1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/i915/gt/uc/intel_huc.c
Daniele Ceraolo Spurio 2d299f5bfe drm/i915/huc: always init the delayed load fence
The fence is only tracking if the HuC load is in progress or not and
doesn't distinguish between already loaded, not supported or disabled,
so we can always initialize it to completed, no matter the actual
support. We already do that for most platforms, but we skip it on
GTs that lack VCS engines (e.g. MTL root GT), so fix that. Note that the
cleanup is already unconditional.

While at it, move the init/fini to helper functions.

Fixes: 8e5f378281 ("drm/i915/huc: fix leak of debug object in huc load fence on driver unload")
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: John Harrison <John.C.Harrison@Intel.com>
Cc: Alan Previn <alan.previn.teres.alexis@intel.com>
Reviewed-by: John Harrison <John.C.Harrison@Intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20221123235417.1475709-1-daniele.ceraolospurio@intel.com
(cherry picked from commit 14347a9c88)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2022-11-30 09:07:10 -05:00

538 lines
15 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2016-2019 Intel Corporation
*/
#include <linux/types.h>
#include "gt/intel_gt.h"
#include "intel_guc_reg.h"
#include "intel_huc.h"
#include "i915_drv.h"
#include <linux/device/bus.h>
#include <linux/mei_aux.h>
/**
* DOC: HuC
*
* The HuC is a dedicated microcontroller for usage in media HEVC (High
* Efficiency Video Coding) operations. Userspace can directly use the firmware
* capabilities by adding HuC specific commands to batch buffers.
*
* The kernel driver is only responsible for loading the HuC firmware and
* triggering its security authentication, which is performed by the GuC on
* older platforms and by the GSC on newer ones. For the GuC to correctly
* perform the authentication, the HuC binary must be loaded before the GuC one.
* Loading the HuC is optional; however, not using the HuC might negatively
* impact power usage and/or performance of media workloads, depending on the
* use-cases.
* HuC must be reloaded on events that cause the WOPCM to lose its contents
* (S3/S4, FLR); GuC-authenticated HuC must also be reloaded on GuC/GT reset,
* while GSC-managed HuC will survive that.
*
* See https://github.com/intel/media-driver for the latest details on HuC
* functionality.
*/
/**
* DOC: HuC Memory Management
*
* Similarly to the GuC, the HuC can't do any memory allocations on its own,
* with the difference being that the allocations for HuC usage are handled by
* the userspace driver instead of the kernel one. The HuC accesses the memory
* via the PPGTT belonging to the context loaded on the VCS executing the
* HuC-specific commands.
*/
/*
* MEI-GSC load is an async process. The probing of the exposed aux device
* (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
* on when the kernel schedules it. Unless something goes terribly wrong, we're
* guaranteed for this to happen during boot, so the big timeout is a safety net
* that we never expect to need.
* MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
* and/or reset, this can take longer. Note that the kernel might schedule
* other work between the i915 init/resume and the MEI one, which can add to
* the delay.
*/
#define GSC_INIT_TIMEOUT_MS 10000
#define PXP_INIT_TIMEOUT_MS 5000
static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
enum i915_sw_fence_notify state)
{
return NOTIFY_DONE;
}
static void __delayed_huc_load_complete(struct intel_huc *huc)
{
if (!i915_sw_fence_done(&huc->delayed_load.fence))
i915_sw_fence_complete(&huc->delayed_load.fence);
}
static void delayed_huc_load_complete(struct intel_huc *huc)
{
hrtimer_cancel(&huc->delayed_load.timer);
__delayed_huc_load_complete(huc);
}
static void __gsc_init_error(struct intel_huc *huc)
{
huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
__delayed_huc_load_complete(huc);
}
static void gsc_init_error(struct intel_huc *huc)
{
hrtimer_cancel(&huc->delayed_load.timer);
__gsc_init_error(huc);
}
static void gsc_init_done(struct intel_huc *huc)
{
hrtimer_cancel(&huc->delayed_load.timer);
/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
if (!i915_sw_fence_done(&huc->delayed_load.fence))
hrtimer_start(&huc->delayed_load.timer,
ms_to_ktime(PXP_INIT_TIMEOUT_MS),
HRTIMER_MODE_REL);
}
static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
{
struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
if (!intel_huc_is_authenticated(huc)) {
if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
drm_notice(&huc_to_gt(huc)->i915->drm,
"timed out waiting for MEI GSC init to load HuC\n");
else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
drm_notice(&huc_to_gt(huc)->i915->drm,
"timed out waiting for MEI PXP init to load HuC\n");
else
MISSING_CASE(huc->delayed_load.status);
__gsc_init_error(huc);
}
return HRTIMER_NORESTART;
}
static void huc_delayed_load_start(struct intel_huc *huc)
{
ktime_t delay;
GEM_BUG_ON(intel_huc_is_authenticated(huc));
/*
* On resume we don't have to wait for MEI-GSC to be re-probed, but we
* do need to wait for MEI-PXP to reset & re-bind
*/
switch (huc->delayed_load.status) {
case INTEL_HUC_WAITING_ON_GSC:
delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
break;
case INTEL_HUC_WAITING_ON_PXP:
delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
break;
default:
gsc_init_error(huc);
return;
}
/*
* This fence is always complete unless we're waiting for the
* GSC device to come up to load the HuC. We arm the fence here
* and complete it when we confirm that the HuC is loaded from
* the PXP bind callback.
