1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/arch/x86/virt/svm/sev.c
Ashish Kalra 400fea4b96 x86/sev: Add callback to apply RMP table fixups for kexec
Handle cases where the RMP table placement in the BIOS is not 2M aligned
and the kexec-ed kernel could try to allocate from within that chunk
which then causes a fatal RMP fault.

The kexec failure is illustrated below:

  SEV-SNP: RMP table physical range [0x0000007ffe800000 - 0x000000807f0fffff]
  BIOS-provided physical RAM map:
  BIOS-e820: [mem 0x0000000000000000-0x000000000008efff] usable
  BIOS-e820: [mem 0x000000000008f000-0x000000000008ffff] ACPI NVS
  ...
  BIOS-e820: [mem 0x0000004080000000-0x0000007ffe7fffff] usable
  BIOS-e820: [mem 0x0000007ffe800000-0x000000807f0fffff] reserved
  BIOS-e820: [mem 0x000000807f100000-0x000000807f1fefff] usable

As seen here in the e820 memory map, the end range of the RMP table is not
aligned to 2MB and not reserved but it is usable as RAM.

Subsequently, kexec -s (KEXEC_FILE_LOAD syscall) loads it's purgatory
code and boot_param, command line and other setup data into this RAM
region as seen in the kexec logs below, which leads to fatal RMP fault
during kexec boot.

  Loaded purgatory at 0x807f1fa000
  Loaded boot_param, command line and misc at 0x807f1f8000 bufsz=0x1350 memsz=0x2000
  Loaded 64bit kernel at 0x7ffae00000 bufsz=0xd06200 memsz=0x3894000
  Loaded initrd at 0x7ff6c89000 bufsz=0x4176014 memsz=0x4176014
  E820 memmap:
  0000000000000000-000000000008efff (1)
  000000000008f000-000000000008ffff (4)
  0000000000090000-000000000009ffff (1)
  ...
  0000004080000000-0000007ffe7fffff (1)
  0000007ffe800000-000000807f0fffff (2)
  000000807f100000-000000807f1fefff (1)
  000000807f1ff000-000000807fffffff (2)
  nr_segments = 4
  segment[0]: buf=0x00000000e626d1a2 bufsz=0x4000 mem=0x807f1fa000 memsz=0x5000
  segment[1]: buf=0x0000000029c67bd6 bufsz=0x1350 mem=0x807f1f8000 memsz=0x2000
  segment[2]: buf=0x0000000045c60183 bufsz=0xd06200 mem=0x7ffae00000 memsz=0x3894000
  segment[3]: buf=0x000000006e54f08d bufsz=0x4176014 mem=0x7ff6c89000 memsz=0x4177000
  kexec_file_load: type:0, start:0x807f1fa150 head:0x1184d0002 flags:0x0

Check if RMP table start and end physical range in the e820 tables are
not aligned to 2MB and in that case map this range to reserved in all
the three e820 tables.

  [ bp: Massage. ]

Fixes: c3b86e61b7 ("x86/cpufeatures: Enable/unmask SEV-SNP CPU feature")
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/df6e995ff88565262c2c7c69964883ff8aa6fc30.1714090302.git.ashish.kalra@amd.com
2024-04-29 11:21:09 +02:00

