The flags stored in the BO grew over time without following much a naming pattern. First of all, get rid of the _BIT suffix that was banned from everywhere else due to the guideline in drivers/gpu/drm/i915/i915_reg.h that xe kind of follows: Define bits using ``REG_BIT(N)``. Do **not** add ``_BIT`` suffix to the name. Here the flags aren't for a register, but it's good practice to keep it consistent. Second divergence on names is the use or not of "CREATE". This is because most of the flags are passed to xe_bo_create*() family of functions, changing its behavior. However, since the flags are also stored in the bo itself and checked elsewhere in the code, it seems better to just omit the CREATE part. With those 2 guidelines, all the flags are given the form XE_BO_FLAG_<FLAG_NAME> with the following commands: git grep -le "XE_BO_" -- drivers/gpu/drm/xe | xargs sed -i \ -e "s/XE_BO_\([_A-Z0-9]*\)_BIT/XE_BO_\1/g" \ -e 's/XE_BO_CREATE_/XE_BO_FLAG_/g' git grep -le "XE_BO_" -- drivers/gpu/drm/xe | xargs sed -i -r \ -e 's/XE_BO_(DEFER_BACKING|SCANOUT|FIXED_PLACEMENT|PAGETABLE|NEEDS_CPU_ACCESS|NEEDS_UC|INTERNAL_TEST|INTERNAL_64K|GGTT_INVALIDATE)/XE_BO_FLAG_\1/g' And then the defines in drivers/gpu/drm/xe/xe_bo.h are adjusted to follow the coding style. Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20240322142702.186529-3-lucas.demarchi@intel.com Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com>
571 lines
15 KiB
C
571 lines
15 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2023 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_gsc.h"
|
|
|
|
#include <drm/drm_managed.h>
|
|
|
|
#include <generated/xe_wa_oob.h>
|
|
|
|
#include "abi/gsc_mkhi_commands_abi.h"
|
|
#include "xe_bb.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_device.h"
|
|
#include "xe_exec_queue.h"
|
|
#include "xe_gsc_proxy.h"
|
|
#include "xe_gsc_submit.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_mcr.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_huc.h"
|
|
#include "xe_map.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_sched_job.h"
|
|
#include "xe_uc_fw.h"
|
|
#include "xe_wa.h"
|
|
#include "instructions/xe_gsc_commands.h"
|
|
#include "regs/xe_gsc_regs.h"
|
|
#include "regs/xe_gt_regs.h"
|
|
|
|
static struct xe_gt *
|
|
gsc_to_gt(struct xe_gsc *gsc)
|
|
{
|
|
return container_of(gsc, struct xe_gt, uc.gsc);
|
|
}
|
|
|
|
static int memcpy_fw(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 fw_size = gsc->fw.size;
|
|
void *storage;
|
|
|
|
/*
|
|
* FIXME: xe_migrate_copy does not work with stolen mem yet, so we use
|
|
* a memcpy for now.
