");
backing_src_help("-s");
printf(" -x: Split the memory region into this number of memslots.\n"
" (default: 1)\n");
printf(" -w: specify the percentage of pages which should be written to\n"
" as an integer from 0-100 inclusive. This is probabilistic,\n"
" so -w X means each page has an X%% chance of writing\n"
" and a (100-X)%% chance of reading.\n"
" (default: 100 i.e. all pages are written to.)\n");
kvm_print_vcpu_pinning_help();
puts("");
exit(0);
}
int main(int argc, char *argv[])
{
int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS);
const char *pcpu_list = NULL;
struct test_params p = {
.iterations = TEST_HOST_LOOP_N,
.partition_vcpu_memory_access = true,
.backing_src = DEFAULT_VM_MEM_SRC,
.slots = 1,
.random_seed = 1,
.write_percent = 100,
};
int opt;
dirty_log_manual_caps =
kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
KVM_DIRTY_LOG_INITIALLY_SET);
guest_modes_append_default();
while ((opt = getopt(argc, argv, "ab:c:eghi:m:nop:r:s:v:x:w:")) != -1) {
switch (opt) {
case 'a':
p.random_access = true;
break;
case 'b':
guest_percpu_mem_size = parse_size(optarg);
break;
case 'c':
pcpu_list = optarg;
break;
case 'e':
/* 'e' is for evil. */
run_vcpus_while_disabling_dirty_logging = true;
break;
case 'g':
dirty_log_manual_caps = 0;
break;
case 'h':
help(argv[0]);
break;
case 'i':
p.iterations = atoi_positive("Number of iterations", optarg);
break;
case 'm':
guest_modes_cmdline(optarg);
break;
case 'n':
memstress_args.nested = true;
break;
case 'o':
p.partition_vcpu_memory_access = false;
break;
case 'p':
p.phys_offset = strtoull(optarg, NULL, 0);
break;
case 'r':
p.random_seed = atoi_positive("Random seed", optarg);
break;
case 's':
p.backing_src = parse_backing_src_type(optarg);
break;
case 'v':
nr_vcpus = atoi_positive("Number of vCPUs", optarg);
TEST_ASSERT(nr_vcpus <= max_vcpus,
"Invalid number of vcpus, must be between 1 and %d", max_vcpus);
break;
case 'w':
p.write_percent = atoi_non_negative("Write percentage", optarg);
TEST_ASSERT(p.write_percent <= 100,
"Write percentage must be between 0 and 100");
break;
case 'x':
p.slots = atoi_positive("Number of slots", optarg);
break;
default:
help(argv[0]);
break;
}
}
if (pcpu_list) {
kvm_parse_vcpu_pinning(pcpu_list, memstress_args.vcpu_to_pcpu,
nr_vcpus);
memstress_args.pin_vcpus = true;
}
TEST_ASSERT(p.iterations >= 2, "The test should have at least two iterations");
pr_info("Test iterations: %"PRIu64"\n", p.iterations);
for_each_guest_mode(run_test, &p);
return 0;
}