606 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AMD SVM-SEV Host Support.
*
* Copyright (C) 2023 Advanced Micro Devices, Inc.
*
* Author: Ashish Kalra <ashish.kalra@amd.com>
*
*/
#include <linux/cc_platform.h>
#include <linux/printk.h>
#include <linux/mm_types.h>
#include <linux/set_memory.h>
#include <linux/memblock.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/iommu.h>
#include <linux/amd-iommu.h>
#include <asm/sev.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/svm.h>
#include <asm/smp.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/cpuid.h>
#include <asm/cmdline.h>
#include <asm/iommu.h>
/*
* The RMP entry format is not architectural. The format is defined in PPR
* Family 19h Model 01h, Rev B1 processor.
*/
struct rmpentry {
union {
struct {
u64 assigned : 1,
pagesize : 1,
immutable : 1,
rsvd1 : 9,
gpa : 39,
asid : 10,
vmsa : 1,
validated : 1,
rsvd2 : 1;
};
u64 lo;
};
u64 hi;
} __packed;
/*
* The first 16KB from the RMP_BASE is used by the processor for the
* bookkeeping, the range needs to be added during the RMP entry lookup.
*/
#define RMPTABLE_CPU_BOOKKEEPING_SZ 0x4000
/* Mask to apply to a PFN to get the first PFN of a 2MB page */
#define PFN_PMD_MASK GENMASK_ULL(63, PMD_SHIFT - PAGE_SHIFT)
static u64 probed_rmp_base, probed_rmp_size;
static struct rmpentry *rmptable __ro_after_init;
static u64 rmptable_max_pfn __ro_after_init;
static LIST_HEAD(snp_leaked_pages_list);
static DEFINE_SPINLOCK(snp_leaked_pages_list_lock);
static unsigned long snp_nr_leaked_pages;
#undef pr_fmt
#define pr_fmt(fmt) "SEV-SNP: " fmt
static int __mfd_enable(unsigned int cpu)
{
u64 val;
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return 0;
rdmsrl(MSR_AMD64_SYSCFG, val);
val |= MSR_AMD64_SYSCFG_MFDM;
wrmsrl(MSR_AMD64_SYSCFG, val);
return 0;
}
static __init void mfd_enable(void *arg)
{
__mfd_enable(smp_processor_id());
}
static int __snp_enable(unsigned int cpu)
{
u64 val;
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return 0;
rdmsrl(MSR_AMD64_SYSCFG, val);
val |= MSR_AMD64_SYSCFG_SNP_EN;
val |= MSR_AMD64_SYSCFG_SNP_VMPL_EN;
wrmsrl(MSR_AMD64_SYSCFG, val);
return 0;
}
static __init void snp_enable(void *arg)
{
__snp_enable(smp_processor_id());
}
#define RMP_ADDR_MASK GENMASK_ULL(51, 13)
bool snp_probe_rmptable_info(void)
{
u64 max_rmp_pfn, calc_rmp_sz, rmp_sz, rmp_base, rmp_end;
rdmsrl(MSR_AMD64_RMP_BASE, rmp_base);
rdmsrl(MSR_AMD64_RMP_END, rmp_end);
if (!(rmp_base & RMP_ADDR_MASK) || !(rmp_end & RMP_ADDR_MASK)) {
pr_err("Memory for the RMP table has not been reserved by BIOS\n");
return false;
}
if (rmp_base > rmp_end) {
pr_err("RMP configuration not valid: base=%#llx, end=%#llx\n", rmp_base, rmp_end);
return false;
}
rmp_sz = rmp_end - rmp_base + 1;
/*
* Calculate the amount the memory that must be reserved by the BIOS to
* address the whole RAM, including the bookkeeping area. The RMP itself
* must also be covered.
*/
max_rmp_pfn = max_pfn;
if (PHYS_PFN(rmp_end) > max_pfn)
max_rmp_pfn = PHYS_PFN(rmp_end);
calc_rmp_sz = (max_rmp_pfn << 4) + RMPTABLE_CPU_BOOKKEEPING_SZ;
if (calc_rmp_sz > rmp_sz) {
pr_err("Memory reserved for the RMP table does not cover full system RAM (expected 0x%llx got 0x%llx)\n",
calc_rmp_sz, rmp_sz);
return false;
}
probed_rmp_base = rmp_base;
probed_rmp_size = rmp_sz;
pr_info("RMP table physical range [0x%016llx - 0x%016llx]\n",
probed_rmp_base, probed_rmp_base + probed_rmp_size - 1);
return true;
}
static void __init __snp_fixup_e820_tables(u64 pa)
{
if (IS_ALIGNED(pa, PMD_SIZE))
return;
/*
* Handle cases where the RMP table placement by the BIOS is not
* 2M aligned and the kexec kernel could try to allocate
* from within that chunk which then causes a fatal RMP fault.
*
* The e820_table needs to be updated as it is converted to
* kernel memory resources and used by KEXEC_FILE_LOAD syscall