|
|
*/
|
|
storage = kmalloc(fw_size, GFP_KERNEL);
|
|
if (!storage)
|
|
return -ENOMEM;
|
|
|
|
xe_map_memcpy_from(xe, storage, &gsc->fw.bo->vmap, 0, fw_size);
|
|
xe_map_memcpy_to(xe, &gsc->private->vmap, 0, storage, fw_size);
|
|
xe_map_memset(xe, &gsc->private->vmap, fw_size, 0, gsc->private->size - fw_size);
|
|
|
|
kfree(storage);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int emit_gsc_upload(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
u64 offset = xe_bo_ggtt_addr(gsc->private);
|
|
struct xe_bb *bb;
|
|
struct xe_sched_job *job;
|
|
struct dma_fence *fence;
|
|
long timeout;
|
|
|
|
bb = xe_bb_new(gt, 4, false);
|
|
if (IS_ERR(bb))
|
|
return PTR_ERR(bb);
|
|
|
|
bb->cs[bb->len++] = GSC_FW_LOAD;
|
|
bb->cs[bb->len++] = lower_32_bits(offset);
|
|
bb->cs[bb->len++] = upper_32_bits(offset);
|
|
bb->cs[bb->len++] = (gsc->private->size / SZ_4K) | GSC_FW_LOAD_LIMIT_VALID;
|
|
|
|
job = xe_bb_create_job(gsc->q, bb);
|
|
if (IS_ERR(job)) {
|
|
xe_bb_free(bb, NULL);
|
|
return PTR_ERR(job);
|
|
}
|
|
|
|
xe_sched_job_arm(job);
|
|
fence = dma_fence_get(&job->drm.s_fence->finished);
|
|
xe_sched_job_push(job);
|
|
|
|
timeout = dma_fence_wait_timeout(fence, false, HZ);
|
|
dma_fence_put(fence);
|
|
xe_bb_free(bb, NULL);
|
|
if (timeout < 0)
|
|
return timeout;
|
|
else if (!timeout)
|
|
return -ETIME;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define version_query_wr(xe_, map_, offset_, field_, val_) \
|
|
xe_map_wr_field(xe_, map_, offset_, struct gsc_get_compatibility_version_in, field_, val_)
|
|
#define version_query_rd(xe_, map_, offset_, field_) \
|
|
xe_map_rd_field(xe_, map_, offset_, struct gsc_get_compatibility_version_out, field_)
|
|
|
|
static u32 emit_version_query_msg(struct xe_device *xe, struct iosys_map *map, u32 wr_offset)
|
|
{
|
|
xe_map_memset(xe, map, wr_offset, 0, sizeof(struct gsc_get_compatibility_version_in));
|
|
|
|
version_query_wr(xe, map, wr_offset, header.group_id, MKHI_GROUP_ID_GFX_SRV);
|
|
version_query_wr(xe, map, wr_offset, header.command,
|
|
MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION);
|
|
|
|
return wr_offset + sizeof(struct gsc_get_compatibility_version_in);
|
|
}
|
|
|
|
#define GSC_VER_PKT_SZ SZ_4K /* 4K each for input and output */
|
|
static int query_compatibility_version(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_uc_fw_version *compat = &gsc->fw.versions.found[XE_UC_FW_VER_COMPATIBILITY];
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_bo *bo;
|
|
u32 wr_offset;
|
|
u32 rd_offset;
|
|
u64 ggtt_offset;
|
|
int err;
|
|
|
|
bo = xe_bo_create_pin_map(xe, tile, NULL, GSC_VER_PKT_SZ * 2,
|
|
ttm_bo_type_kernel,
|
|
XE_BO_FLAG_SYSTEM |
|
|
XE_BO_FLAG_GGTT);
|
|
if (IS_ERR(bo)) {
|
|
xe_gt_err(gt, "failed to allocate bo for GSC version query\n");
|
|
return PTR_ERR(bo);
|
|
}
|
|
|
|
ggtt_offset = xe_bo_ggtt_addr(bo);
|
|
|
|
wr_offset = xe_gsc_emit_header(xe, &bo->vmap, 0, HECI_MEADDRESS_MKHI, 0,
|
|
sizeof(struct gsc_get_compatibility_version_in));
|
|
wr_offset = emit_version_query_msg(xe, &bo->vmap, wr_offset);
|
|
|
|
err = xe_gsc_pkt_submit_kernel(gsc, ggtt_offset, wr_offset,
|
|
ggtt_offset + GSC_VER_PKT_SZ,
|
|
GSC_VER_PKT_SZ);
|
|
if (err) {
|
|
xe_gt_err(gt,
|
|
"failed to submit GSC request for compatibility version: %d\n",
|
|
err);
|
|
goto out_bo;
|
|
}
|
|
|
|
err = xe_gsc_read_out_header(xe, &bo->vmap, GSC_VER_PKT_SZ,
|
|
