1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c
John Harrison 67804e48b4 drm/i915/gt: Start adding module oriented dmesg output
When trying to analyse bug reports from CI, customers, etc. it can be
difficult to work out exactly what is happening on which GT in a
multi-GT system. So add GT oriented debug/error message wrappers. If
used instead of the drm_ equivalents, you get the same output but with
a GT# prefix on it.

v2: Go back to using lower case names (combined review feedback).
Convert intel_gt.c as a first step.
v3: Add gt_err_ratelimited() as well, undo one conversation that might
not have a GT pointer in some scenarios (review feedback from Michal W).
Split definitions into separate header (review feedback from Jani).
Convert all intel_gt*.c files.
v4: Re-order some macro definitions (Andi S), update (c) date (Tvrtko)

Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20230111200429.2139084-2-John.C.Harrison@Intel.com
2023-01-17 15:28:28 -08:00

240 lines
6.5 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_gt.h"
#include "intel_gt_clock_utils.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
static u32 read_reference_ts_freq(struct intel_uncore *uncore)
{
u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
u32 base_freq, frac_freq;
base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
base_freq *= 1000000;
frac_freq = ((ts_override &
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
frac_freq = 1000000 / (frac_freq + 1);
return base_freq + frac_freq;
}
static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
u32 rpm_config_reg)
{
u32 f19_2_mhz = 19200000;
u32 f24_mhz = 24000000;
u32 f25_mhz = 25000000;
u32 f38_4_mhz = 38400000;
u32 crystal_clock =
(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
switch (crystal_clock) {
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
return f24_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
return f19_2_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
return f38_4_mhz;
case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
return f25_mhz;
default:
MISSING_CASE(crystal_clock);
return 0;
}
}
static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
{
u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
u32 freq = 0;
/*
* Note that on gen11+, the clock frequency may be reconfigured.
* We do not, and we assume nobody else does.
*
* First figure out the reference frequency. There are 2 ways
* we can compute the frequency, either through the
* TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
* tells us which one we should use.
*/
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
freq = read_reference_ts_freq(uncore);
} else {
u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
freq = gen11_get_crystal_clock_freq(uncore, c0);
/*
* Now figure out how the command stream's timestamp
* register increments from this frequency (it might
* increment only every few clock cycle).
*/
freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
}
return freq;
}
static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
{
u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
u32 freq = 0;
if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
freq = read_reference_ts_freq(uncore);
} else {
freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
/*
* Now figure out how the command stream's timestamp
* register increments from this frequency (it might
* increment only every few clock cycle).
*/
freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
CTC_SHIFT_PARAMETER_SHIFT);
}
return freq;
}
static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
{
/*
* PRMs say:
*
* "The PCU TSC counts 10ns increments; this timestamp
* reflects bits 38:3 of the TSC (i.e. 80ns granularity,
* rolling over every 1.5 hours).
*/
return 12500000;
}
static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
{
/*
* 63:32 increments every 1000 ns
* 31:0 mbz
*/
return 1000000000 / 1000;
}
static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
{
/*
* 63:20 increments every 1/4 ns
* 19:0 mbz
*
* -> 63:32 increments every 1024 ns
*/
return 1000000000 / 1024;
}
static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
{
/*
* PRMs say:
*
* "The value in this register increments once every 16
* hclks." (through the “Clocking Configuration”
* (“CLKCFG”) MCHBAR register)
*
* Testing on actual hardware has shown there is no /16.
*/
return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
}
static u32 read_clock_frequency(struct intel_uncore *uncore)
{
if (GRAPHICS_VER(uncore->i915) >= 11)
return gen11_read_clock_frequency(uncore);
else if (GRAPHICS_VER(uncore->i915) >= 9)
return gen9_read_clock_frequency(uncore);
else if (GRAPHICS_VER(uncore->i915) >= 6)
return gen6_read_clock_frequency(uncore);
else if (GRAPHICS_VER(uncore->i915) == 5)
return gen5_read_clock_frequency(uncore);
else if (IS_G4X(uncore->i915))
return g4x_read_clock_frequency(uncore);
else if (GRAPHICS_VER(uncore->i915) == 4)
return gen4_read_clock_frequency(uncore);
else
return 0;
}
void intel_gt_init_clock_frequency(struct intel_gt *gt)
{
gt->clock_frequency = read_clock_frequency(gt->uncore);
/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
if (GRAPHICS_VER(gt->i915) == 11)
gt->clock_period_ns = NSEC_PER_SEC / 13750000;
else if (gt->clock_frequency)
gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
GT_TRACE(gt,
"Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
gt->clock_frequency / 1000,
gt->clock_period_ns,
div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
USEC_PER_SEC));
}
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
void intel_gt_check_clock_frequency(const struct intel_gt *gt)
{
if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
gt->clock_frequency,
read_clock_frequency(gt->uncore));
}
}
#endif
static u64 div_u64_roundup(u64 nom, u32 den)
{
return div_u64(nom + den - 1, den);
}
u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
{
return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
}
u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
{
return intel_gt_clock_interval_to_ns(gt, 16 * count);
}
u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
{
return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
}
u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
{
u64 val;
/*
* Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
* 8300) freezing up around GPU hangs. Looks as if even
* scheduling/timer interrupts start misbehaving if the RPS
* EI/thresholds are "bad", leading to a very sluggish or even
* frozen machine.
*/
val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
if (GRAPHICS_VER(gt->i915) == 6)
val = div_u64_roundup(val, 25) * 25;
return val;
}