* to load kexec segments.
*
* The e820_table_firmware needs to be updated as it is exposed
* to sysfs and used by the KEXEC_LOAD syscall to load kexec
* segments.
*
* The e820_table_kexec needs to be updated as it passed to
* the kexec-ed kernel.
*/
pa = ALIGN_DOWN(pa, PMD_SIZE);
if (e820__mapped_any(pa, pa + PMD_SIZE, E820_TYPE_RAM)) {
pr_info("Reserving start/end of RMP table on a 2MB boundary [0x%016llx]\n", pa);
e820__range_update(pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
e820__range_update_table(e820_table_kexec, pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
e820__range_update_table(e820_table_firmware, pa, PMD_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
}
}
void __init snp_fixup_e820_tables(void)
{
__snp_fixup_e820_tables(probed_rmp_base);
__snp_fixup_e820_tables(probed_rmp_base + probed_rmp_size);
}
/*
* Do the necessary preparations which are verified by the firmware as
* described in the SNP_INIT_EX firmware command description in the SNP
* firmware ABI spec.
*/
static int __init snp_rmptable_init(void)
{
void *rmptable_start;
u64 rmptable_size;
u64 val;
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return 0;
if (!amd_iommu_snp_en)
goto nosnp;
if (!probed_rmp_size)
goto nosnp;
rmptable_start = memremap(probed_rmp_base, probed_rmp_size, MEMREMAP_WB);
if (!rmptable_start) {
pr_err("Failed to map RMP table\n");
return 1;
}
/*
* Check if SEV-SNP is already enabled, this can happen in case of
* kexec boot.
*/
rdmsrl(MSR_AMD64_SYSCFG, val);
if (val & MSR_AMD64_SYSCFG_SNP_EN)
goto skip_enable;
memset(rmptable_start, 0, probed_rmp_size);
/* Flush the caches to ensure that data is written before SNP is enabled. */
wbinvd_on_all_cpus();
/* MtrrFixDramModEn must be enabled on all the CPUs prior to enabling SNP. */
on_each_cpu(mfd_enable, NULL, 1);
on_each_cpu(snp_enable, NULL, 1);
skip_enable:
rmptable_start += RMPTABLE_CPU_BOOKKEEPING_SZ;
rmptable_size = probed_rmp_size - RMPTABLE_CPU_BOOKKEEPING_SZ;
rmptable = (struct rmpentry *)rmptable_start;
rmptable_max_pfn = rmptable_size / sizeof(struct rmpentry) - 1;
cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/rmptable_init:online", __snp_enable, NULL);
/*
* Setting crash_kexec_post_notifiers to 'true' to ensure that SNP panic
* notifier is invoked to do SNP IOMMU shutdown before kdump.
*/
crash_kexec_post_notifiers = true;
return 0;
nosnp:
cc_platform_clear(CC_ATTR_HOST_SEV_SNP);
return -ENOSYS;
}
/*
* This must be called after the IOMMU has been initialized.
*/
device_initcall(snp_rmptable_init);
static struct rmpentry *get_rmpentry(u64 pfn)
{
if (WARN_ON_ONCE(pfn > rmptable_max_pfn))
return ERR_PTR(-EFAULT);
return &rmptable[pfn];
}
static struct rmpentry *__snp_lookup_rmpentry(u64 pfn, int *level)
{
struct rmpentry *large_entry, *entry;
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return ERR_PTR(-ENODEV);
entry = get_rmpentry(pfn);
if (IS_ERR(entry))
return entry;
/*
* Find the authoritative RMP entry for a PFN. This can be either a 4K
* RMP entry or a special large RMP entry that is authoritative for a
* whole 2M area.
*/
large_entry = get_rmpentry(pfn & PFN_PMD_MASK);
if (IS_ERR(large_entry))
return large_entry;
*level = RMP_TO_PG_LEVEL(large_entry->pagesize);
return entry;
}
int snp_lookup_rmpentry(u64 pfn, bool *assigned, int *level)
{
struct rmpentry *e;
e = __snp_lookup_rmpentry(pfn, level);
if (IS_ERR(e))
return PTR_ERR(e);
*assigned = !!e->assigned;
return 0;
}
EXPORT_SYMBOL_GPL(snp_lookup_rmpentry);
/*
* Dump the raw RMP entry for a particular PFN. These bits are documented in the
* PPR for a particular CPU model and provide useful information about how a
* particular PFN is being utilized by the kernel/firmware at the time certain
* unexpected events occur, such as RMP faults.