sizeof(struct gsc_get_compatibility_version_out),
|
|
&rd_offset);
|
|
if (err) {
|
|
xe_gt_err(gt, "HuC: invalid GSC reply for version query (err=%d)\n", err);
|
|
return err;
|
|
}
|
|
|
|
compat->major = version_query_rd(xe, &bo->vmap, rd_offset, compat_major);
|
|
compat->minor = version_query_rd(xe, &bo->vmap, rd_offset, compat_minor);
|
|
|
|
xe_gt_info(gt, "found GSC cv%u.%u\n", compat->major, compat->minor);
|
|
|
|
out_bo:
|
|
xe_bo_unpin_map_no_vm(bo);
|
|
return err;
|
|
}
|
|
|
|
static int gsc_fw_is_loaded(struct xe_gt *gt)
|
|
{
|
|
return xe_mmio_read32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE)) &
|
|
HECI1_FWSTS1_INIT_COMPLETE;
|
|
}
|
|
|
|
static int gsc_fw_wait(struct xe_gt *gt)
|
|
{
|
|
/*
|
|
* GSC load can take up to 250ms from the moment the instruction is
|
|
* executed by the GSCCS. To account for possible submission delays or
|
|
* other issues, we use a 500ms timeout in the wait here.
|
|
*/
|
|
return xe_mmio_wait32(gt, HECI_FWSTS1(MTL_GSC_HECI1_BASE),
|
|
HECI1_FWSTS1_INIT_COMPLETE,
|
|
HECI1_FWSTS1_INIT_COMPLETE,
|
|
500 * USEC_PER_MSEC, NULL, false);
|
|
}
|
|
|
|
static int gsc_upload(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
int err;
|
|
|
|
/* we should only be here if the init step were successful */
|
|
xe_assert(xe, xe_uc_fw_is_loadable(&gsc->fw) && gsc->q);
|
|
|
|
if (gsc_fw_is_loaded(gt)) {
|
|
xe_gt_err(gt, "GSC already loaded at upload time\n");
|
|
return -EEXIST;
|
|
}
|
|
|
|
err = memcpy_fw(gsc);
|
|
if (err) {
|
|
xe_gt_err(gt, "Failed to memcpy GSC FW\n");
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* GSC is only killed by an FLR, so we need to trigger one on unload to
|
|
* make sure we stop it. This is because we assign a chunk of memory to
|
|
* the GSC as part of the FW load, so we need to make sure it stops
|
|
* using it when we release it to the system on driver unload. Note that
|
|
* this is not a problem of the unload per-se, because the GSC will not
|
|
* touch that memory unless there are requests for it coming from the
|
|
* driver; therefore, no accesses will happen while Xe is not loaded,
|
|
* but if we re-load the driver then the GSC might wake up and try to
|
|
* access that old memory location again.
|
|
* Given that an FLR is a very disruptive action (see the FLR function
|
|
* for details), we want to do it as the last action before releasing
|
|
* the access to the MMIO bar, which means we need to do it as part of
|
|
* mmio cleanup.
|
|
*/
|
|
xe->needs_flr_on_fini = true;
|
|
|
|
err = emit_gsc_upload(gsc);
|
|
if (err) {
|
|
xe_gt_err(gt, "Failed to emit GSC FW upload (%pe)\n", ERR_PTR(err));
|
|
return err;
|
|
}
|
|
|
|
err = gsc_fw_wait(gt);
|
|
if (err) {
|
|
xe_gt_err(gt, "Failed to wait for GSC load (%pe)\n", ERR_PTR(err));
|
|
return err;
|
|
}
|
|
|
|
err = query_compatibility_version(gsc);
|
|
if (err)
|
|
return err;
|
|
|
|
err = xe_uc_fw_check_version_requirements(&gsc->fw);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gsc_upload_and_init(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
int ret;
|
|
|
|
if (XE_WA(gt, 14018094691)) {
|
|
ret = xe_force_wake_get(gt_to_fw(tile->primary_gt), XE_FORCEWAKE_ALL);
|
|
|
|
/*
|
|
* If the forcewake fails we want to keep going, because the worst
|
|
* case outcome in failing to apply the WA is that PXP won't work,
|
|
* which is not fatal. We still throw a warning so the issue is
|
|
* seen if it happens.