*/
GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
i915_sw_fence_fini(&huc->delayed_load.fence);
i915_sw_fence_reinit(&huc->delayed_load.fence);
i915_sw_fence_await(&huc->delayed_load.fence);
i915_sw_fence_commit(&huc->delayed_load.fence);
hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
}
static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
{
struct device *dev = data;
struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
if (!intf->adev || &intf->adev->aux_dev.dev != dev)
return 0;
switch (action) {
case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
gsc_init_done(huc);
break;
case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
drm_info(&huc_to_gt(huc)->i915->drm,
"mei driver not bound, disabling HuC load\n");
gsc_init_error(huc);
break;
}
return 0;
}
void intel_huc_register_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
{
int ret;
if (!intel_huc_is_loaded_by_gsc(huc))
return;
huc->delayed_load.nb.notifier_call = gsc_notifier;
ret = bus_register_notifier(bus, &huc->delayed_load.nb);
if (ret) {
drm_err(&huc_to_gt(huc)->i915->drm,
"failed to register GSC notifier\n");
huc->delayed_load.nb.notifier_call = NULL;
gsc_init_error(huc);
}
}
void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
{
if (!huc->delayed_load.nb.notifier_call)
return;
delayed_huc_load_complete(huc);
bus_unregister_notifier(bus, &huc->delayed_load.nb);
huc->delayed_load.nb.notifier_call = NULL;
}
static void delayed_huc_load_init(struct intel_huc *huc)
{
/*
* Initialize fence to be complete as this is expected to be complete
* unless there is a delayed HuC load in progress.
*/
i915_sw_fence_init(&huc->delayed_load.fence,
sw_fence_dummy_notify);
i915_sw_fence_commit(&huc->delayed_load.fence);
hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
}
static void delayed_huc_load_fini(struct intel_huc *huc)
{
/*
* the fence is initialized in init_early, so we need to clean it up
* even if HuC loading is off.
*/
delayed_huc_load_complete(huc);
i915_sw_fence_fini(&huc->delayed_load.fence);
}
static bool vcs_supported(struct intel_gt *gt)
{
intel_engine_mask_t mask = gt->info.engine_mask;
/*
* We reach here from i915_driver_early_probe for the primary GT before
* its engine mask is set, so we use the device info engine mask for it;
* this means we're not taking VCS fusing into account, but if the
* primary GT supports VCS engines we expect at least one of them to
* remain unfused so we're fine.
* For other GTs we expect the GT-specific mask to be set before we
* call this function.
*/
GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
if (gt_is_root(gt))
mask = RUNTIME_INFO(gt->i915)->platform_engine_mask;
else
mask = gt->info.engine_mask;
return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
}
void intel_huc_init_early(struct intel_huc *huc)
{
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
struct intel_gt *gt = huc_to_gt(huc);
intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC);
/*
* we always init the fence as already completed, even if HuC is not
* supported. This way we don't have to distinguish between HuC not
* supported/disabled or already loaded, and can focus on if the load
* is currently in progress (fence not complete) or not, which is what
* we care about for stalling userspace submissions.
*/
delayed_huc_load_init(huc);
if (!vcs_supported(gt)) {
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
return;
}
if (GRAPHICS_VER(i915) >= 11) {
huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO;
huc->status.mask = HUC_LOAD_SUCCESSFUL;
huc->status.value = HUC_LOAD_SUCCESSFUL;
} else {
huc->status.reg = HUC_STATUS2;
huc->status.mask = HUC_FW_VERIFIED;
huc->status.value = HUC_FW_VERIFIED;
}
}
#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
static int check_huc_loading_mode(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
bool fw_needs_gsc = intel_huc_is_loaded_by_gsc(huc);
bool hw_uses_gsc = false;
/*
* The fuse for HuC load via GSC is only valid on platforms that have
* GuC deprivilege.
*/
if (HAS_GUC_DEPRIVILEGE(gt->i915))
hw_uses_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
GSC_LOADS_HUC;
if (fw_needs_gsc != hw_uses_gsc) {
drm_err(&gt->i915->drm,
"mismatch between HuC FW (%s) and HW (%s) load modes\n",
HUC_LOAD_MODE_STRING(fw_needs_gsc),
HUC_LOAD_MODE_STRING(hw_uses_gsc));
return -ENOEXEC;
}
/* make sure we can access the GSC via the mei driver if we need it */
if (!(IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC)) &&
fw_needs_gsc) {
drm_info(&gt->i915->drm,
"Can't load HuC due to missing MEI modules\n");
return -EIO;
}
drm_dbg(&gt->i915->drm, "GSC loads huc=%s\n", str_yes_no(fw_needs_gsc));
return 0;
}
int intel_huc_init(struct intel_huc *huc)
{
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
int err;
err = check_huc_loading_mode(huc);
if (err)
goto out;
err = intel_uc_fw_init(&huc->fw);
if (err)
goto out;
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
return 0;
out:
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
drm_info(&i915->drm, "HuC init failed with %d\n", err);
return err;
}
void intel_huc_fini(struct intel_huc *huc)
{
/*
* the fence is initialized in init_early, so we need to clean it up
* even if HuC loading is off.
