Erhard reports the following KASAN hit on Talos II (power9) with kernel 6.13: [ 12.028126] ================================================================== [ 12.028198] BUG: KASAN: user-memory-access in copy_to_kernel_nofault+0x8c/0x1a0 [ 12.028260] Write of size 8 at addr 0000187e458f2000 by task systemd/1 [ 12.028346] CPU: 87 UID: 0 PID: 1 Comm: systemd Tainted: G T 6.13.0-P9-dirty #3 [ 12.028408] Tainted: [T]=RANDSTRUCT [ 12.028446] Hardware name: T2P9D01 REV 1.01 POWER9 0x4e1202 opal:skiboot-bc106a0 PowerNV [ 12.028500] Call Trace: [ 12.028536] [c000000008dbf3b0] [c000000001656a48] dump_stack_lvl+0xbc/0x110 (unreliable) [ 12.028609] [c000000008dbf3f0] [c0000000006e2fc8] print_report+0x6b0/0x708 [ 12.028666] [c000000008dbf4e0] [c0000000006e2454] kasan_report+0x164/0x300 [ 12.028725] [c000000008dbf600] [c0000000006e54d4] kasan_check_range+0x314/0x370 [ 12.028784] [c000000008dbf640] [c0000000006e6310] __kasan_check_write+0x20/0x40 [ 12.028842] [c000000008dbf660] [c000000000578e8c] copy_to_kernel_nofault+0x8c/0x1a0 [ 12.028902] [c000000008dbf6a0] [c0000000000acfe4] __patch_instructions+0x194/0x210 [ 12.028965] [c000000008dbf6e0] [c0000000000ade80] patch_instructions+0x150/0x590 [ 12.029026] [c000000008dbf7c0] [c0000000001159bc] bpf_arch_text_copy+0x6c/0xe0 [ 12.029085] [c000000008dbf800] [c000000000424250] bpf_jit_binary_pack_finalize+0x40/0xc0 [ 12.029147] [c000000008dbf830] [c000000000115dec] bpf_int_jit_compile+0x3bc/0x930 [ 12.029206] [c000000008dbf990] [c000000000423720] bpf_prog_select_runtime+0x1f0/0x280 [ 12.029266] [c000000008dbfa00] [c000000000434b18] bpf_prog_load+0xbb8/0x1370 [ 12.029324] [c000000008dbfb70] [c000000000436ebc] __sys_bpf+0x5ac/0x2e00 [ 12.029379] [c000000008dbfd00] [c00000000043a228] sys_bpf+0x28/0x40 [ 12.029435] [c000000008dbfd20] [c000000000038eb4] system_call_exception+0x334/0x610 [ 12.029497] [c000000008dbfe50] [c00000000000c270] system_call_vectored_common+0xf0/0x280 [ 12.029561] --- interrupt: 3000 at 0x3fff82f5cfa8 [ 12.029608] NIP: 00003fff82f5cfa8 LR: 00003fff82f5cfa8 CTR: 0000000000000000 [ 12.029660] REGS: c000000008dbfe80 TRAP: 3000 Tainted: G T (6.13.0-P9-dirty) [ 12.029735] MSR: 900000000280f032 <SF,HV,VEC,VSX,EE,PR,FP,ME,IR,DR,RI> CR: 42004848 XER: 00000000 [ 12.029855] IRQMASK: 0 GPR00: 0000000000000169 00003fffdcf789a0 00003fff83067100 0000000000000005 GPR04: 00003fffdcf78a98 0000000000000090 0000000000000000 0000000000000008 GPR08: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR12: 0000000000000000 00003fff836ff7e0 c000000000010678 0000000000000000 GPR16: 0000000000000000 0000000000000000 00003fffdcf78f28 00003fffdcf78f90 GPR20: 0000000000000000 0000000000000000 0000000000000000 00003fffdcf78f80 GPR24: 00003fffdcf78f70 00003fffdcf78d10 00003fff835c7239 00003fffdcf78bd8 GPR28: 00003fffdcf78a98 0000000000000000 0000000000000000 000000011f547580 [ 12.030316] NIP [00003fff82f5cfa8] 0x3fff82f5cfa8 [ 12.030361] LR [00003fff82f5cfa8] 0x3fff82f5cfa8 [ 12.030405] --- interrupt: 3000 [ 12.030444] ================================================================== Commitc28c15b6d2
("powerpc/code-patching: Use temporary mm for Radix MMU") is inspired from x86 but unlike x86 is doesn't disable KASAN reports during patching. This wasn't a problem at the begining because __patch_mem() is not instrumented. Commit465cabc97b