|
|
*/
|
|
xe_gt_WARN_ON(tile->primary_gt, ret);
|
|
|
|
xe_gt_mcr_multicast_write(tile->primary_gt,
|
|
EU_SYSTOLIC_LIC_THROTTLE_CTL_WITH_LOCK,
|
|
EU_SYSTOLIC_LIC_THROTTLE_CTL_LOCK_BIT);
|
|
}
|
|
|
|
ret = gsc_upload(gsc);
|
|
|
|
if (XE_WA(gt, 14018094691))
|
|
xe_force_wake_put(gt_to_fw(tile->primary_gt), XE_FORCEWAKE_ALL);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_TRANSFERRED);
|
|
xe_gt_dbg(gt, "GSC FW async load completed\n");
|
|
|
|
/* HuC auth failure is not fatal */
|
|
if (xe_huc_is_authenticated(>->uc.huc, XE_HUC_AUTH_VIA_GUC))
|
|
xe_huc_auth(>->uc.huc, XE_HUC_AUTH_VIA_GSC);
|
|
|
|
ret = xe_gsc_proxy_start(gsc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xe_gt_dbg(gt, "GSC proxy init completed\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gsc_er_complete(struct xe_gt *gt)
|
|
{
|
|
u32 er_status;
|
|
|
|
if (!gsc_fw_is_loaded(gt))
|
|
return 0;
|
|
|
|
/*
|
|
* Starting on Xe2, the GSCCS engine reset is a 2-step process. When the
|
|
* driver or the GuC hit the GDRST register, the CS is immediately reset
|
|
* and a success is reported, but the GSC shim keeps resetting in the
|
|
* background. While the shim reset is ongoing, the CS is able to accept
|
|
* new context submission, but any commands that require the shim will
|
|
* be stalled until the reset is completed. This means that we can keep
|
|
* submitting to the GSCCS as long as we make sure that the preemption
|
|
* timeout is big enough to cover any delay introduced by the reset.
|
|
* When the shim reset completes, a specific CS interrupt is triggered,
|
|
* in response to which we need to check the GSCI_TIMER_STATUS register
|
|
* to see if the reset was successful or not.
|
|
* Note that the GSCI_TIMER_STATUS register is not power save/restored,
|
|
* so it gets reset on MC6 entry. However, a reset failure stops MC6,
|
|
* so in that scenario we're always guaranteed to find the correct
|
|
* value.
|
|
*/
|
|
er_status = xe_mmio_read32(gt, GSCI_TIMER_STATUS) & GSCI_TIMER_STATUS_VALUE;
|
|
|
|
if (er_status == GSCI_TIMER_STATUS_TIMER_EXPIRED) {
|
|
/*
|
|
* XXX: we should trigger an FLR here, but we don't have support
|
|
* for that yet.