*/
static void dump_rmpentry(u64 pfn)
{
u64 pfn_i, pfn_end;
struct rmpentry *e;
int level;
e = __snp_lookup_rmpentry(pfn, &level);
if (IS_ERR(e)) {
pr_err("Failed to read RMP entry for PFN 0x%llx, error %ld\n",
pfn, PTR_ERR(e));
return;
}
if (e->assigned) {
pr_info("PFN 0x%llx, RMP entry: [0x%016llx - 0x%016llx]\n",
pfn, e->lo, e->hi);
return;
}
/*
* If the RMP entry for a particular PFN is not in an assigned state,
* then it is sometimes useful to get an idea of whether or not any RMP
* entries for other PFNs within the same 2MB region are assigned, since
* those too can affect the ability to access a particular PFN in
* certain situations, such as when the PFN is being accessed via a 2MB
* mapping in the host page table.
*/
pfn_i = ALIGN_DOWN(pfn, PTRS_PER_PMD);
pfn_end = pfn_i + PTRS_PER_PMD;
pr_info("PFN 0x%llx unassigned, dumping non-zero entries in 2M PFN region: [0x%llx - 0x%llx]\n",
pfn, pfn_i, pfn_end);
while (pfn_i < pfn_end) {
e = __snp_lookup_rmpentry(pfn_i, &level);
if (IS_ERR(e)) {
pr_err("Error %ld reading RMP entry for PFN 0x%llx\n",
PTR_ERR(e), pfn_i);
pfn_i++;
continue;
}
if (e->lo || e->hi)
pr_info("PFN: 0x%llx, [0x%016llx - 0x%016llx]\n", pfn_i, e->lo, e->hi);
pfn_i++;
}
}
void snp_dump_hva_rmpentry(unsigned long hva)
{
unsigned long paddr;
unsigned int level;
pgd_t *pgd;
pte_t *pte;
pgd = __va(read_cr3_pa());
pgd += pgd_index(hva);
pte = lookup_address_in_pgd(pgd, hva, &level);
if (!pte) {
pr_err("Can't dump RMP entry for HVA %lx: no PTE/PFN found\n", hva);
return;
}
paddr = PFN_PHYS(pte_pfn(*pte)) | (hva & ~page_level_mask(level));
dump_rmpentry(PHYS_PFN(paddr));
}
/*
* PSMASH a 2MB aligned page into 4K pages in the RMP table while preserving the
* Validated bit.
*/
int psmash(u64 pfn)
{
unsigned long paddr = pfn << PAGE_SHIFT;
int ret;
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return -ENODEV;
if (!pfn_valid(pfn))
return -EINVAL;
/* Binutils version 2.36 supports the PSMASH mnemonic. */
asm volatile(".byte 0xF3, 0x0F, 0x01, 0xFF"
: "=a" (ret)
: "a" (paddr)
: "memory", "cc");
return ret;
}
EXPORT_SYMBOL_GPL(psmash);
/*
* If the kernel uses a 2MB or larger directmap mapping to write to an address,
* and that mapping contains any 4KB pages that are set to private in the RMP
* table, an RMP #PF will trigger and cause a host crash. Hypervisor code that
* owns the PFNs being transitioned will never attempt such a write, but other
* kernel tasks writing to other PFNs in the range may trigger these checks
* inadvertently due a large directmap mapping that happens to overlap such a
* PFN.
*
* Prevent this by splitting any 2MB+ mappings that might end up containing a
* mix of private/shared PFNs as a result of a subsequent RMPUPDATE for the
* PFN/rmp_level passed in.
*
* Note that there is no attempt here to scan all the RMP entries for the 2MB
* physical range, since it would only be worthwhile in determining if a
* subsequent RMPUPDATE for a 4KB PFN would result in all the entries being of
* the same shared/private state, thus avoiding the need to split the mapping.
* But that would mean the entries are currently in a mixed state, and so the
* mapping would have already been split as a result of prior transitions.
* And since the 4K split is only done if the mapping is 2MB+, and there isn't
* currently a mechanism in place to restore 2MB+ mappings, such a check would
* not provide any usable benefit.
*
* More specifics on how these checks are carried out can be found in APM
* Volume 2, "RMP and VMPL Access Checks".
*/
static int adjust_direct_map(u64 pfn, int rmp_level)
{
unsigned long vaddr;
unsigned int level;
int npages, ret;
pte_t *pte;
/*
* pfn_to_kaddr() will return a vaddr only within the direct
* map range.
*/
vaddr = (unsigned long)pfn_to_kaddr(pfn);