("powerpc/code-patching: introduce patch_instructions()") use copy_to_kernel_nofault() to copy several instructions at once. But when using temporary mm the destination is not regular kernel memory but a kind of kernel-like memory located in user address space. Because it is not in kernel address space it is not covered by KASAN shadow memory. Since commite4137f0881
("mm, kasan, kmsan: instrument copy_from/to_kernel_nofault") KASAN reports bad accesses from copy_to_kernel_nofault(). Here a bad access to user memory is reported because KASAN detects the lack of shadow memory and the address is below TASK_SIZE. Do like x86 in commitb3fd8e83ad
("x86/alternatives: Use temporary mm for text poking") and disable KASAN reports during patching when using temporary mm. Reported-by: Erhard Furtner <erhard_f@mailbox.org> Close: https://lore.kernel.org/all/20250201151435.48400261@yea/ Fixes:465cabc97b
("powerpc/code-patching: introduce patch_instructions()") Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com> Link: https://patch.msgid.link/1c05b2a1b02ad75b981cfc45927e0b4a90441046.1738577687.git.christophe.leroy@csgroup.eu
697 lines
17 KiB
C
697 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2008 Michael Ellerman, IBM Corporation.
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/random.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#include <asm/debug.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/inst.h>
|
|
|
|
static int __patch_mem(void *exec_addr, unsigned long val, void *patch_addr, bool is_dword)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_PPC64) || likely(!is_dword)) {
|
|
/* For big endian correctness: plain address would use the wrong half */
|
|
u32 val32 = val;
|
|
|
|
__put_kernel_nofault(patch_addr, &val32, u32, failed);
|
|
} else {
|
|
__put_kernel_nofault(patch_addr, &val, u64, failed);
|
|
}
|
|
|
|
asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
|
|
"r" (exec_addr));
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
mb(); /* sync */
|
|
return -EPERM;
|
|
}
|
|
|
|
int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
if (ppc_inst_prefixed(instr))
|
|
return __patch_mem(addr, ppc_inst_as_ulong(instr), addr, true);
|
|
else
|
|
return __patch_mem(addr, ppc_inst_val(instr), addr, false);
|
|
}
|
|
|
|
struct patch_context {
|
|
union {
|
|
struct vm_struct *area;
|
|
struct mm_struct *mm;
|
|
};
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
|
|
|
|
static int map_patch_area(void *addr, unsigned long text_poke_addr);
|
|
static void unmap_patch_area(unsigned long addr);
|
|
|
|
static bool mm_patch_enabled(void)
|
|
{
|
|
return IS_ENABLED(CONFIG_SMP) && radix_enabled();
|
|
}
|
|
|
|
/*
|
|
* The following applies for Radix MMU. Hash MMU has different requirements,
|
|
* and so is not supported.
|
|
*
|
|
* Changing mm requires context synchronising instructions on both sides of
|
|
* the context switch, as well as a hwsync between the last instruction for
|
|
* which the address of an associated storage access was translated using
|
|
* the current context.
|
|
*
|
|
* switch_mm_irqs_off() performs an isync after the context switch. It is
|
|
* the responsibility of the caller to perform the CSI and hwsync before
|
|
* starting/stopping the temp mm.