|
|
*/
|
|
xe_gt_err(gt, "GSC ER timed out!\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gsc_work(struct work_struct *work)
|
|
{
|
|
struct xe_gsc *gsc = container_of(work, typeof(*gsc), work);
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
u32 actions;
|
|
int ret;
|
|
|
|
spin_lock_irq(&gsc->lock);
|
|
actions = gsc->work_actions;
|
|
gsc->work_actions = 0;
|
|
spin_unlock_irq(&gsc->lock);
|
|
|
|
xe_pm_runtime_get(xe);
|
|
xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FW_GSC));
|
|
|
|
if (actions & GSC_ACTION_ER_COMPLETE) {
|
|
ret = gsc_er_complete(gt);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (actions & GSC_ACTION_FW_LOAD) {
|
|
ret = gsc_upload_and_init(gsc);
|
|
if (ret && ret != -EEXIST)
|
|
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
|
|
else
|
|
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_RUNNING);
|
|
}
|
|
|
|
if (actions & GSC_ACTION_SW_PROXY)
|
|
xe_gsc_proxy_request_handler(gsc);
|
|
|
|
out:
|
|
xe_force_wake_put(gt_to_fw(gt), XE_FW_GSC);
|
|
xe_pm_runtime_put(xe);
|
|
}
|
|
|
|
void xe_gsc_hwe_irq_handler(struct xe_hw_engine *hwe, u16 intr_vec)
|
|
{
|
|
struct xe_gt *gt = hwe->gt;
|
|
struct xe_gsc *gsc = >->uc.gsc;
|
|
|
|
if (unlikely(!intr_vec))
|
|
return;
|
|
|
|
if (intr_vec & GSC_ER_COMPLETE) {
|
|
spin_lock(&gsc->lock);
|
|
gsc->work_actions |= GSC_ACTION_ER_COMPLETE;
|
|
spin_unlock(&gsc->lock);
|
|
|
|
queue_work(gsc->wq, &gsc->work);
|
|
}
|
|
}
|
|
|
|
int xe_gsc_init(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
int ret;
|
|
|
|
gsc->fw.type = XE_UC_FW_TYPE_GSC;
|
|
INIT_WORK(&gsc->work, gsc_work);
|
|
spin_lock_init(&gsc->lock);
|
|
|
|
/* The GSC uC is only available on the media GT */
|
|
if (tile->media_gt && (gt != tile->media_gt)) {
|
|
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_NOT_SUPPORTED);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some platforms can have GuC but not GSC. That would cause
|
|
* xe_uc_fw_init(gsc) to return a "not supported" failure code and abort
|
|
* all firmware loading. So check for GSC being enabled before
|
|
* propagating the failure back up. That way the higher level will keep
|
|
* going and load GuC as appropriate.
|
|
*/
|
|
ret = xe_uc_fw_init(&gsc->fw);
|
|
if (!xe_uc_fw_is_enabled(&gsc->fw))
|
|
return 0;
|
|
else if (ret)
|
|
goto out;
|
|
|
|
ret = xe_gsc_proxy_init(gsc);
|
|
if (ret && ret != -ENODEV)
|
|
goto out;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
xe_gt_err(gt, "GSC init failed with %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
static void free_resources(struct drm_device *drm, void *arg)
|
|
{
|
|
struct xe_gsc *gsc = arg;
|
|
|
|
if (gsc->wq) {
|
|
destroy_workqueue(gsc->wq);
|
|
gsc->wq = NULL;
|
|
}
|
|
|
|
if (gsc->q) {
|
|
xe_exec_queue_put(gsc->q);
|
|
gsc->q = NULL;
|
|
}
|
|
|
|
if (gsc->private) {
|
|
xe_bo_unpin_map_no_vm(gsc->private);
|
|
gsc->private = NULL;
|
|
}
|
|
}
|
|
|
|
int xe_gsc_init_post_hwconfig(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_hw_engine *hwe = xe_gt_hw_engine(gt, XE_ENGINE_CLASS_OTHER, 0, true);