*/
delayed_huc_load_fini(huc);
if (intel_uc_fw_is_loadable(&huc->fw))
intel_uc_fw_fini(&huc->fw);
}
void intel_huc_suspend(struct intel_huc *huc)
{
if (!intel_uc_fw_is_loadable(&huc->fw))
return;
/*
* in the unlikely case that we're suspending before the GSC has
* completed its loading sequence, just stop waiting. We'll restart
* on resume.
*/
delayed_huc_load_complete(huc);
}
int intel_huc_wait_for_auth_complete(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
int ret;
ret = __intel_wait_for_register(gt->uncore,
huc->status.reg,
huc->status.mask,
huc->status.value,
2, 50, NULL);
/* mark the load process as complete even if the wait failed */
delayed_huc_load_complete(huc);
if (ret) {
drm_err(&gt->i915->drm, "HuC: Firmware not verified %d\n", ret);
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
return ret;
}
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
drm_info(&gt->i915->drm, "HuC authenticated\n");
return 0;
}
/**
* intel_huc_auth() - Authenticate HuC uCode
* @huc: intel_huc structure
*
* Called after HuC and GuC firmware loading during intel_uc_init_hw().
*
* This function invokes the GuC action to authenticate the HuC firmware,
* passing the offset of the RSA signature to intel_guc_auth_huc(). It then
* waits for up to 50ms for firmware verification ACK.
*/
int intel_huc_auth(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
struct intel_guc *guc = &gt->uc.guc;
int ret;
if (!intel_uc_fw_is_loaded(&huc->fw))
return -ENOEXEC;
/* GSC will do the auth */
if (intel_huc_is_loaded_by_gsc(huc))
return -ENODEV;
ret = i915_inject_probe_error(gt->i915, -ENXIO);
if (ret)
goto fail;
GEM_BUG_ON(intel_uc_fw_is_running(&huc->fw));
ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
if (ret) {
DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret);
goto fail;
}
/* Check authentication status, it should be done by now */
ret = intel_huc_wait_for_auth_complete(huc);
if (ret)
goto fail;
return 0;
fail:
i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret);
return ret;
}
bool intel_huc_is_authenticated(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
intel_wakeref_t wakeref;
u32 status = 0;
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
status = intel_uncore_read(gt->uncore, huc->status.reg);
return (status & huc->status.mask) == huc->status.value;
}
/**
* intel_huc_check_status() - check HuC status
* @huc: intel_huc structure
*
* This function reads status register to verify if HuC
* firmware was successfully loaded.
*
* The return values match what is expected for the I915_PARAM_HUC_STATUS
* getparam.
*/
int intel_huc_check_status(struct intel_huc *huc)
{
switch (__intel_uc_fw_status(&huc->fw)) {
case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
return -ENODEV;
case INTEL_UC_FIRMWARE_DISABLED:
return -EOPNOTSUPP;
case INTEL_UC_FIRMWARE_MISSING:
return -ENOPKG;
case INTEL_UC_FIRMWARE_ERROR:
return -ENOEXEC;
case INTEL_UC_FIRMWARE_INIT_FAIL:
return -ENOMEM;
case INTEL_UC_FIRMWARE_LOAD_FAIL:
return -EIO;
default:
break;
}
return intel_huc_is_authenticated(huc);
}
static bool huc_has_delayed_load(struct intel_huc *huc)
{
return intel_huc_is_loaded_by_gsc(huc) &&
(huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
}
void intel_huc_update_auth_status(struct intel_huc *huc)
{
if (!intel_uc_fw_is_loadable(&huc->fw))
return;
if (intel_huc_is_authenticated(huc))
intel_uc_fw_change_status(&huc->fw,
INTEL_UC_FIRMWARE_RUNNING);
else if (huc_has_delayed_load(huc))
huc_delayed_load_start(huc);
}
/**
* intel_huc_load_status - dump information about HuC load status
* @huc: the HuC
* @p: the &drm_printer
*
* Pretty printer for HuC load status.
*/
void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
{
struct intel_gt *gt = huc_to_gt(huc);
intel_wakeref_t wakeref;
if (!intel_huc_is_supported(huc)) {
drm_printf(p, "HuC not supported\n");
return;
}
if (!intel_huc_is_wanted(huc)) {
drm_printf(p, "HuC disabled\n");
return;
}
intel_uc_fw_dump(&huc->fw, p);
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
drm_printf(p, "HuC status: 0x%08x\n",
intel_uncore_read(gt->uncore, huc->status.reg));
}