|
|
*/
|
|
static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
|
|
{
|
|
struct mm_struct *orig_mm = current->active_mm;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
switch_mm_irqs_off(orig_mm, temp_mm, current);
|
|
|
|
WARN_ON(!mm_is_thread_local(temp_mm));
|
|
|
|
suspend_breakpoints();
|
|
return orig_mm;
|
|
}
|
|
|
|
static void stop_using_temp_mm(struct mm_struct *temp_mm,
|
|
struct mm_struct *orig_mm)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
switch_mm_irqs_off(temp_mm, orig_mm, current);
|
|
restore_breakpoints();
|
|
}
|
|
|
|
static int text_area_cpu_up(unsigned int cpu)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long addr;
|
|
int err;
|
|
|
|
area = get_vm_area(PAGE_SIZE, VM_ALLOC);
|
|
if (!area) {
|
|
WARN_ONCE(1, "Failed to create text area for cpu %d\n",
|
|
cpu);
|
|
return -1;
|
|
}
|
|
|
|
// Map/unmap the area to ensure all page tables are pre-allocated
|
|
addr = (unsigned long)area->addr;
|
|
err = map_patch_area(empty_zero_page, addr);
|
|
if (err)
|
|
return err;
|
|
|
|
unmap_patch_area(addr);
|
|
|
|
this_cpu_write(cpu_patching_context.area, area);
|
|
this_cpu_write(cpu_patching_context.addr, addr);
|
|
this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int text_area_cpu_down(unsigned int cpu)
|
|
{
|
|
free_vm_area(this_cpu_read(cpu_patching_context.area));
|
|
this_cpu_write(cpu_patching_context.area, NULL);
|
|
this_cpu_write(cpu_patching_context.addr, 0);
|
|
this_cpu_write(cpu_patching_context.pte, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
|
|
{
|
|
struct mmu_gather tlb;
|
|
|
|
tlb_gather_mmu(&tlb, mm);
|
|
free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
|
|
mmput(mm);
|
|
}
|
|
|
|
static int text_area_cpu_up_mm(unsigned int cpu)
|
|
{
|
|
struct mm_struct *mm;
|
|
unsigned long addr;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
mm = mm_alloc();
|
|
if (WARN_ON(!mm))
|
|
goto fail_no_mm;
|
|
|
|
/*
|
|
* Choose a random page-aligned address from the interval
|
|
* [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
|
|
* The lower address bound is PAGE_SIZE to avoid the zero-page.
|
|
*/
|
|
addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
|
|
|
|
/*
|
|
* PTE allocation uses GFP_KERNEL which means we need to
|
|
* pre-allocate the PTE here because we cannot do the
|
|
* allocation during patching when IRQs are disabled.
|
|
*
|
|
* Using get_locked_pte() to avoid open coding, the lock
|
|
* is unnecessary.
|
|
*/
|
|
pte = get_locked_pte(mm, addr, &ptl);
|
|
if (!pte)
|
|
goto fail_no_pte;
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
this_cpu_write(cpu_patching_context.mm, mm);
|
|
this_cpu_write(cpu_patching_context.addr, addr);
|
|
|
|
return 0;
|
|
|
|
fail_no_pte:
|
|
put_patching_mm(mm, addr);
|
|
fail_no_mm:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int text_area_cpu_down_mm(unsigned int cpu)
|
|
{
|
|
put_patching_mm(this_cpu_read(cpu_patching_context.mm),
|
|
this_cpu_read(cpu_patching_context.addr));
|
|
|
|
this_cpu_write(cpu_patching_context.mm, NULL);
|
|
this_cpu_write(cpu_patching_context.addr, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
|
|
|
|
void __init poking_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (mm_patch_enabled())
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
|
|
"powerpc/text_poke_mm:online",
|
|
text_area_cpu_up_mm,
|
|
text_area_cpu_down_mm);
|
|
else
|
|
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
|
|
"powerpc/text_poke:online",
|
|
text_area_cpu_up,
|
|
text_area_cpu_down);
|
|
|
|
/* cpuhp_setup_state returns >= 0 on success */
|
|
if (WARN_ON(ret < 0))
|
|
return;
|
|
|
|
static_branch_enable(&poking_init_done);
|
|
}
|
|
|
|
static unsigned long get_patch_pfn(void *addr)
|
|
{
|
|
if (IS_ENABLED(CONFIG_EXECMEM) && is_vmalloc_or_module_addr(addr))
|
|
return vmalloc_to_pfn(addr);
|
|
else
|
|
return __pa_symbol(addr) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* This can be called for kernel text or a module.