|
|
struct xe_exec_queue *q;
|
|
struct workqueue_struct *wq;
|
|
struct xe_bo *bo;
|
|
int err;
|
|
|
|
if (!xe_uc_fw_is_available(&gsc->fw))
|
|
return 0;
|
|
|
|
if (!hwe)
|
|
return -ENODEV;
|
|
|
|
bo = xe_bo_create_pin_map(xe, tile, NULL, SZ_4M,
|
|
ttm_bo_type_kernel,
|
|
XE_BO_FLAG_STOLEN |
|
|
XE_BO_FLAG_GGTT);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
q = xe_exec_queue_create(xe, NULL,
|
|
BIT(hwe->logical_instance), 1, hwe,
|
|
EXEC_QUEUE_FLAG_KERNEL |
|
|
EXEC_QUEUE_FLAG_PERMANENT, 0);
|
|
if (IS_ERR(q)) {
|
|
xe_gt_err(gt, "Failed to create queue for GSC submission\n");
|
|
err = PTR_ERR(q);
|
|
goto out_bo;
|
|
}
|
|
|
|
wq = alloc_ordered_workqueue("gsc-ordered-wq", 0);
|
|
if (!wq) {
|
|
err = -ENOMEM;
|
|
goto out_q;
|
|
}
|
|
|
|
gsc->private = bo;
|
|
gsc->q = q;
|
|
gsc->wq = wq;
|
|
|
|
err = drmm_add_action_or_reset(&xe->drm, free_resources, gsc);
|
|
if (err)
|
|
return err;
|
|
|
|
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_LOADABLE);
|
|
|
|
return 0;
|
|
|
|
out_q:
|
|
xe_exec_queue_put(q);
|
|
out_bo:
|
|
xe_bo_unpin_map_no_vm(bo);
|
|
return err;
|
|
}
|
|
|
|
void xe_gsc_load_start(struct xe_gsc *gsc)
|
|
{
|
|
struct xe_gt *gt = gsc_to_gt(gsc);
|
|
|
|
if (!xe_uc_fw_is_loadable(&gsc->fw) || !gsc->q)
|
|
return;
|
|
|
|
/* GSC FW survives GT reset and D3Hot */
|
|
if (gsc_fw_is_loaded(gt)) {
|
|
xe_uc_fw_change_status(&gsc->fw, XE_UC_FIRMWARE_TRANSFERRED);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irq(&gsc->lock);
|
|
gsc->work_actions |= GSC_ACTION_FW_LOAD;
|
|
spin_unlock_irq(&gsc->lock);
|
|
|
|
queue_work(gsc->wq, &gsc->work);
|
|
}
|
|
|
|
void xe_gsc_wait_for_worker_completion(struct xe_gsc *gsc)
|
|
{
|
|
if (xe_uc_fw_is_loadable(&gsc->fw) && gsc->wq)
|
|
flush_work(&gsc->work);
|
|
}
|
|
|
|
/**
|
|
* xe_gsc_remove() - Clean up the GSC structures before driver removal
|
|
* @gsc: the GSC uC
|
|
*/
|
|
void xe_gsc_remove(struct xe_gsc *gsc)
|
|
{
|
|
xe_gsc_proxy_remove(gsc);
|
|
}
|
|
|
|
/*
|
|
* wa_14015076503: if the GSC FW is loaded, we need to alert it before doing a
|
|
* GSC engine reset by writing a notification bit in the GS1 register and then
|
|
* triggering an interrupt to GSC; from the interrupt it will take up to 200ms
|
|
* for the FW to get prepare for the reset, so we need to wait for that amount
|
|
* of time.
|
|
* After the reset is complete we need to then clear the GS1 register.
|
|
*/
|
|
void xe_gsc_wa_14015076503(struct xe_gt *gt, bool prep)
|
|
{
|
|
u32 gs1_set = prep ? HECI_H_GS1_ER_PREP : 0;
|
|
u32 gs1_clr = prep ? 0 : HECI_H_GS1_ER_PREP;
|
|
|
|
/* WA only applies if the GSC is loaded */
|
|
if (!XE_WA(gt, 14015076503) || !gsc_fw_is_loaded(gt))
|
|
return;
|
|
|
|
xe_mmio_rmw32(gt, HECI_H_GS1(MTL_GSC_HECI2_BASE), gs1_clr, gs1_set);
|
|
|
|
if (prep) {
|
|
/* make sure the reset bit is clear when writing the CSR reg */
|
|
xe_mmio_rmw32(gt, HECI_H_CSR(MTL_GSC_HECI2_BASE),
|
|
HECI_H_CSR_RST, HECI_H_CSR_IG);
|
|
msleep(200);
|
|
}
|
|
}
|