/* Only 4KB/2MB RMP entries are supported by current hardware. */
if (WARN_ON_ONCE(rmp_level > PG_LEVEL_2M))
return -EINVAL;
if (!pfn_valid(pfn))
return -EINVAL;
if (rmp_level == PG_LEVEL_2M &&
(!IS_ALIGNED(pfn, PTRS_PER_PMD) || !pfn_valid(pfn + PTRS_PER_PMD - 1)))
return -EINVAL;
/*
* If an entire 2MB physical range is being transitioned, then there is
* no risk of RMP #PFs due to write accesses from overlapping mappings,
* since even accesses from 1GB mappings will be treated as 2MB accesses
* as far as RMP table checks are concerned.
*/
if (rmp_level == PG_LEVEL_2M)
return 0;
pte = lookup_address(vaddr, &level);
if (!pte || pte_none(*pte))
return 0;
if (level == PG_LEVEL_4K)
return 0;
npages = page_level_size(rmp_level) / PAGE_SIZE;
ret = set_memory_4k(vaddr, npages);
if (ret)
pr_warn("Failed to split direct map for PFN 0x%llx, ret: %d\n",
pfn, ret);
return ret;
}
/*
* It is expected that those operations are seldom enough so that no mutual
* exclusion of updaters is needed and thus the overlap error condition below
* should happen very rarely and would get resolved relatively quickly by
* the firmware.
*
* If not, one could consider introducing a mutex or so here to sync concurrent
* RMP updates and thus diminish the amount of cases where firmware needs to
* lock 2M ranges to protect against concurrent updates.
*
* The optimal solution would be range locking to avoid locking disjoint
* regions unnecessarily but there's no support for that yet.
*/
static int rmpupdate(u64 pfn, struct rmp_state *state)
{
unsigned long paddr = pfn << PAGE_SHIFT;
int ret, level;
if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
return -ENODEV;
level = RMP_TO_PG_LEVEL(state->pagesize);
if (adjust_direct_map(pfn, level))
return -EFAULT;
do {
/* Binutils version 2.36 supports the RMPUPDATE mnemonic. */
asm volatile(".byte 0xF2, 0x0F, 0x01, 0xFE"
: "=a" (ret)
: "a" (paddr), "c" ((unsigned long)state)
: "memory", "cc");
} while (ret == RMPUPDATE_FAIL_OVERLAP);
if (ret) {
pr_err("RMPUPDATE failed for PFN %llx, pg_level: %d, ret: %d\n",
pfn, level, ret);
dump_rmpentry(pfn);
dump_stack();
return -EFAULT;
}
return 0;
}
/* Transition a page to guest-owned/private state in the RMP table. */
int rmp_make_private(u64 pfn, u64 gpa, enum pg_level level, u32 asid, bool immutable)
{
struct rmp_state state;
memset(&state, 0, sizeof(state));
state.assigned = 1;
state.asid = asid;
state.immutable = immutable;
state.gpa = gpa;
state.pagesize = PG_LEVEL_TO_RMP(level);
return rmpupdate(pfn, &state);
}
EXPORT_SYMBOL_GPL(rmp_make_private);
/* Transition a page to hypervisor-owned/shared state in the RMP table. */
int rmp_make_shared(u64 pfn, enum pg_level level)
{
struct rmp_state state;
memset(&state, 0, sizeof(state));
state.pagesize = PG_LEVEL_TO_RMP(level);
return rmpupdate(pfn, &state);
}
EXPORT_SYMBOL_GPL(rmp_make_shared);
void snp_leak_pages(u64 pfn, unsigned int npages)
{
struct page *page = pfn_to_page(pfn);
pr_warn("Leaking PFN range 0x%llx-0x%llx\n", pfn, pfn + npages);
spin_lock(&snp_leaked_pages_list_lock);
while (npages--) {
/*
* Reuse the page's buddy list for chaining into the leaked
* pages list. This page should not be on a free list currently
* and is also unsafe to be added to a free list.
*/
if (likely(!PageCompound(page)) ||
/*
* Skip inserting tail pages of compound page as
* page->buddy_list of tail pages is not usable.
*/
(PageHead(page) && compound_nr(page) <= npages))
list_add_tail(&page->buddy_list, &snp_leaked_pages_list);
dump_rmpentry(pfn);
snp_nr_leaked_pages++;
pfn++;
page++;
}
spin_unlock(&snp_leaked_pages_list_lock);
}
EXPORT_SYMBOL_GPL(snp_leak_pages);
void kdump_sev_callback(void)
{
/*
* Do wbinvd() on remote CPUs when SNP is enabled in order to
* safely do SNP_SHUTDOWN on the local CPU.
*/
if (cc_platform_has(CC_ATTR_HOST_SEV_SNP))
wbinvd();
}