|
|
*/
|
|
static int map_patch_area(void *addr, unsigned long text_poke_addr)
|
|
{
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
|
|
return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
|
|
}
|
|
|
|
static void unmap_patch_area(unsigned long addr)
|
|
{
|
|
pte_t *ptep;
|
|
pmd_t *pmdp;
|
|
pud_t *pudp;
|
|
p4d_t *p4dp;
|
|
pgd_t *pgdp;
|
|
|
|
pgdp = pgd_offset_k(addr);
|
|
if (WARN_ON(pgd_none(*pgdp)))
|
|
return;
|
|
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
if (WARN_ON(p4d_none(*p4dp)))
|
|
return;
|
|
|
|
pudp = pud_offset(p4dp, addr);
|
|
if (WARN_ON(pud_none(*pudp)))
|
|
return;
|
|
|
|
pmdp = pmd_offset(pudp, addr);
|
|
if (WARN_ON(pmd_none(*pmdp)))
|
|
return;
|
|
|
|
ptep = pte_offset_kernel(pmdp, addr);
|
|
if (WARN_ON(pte_none(*ptep)))
|
|
return;
|
|
|
|
/*
|
|
* In hash, pte_clear flushes the tlb, in radix, we have to
|
|
*/
|
|
pte_clear(&init_mm, addr, ptep);
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
|
|
}
|
|
|
|
static int __do_patch_mem_mm(void *addr, unsigned long val, bool is_dword)
|
|
{
|
|
int err;
|
|
u32 *patch_addr;
|
|
unsigned long text_poke_addr;
|
|
pte_t *pte;
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
struct mm_struct *patching_mm;
|
|
struct mm_struct *orig_mm;
|
|
spinlock_t *ptl;
|
|
|
|
patching_mm = __this_cpu_read(cpu_patching_context.mm);
|
|
text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
|
|
patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
|
|
|
|
pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
__set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
|
|
|
|
/* order PTE update before use, also serves as the hwsync */
|
|
asm volatile("ptesync": : :"memory");
|
|
|
|
/* order context switch after arbitrary prior code */
|
|
isync();
|
|
|
|
orig_mm = start_using_temp_mm(patching_mm);
|
|
|
|
err = __patch_mem(addr, val, patch_addr, is_dword);
|
|
|
|
/* context synchronisation performed by __patch_instruction (isync or exception) */
|
|
stop_using_temp_mm(patching_mm, orig_mm);
|
|
|
|
pte_clear(patching_mm, text_poke_addr, pte);
|
|
/*
|
|
* ptesync to order PTE update before TLB invalidation done
|
|
* by radix__local_flush_tlb_page_psize (in _tlbiel_va)
|
|
*/
|
|
local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __do_patch_mem(void *addr, unsigned long val, bool is_dword)
|
|
{
|
|
int err;
|
|
u32 *patch_addr;
|
|
unsigned long text_poke_addr;
|
|
pte_t *pte;
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
|
|
text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
|
|
patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
|
|
|
|
pte = __this_cpu_read(cpu_patching_context.pte);
|
|
__set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
|
|
/* See ptesync comment in radix__set_pte_at() */
|
|
if (radix_enabled())
|
|
asm volatile("ptesync": : :"memory");
|
|
|
|
err = __patch_mem(addr, val, patch_addr, is_dword);
|
|
|
|
pte_clear(&init_mm, text_poke_addr, pte);
|
|
flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int patch_mem(void *addr, unsigned long val, bool is_dword)
|
|
{
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* During early early boot patch_instruction is called
|
|
* when text_poke_area is not ready, but we still need
|
|
* to allow patching. We just do the plain old patching
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
|
|
!static_branch_likely(&poking_init_done))
|
|
return __patch_mem(addr, val, addr, is_dword);
|
|
|
|
local_irq_save(flags);
|
|
if (mm_patch_enabled())
|
|
err = __do_patch_mem_mm(addr, val, is_dword);
|
|
else
|
|
err = __do_patch_mem(addr, val, is_dword);
|
|
local_irq_restore(flags);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
|
|
int patch_instruction(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
if (ppc_inst_prefixed(instr))
|
|
return patch_mem(addr, ppc_inst_as_ulong(instr), true);
|
|
else
|
|
return patch_mem(addr, ppc_inst_val(instr), false);
|
|
}
|
|
NOKPROBE_SYMBOL(patch_instruction);
|
|
|
|
int patch_uint(void *addr, unsigned int val)
|
|
{
|
|
if (!IS_ALIGNED((unsigned long)addr, sizeof(unsigned int)))
|
|
return -EINVAL;
|
|
|
|
return patch_mem(addr, val, false);
|
|
}
|
|
NOKPROBE_SYMBOL(patch_uint);
|
|
|
|
int patch_ulong(void *addr, unsigned long val)
|
|
{
|
|
if (!IS_ALIGNED((unsigned long)addr, sizeof(unsigned long)))
|
|
return -EINVAL;
|
|
|
|
return patch_mem(addr, val, true);
|
|
}
|
|
NOKPROBE_SYMBOL(patch_ulong);
|
|
|
|
#else
|
|
|
|
int patch_instruction(u32 *addr, ppc_inst_t instr)
|
|
{
|
|
return patch_mem(addr, ppc_inst_val(instr), false);
|
|
}
|
|
NOKPROBE_SYMBOL(patch_instruction)
|
|
|
|
#endif
|
|
|
|
static int patch_memset64(u64 *addr, u64 val, size_t count)
|
|
{
|
|
for (u64 *end = addr + count; addr < end; addr++)
|
|
__put_kernel_nofault(addr, &val, u64, failed);
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
return -EPERM;
|
|
}
|
|
|
|
static int patch_memset32(u32 *addr, u32 val, size_t count)
|
|
{
|
|
for (u32 *end = addr + count; addr < end; addr++)
|
|
__put_kernel_nofault(addr, &val, u32, failed);
|
|
|
|
return 0;
|
|
|
|
failed:
|
|
return -EPERM;
|
|
}
|
|
|
|
static int __patch_instructions(u32 *patch_addr, u32 *code, size_t len, bool repeat_instr)
|
|
{
|
|
unsigned long start = (unsigned long)patch_addr;
|
|
int err;
|
|
|
|
/* Repeat instruction */
|
|
if (repeat_instr) {
|
|
ppc_inst_t instr = ppc_inst_read(code);
|
|
|
|
if (ppc_inst_prefixed(instr)) {
|
|
u64 val = ppc_inst_as_ulong(instr);
|
|
|
|
err = patch_memset64((u64 *)patch_addr, val, len / 8);
|
|
} else {
|
|
u32 val = ppc_inst_val(instr);
|
|
|
|
err = patch_memset32(patch_addr, val, len / 4);
|
|
}
|
|
} else {
|
|
err = copy_to_kernel_nofault(patch_addr, code, len);
|
|
}
|
|
|
|
smp_wmb(); /* smp write barrier */
|
|
flush_icache_range(start, start + len);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* A page is mapped and instructions that fit the page are patched.
|
|
* Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
|
|
*/
|
|
static int __do_patch_instructions_mm(u32 *addr, u32 *code, size_t len, bool repeat_instr)
|
|
{
|
|
struct mm_struct *patching_mm, *orig_mm;
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
unsigned long text_poke_addr;
|
|
spinlock_t *ptl;
|
|
u32 *patch_addr;
|
|
pte_t *pte;
|
|
int err;
|
|
|
|
patching_mm = __this_cpu_read(cpu_patching_context.mm);
|
|
text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
|
|
patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
|
|
|
|
pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
__set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
|
|
|
|
/* order PTE update before use, also serves as the hwsync */
|
|
asm volatile("ptesync" ::: "memory");
|
|
|
|
/* order context switch after arbitrary prior code */
|
|
isync();
|
|
|
|
orig_mm = start_using_temp_mm(patching_mm);
|
|
|
|
kasan_disable_current();
|
|
err = __patch_instructions(patch_addr, code, len, repeat_instr);
|
|
kasan_enable_current();
|
|
|
|
/* context synchronisation performed by __patch_instructions */
|
|
stop_using_temp_mm(patching_mm, orig_mm);
|
|
|
|
pte_clear(patching_mm, text_poke_addr, pte);
|
|
/*
|
|
* ptesync to order PTE update before TLB invalidation done
|
|
* by radix__local_flush_tlb_page_psize (in _tlbiel_va)
|
|
*/
|
|
local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* A page is mapped and instructions that fit the page are patched.
|
|
* Assumes 'len' to be (PAGE_SIZE - offset_in_page(addr)) or below.
|
|
*/
|
|
static int __do_patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
|
|
{
|
|
unsigned long pfn = get_patch_pfn(addr);
|
|
unsigned long text_poke_addr;
|
|
u32 *patch_addr;
|
|
pte_t *pte;
|
|
int err;
|
|
|
|
text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
|
|
patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
|
|
|
|
pte = __this_cpu_read(cpu_patching_context.pte);
|
|
__set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
|
|
/* See ptesync comment in radix__set_pte_at() */
|
|
if (radix_enabled())
|
|
asm volatile("ptesync" ::: "memory");
|
|
|
|
err = __patch_instructions(patch_addr, code, len, repeat_instr);
|
|
|
|
pte_clear(&init_mm, text_poke_addr, pte);
|
|
flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Patch 'addr' with 'len' bytes of instructions from 'code'.
|
|
*
|
|
* If repeat_instr is true, the same instruction is filled for
|
|
* 'len' bytes.
|
|
*/
|
|
int patch_instructions(u32 *addr, u32 *code, size_t len, bool repeat_instr)
|
|
{
|
|
while (len > 0) {
|
|
unsigned long flags;
|
|
size_t plen;
|
|
int err;
|
|
|
|
plen = min_t(size_t, PAGE_SIZE - offset_in_page(addr), len);
|
|
|
|
local_irq_save(flags);
|
|
if (mm_patch_enabled())
|
|
err = __do_patch_instructions_mm(addr, code, plen, repeat_instr);
|
|
else
|
|
err = __do_patch_instructions(addr, code, plen, repeat_instr);
|
|
local_irq_restore(flags);
|
|
if (err)
|
|
return err;
|
|
|
|
len -= plen;
|
|
addr = (u32 *)((unsigned long)addr + plen);
|
|
if (!repeat_instr)
|
|
code = (u32 *)((unsigned long)code + plen);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(patch_instructions);
|
|
|
|
int patch_branch(u32 *addr, unsigned long target, int flags)
|
|
{
|
|
ppc_inst_t instr;
|
|
|
|
if (create_branch(&instr, addr, target, flags))
|
|
return -ERANGE;
|
|
|
|
return patch_instruction(addr, instr);
|
|
}
|
|
|
|
/*
|
|
* Helper to check if a given instruction is a conditional branch
|
|
* Derived from the conditional checks in analyse_instr()
|
|
*/
|
|
bool is_conditional_branch(ppc_inst_t instr)
|
|
{
|
|
unsigned int opcode = ppc_inst_primary_opcode(instr);
|
|
|
|
if (opcode == 16) /* bc, bca, bcl, bcla */
|
|
return true;
|
|
if (opcode == 19) {
|
|
switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
|
|
case 16: /* bclr, bclrl */
|
|
case 528: /* bcctr, bcctrl */
|
|
case 560: /* bctar, bctarl */
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
NOKPROBE_SYMBOL(is_conditional_branch);
|
|
|
|
int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
|
|
unsigned long target, int flags)
|
|
{
|
|
long offset;
|
|
|
|
offset = target;
|
|
if (! (flags & BRANCH_ABSOLUTE))
|
|
offset = offset - (unsigned long)addr;
|
|
|
|
/* Check we can represent the target in the instruction format */
|
|
if (!is_offset_in_cond_branch_range(offset))
|
|
return 1;
|
|
|
|
/* Mask out the flags and target, so they don't step on each other. */
|
|
*instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int instr_is_relative_branch(ppc_inst_t instr)
|
|
{
|
|
if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
|
|
return 0;
|
|
|
|
return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
|
|
}
|
|
|
|
int instr_is_relative_link_branch(ppc_inst_t instr)
|
|
{
|
|
return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
|
|
}
|
|
|
|
static unsigned long branch_iform_target(const u32 *instr)
|
|
{
|
|
signed long imm;
|
|
|
|
imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
|
|
|
|
/* If the top bit of the immediate value is set this is negative */
|
|
if (imm & 0x2000000)
|
|
imm -= 0x4000000;
|
|
|
|
if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
|
|
imm += (unsigned long)instr;
|
|
|
|
return (unsigned long)imm;
|
|
}
|
|
|
|
static unsigned long branch_bform_target(const u32 *instr)
|
|
{
|
|
signed long imm;
|
|
|
|
imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
|
|
|
|
/* If the top bit of the immediate value is set this is negative */
|
|
if (imm & 0x8000)
|
|
imm -= 0x10000;
|
|
|
|
if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
|
|
imm += (unsigned long)instr;
|
|
|
|
return (unsigned long)imm;
|
|
}
|
|
|
|
unsigned long branch_target(const u32 *instr)
|
|
{
|
|
if (instr_is_branch_iform(ppc_inst_read(instr)))
|
|
return branch_iform_target(instr);
|
|
else if (instr_is_branch_bform(ppc_inst_read(instr)))
|
|
return branch_bform_target(instr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
|
|
{
|
|
unsigned long target;
|
|
target = branch_target(src);
|
|
|
|
if (instr_is_branch_iform(ppc_inst_read(src)))
|
|
return create_branch(instr, dest, target,
|
|
ppc_inst_val(ppc_inst_read(src)));
|
|
else if (instr_is_branch_bform(ppc_inst_read(src)))
|
|
return create_cond_branch(instr, dest, target,
|
|
ppc_inst_val(ppc_inst_read(src)));
|
|
|
|
return 1;
|
|
}
|