The hash_pa8 and hashed_bit values in denorm_addr_df4_np2() are
currently defined as u8 types. These variables represent single bits.
'hash_pa8' is set based on logical AND operations using masks with more
than 8 bits. So the calculated value will not fit in this variable. It
will always be '0'. The 'hash_pa8' check later in the function will fail
which produces incorrect results for some cases.
Change these variables to bool type. This clarifies that they are
single bit values. Also, this allows the compiler to ensure they hold
the proper results. Remove an unnecessary shift operation.
[ bp: Remove the unnecessary brackets in the else-branch of the
hash_pa8 assignment. ]
Fixes: 3f3174996b
("RAS: Introduce AMD Address Translation Library")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240222165449.23582-1-yazen.ghannam@amd.com
718 lines
20 KiB
C
718 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* AMD Address Translation Library
|
|
*
|
|
* denormalize.c : Functions to account for interleaving bits
|
|
*
|
|
* Copyright (c) 2023, Advanced Micro Devices, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Author: Yazen Ghannam <Yazen.Ghannam@amd.com>
|
|
*/
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* Returns the Destination Fabric ID. This is the first (lowest)
|
|
* COH_ST Fabric ID used within a DRAM Address map.
|
|
*/
|
|
static u16 get_dst_fabric_id(struct addr_ctx *ctx)
|
|
{
|
|
switch (df_cfg.rev) {
|
|
case DF2: return FIELD_GET(DF2_DST_FABRIC_ID, ctx->map.limit);
|
|
case DF3: return FIELD_GET(DF3_DST_FABRIC_ID, ctx->map.limit);
|
|
case DF3p5: return FIELD_GET(DF3p5_DST_FABRIC_ID, ctx->map.limit);
|
|
case DF4: return FIELD_GET(DF4_DST_FABRIC_ID, ctx->map.ctl);
|
|
case DF4p5: return FIELD_GET(DF4p5_DST_FABRIC_ID, ctx->map.ctl);
|
|
default:
|
|
atl_debug_on_bad_df_rev();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make a contiguous gap in address for N bits starting at bit P.
|
|
*
|
|
* Example:
|
|
* address bits: [20:0]
|
|
* # of interleave bits (n): 3
|
|
* starting interleave bit (p): 8
|
|
*
|
|
* expanded address bits: [20+n : n+p][n+p-1 : p][p-1 : 0]
|
|
* [23 : 11][10 : 8][7 : 0]
|
|
*/
|
|
static u64 make_space_for_coh_st_id_at_intlv_bit(struct addr_ctx *ctx)
|
|
{
|
|
return expand_bits(ctx->map.intlv_bit_pos,
|
|
ctx->map.total_intlv_bits,
|
|
ctx->ret_addr);
|
|
}
|
|
|
|
/*
|
|
* Make two gaps in address for N bits.
|
|
* First gap is a single bit at bit P.
|
|
* Second gap is the remaining N-1 bits at bit 12.
|
|
*
|
|
* Example:
|
|
* address bits: [20:0]
|
|
* # of interleave bits (n): 3
|
|
* starting interleave bit (p): 8
|
|
*
|
|
* First gap
|
|
* expanded address bits: [20+1 : p+1][p][p-1 : 0]
|
|
* [21 : 9][8][7 : 0]
|
|
*
|
|
* Second gap uses result from first.
|
|
* r = n - 1; remaining interleave bits
|
|
* expanded address bits: [21+r : 12+r][12+r-1: 12][11 : 0]
|
|
* [23 : 14][13 : 12][11 : 0]
|
|
*/
|
|
static u64 make_space_for_coh_st_id_split_2_1(struct addr_ctx *ctx)
|
|
{
|
|
/* Make a single space at the interleave bit. */
|
|
u64 denorm_addr = expand_bits(ctx->map.intlv_bit_pos, 1, ctx->ret_addr);
|
|
|
|
/* Done if there's only a single interleave bit. */
|
|
if (ctx->map.total_intlv_bits <= 1)
|
|
return denorm_addr;
|
|
|
|
/* Make spaces for the remaining interleave bits starting at bit 12. */
|
|
return expand_bits(12, ctx->map.total_intlv_bits - 1, denorm_addr);
|
|
}
|
|
|
|
/*
|
|
* Make space for CS ID at bits [14:8] as follows:
|
|
*
|
|
* 8 channels -> bits [10:8]
|
|
* 16 channels -> bits [11:8]
|
|
* 32 channels -> bits [14,11:8]
|
|
*
|
|
* 1 die -> N/A
|
|
* 2 dies -> bit [12]
|
|
* 4 dies -> bits [13:12]
|
|
*/
|
|
static u64 make_space_for_coh_st_id_mi300(struct addr_ctx *ctx)
|
|
{
|
|
u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
|
|
u64 denorm_addr;
|
|
|
|
if (ctx->map.intlv_bit_pos != 8) {
|
|
pr_debug("Invalid interleave bit: %u", ctx->map.intlv_bit_pos);
|
|
return ~0ULL;
|
|
}
|
|
|
|
/* Channel bits. Covers up to 4 bits at [11:8]. */
|
|
denorm_addr = expand_bits(8, min(num_intlv_bits, 4), ctx->ret_addr);
|
|
|
|
/* Die bits. Always starts at [12]. */
|
|
denorm_addr = expand_bits(12, ilog2(ctx->map.num_intlv_dies), denorm_addr);
|
|
|
|
/* Additional channel bit at [14]. */
|
|
if (num_intlv_bits > 4)
|
|
denorm_addr = expand_bits(14, 1, denorm_addr);
|
|
|
|
return denorm_addr;
|
|
}
|
|
|
|
/*
|
|
* Take the current calculated address and shift enough bits in the middle
|
|
* to make a gap where the interleave bits will be inserted.
|
|
*/
|
|
static u64 make_space_for_coh_st_id(struct addr_ctx *ctx)
|
|
{
|
|
switch (ctx->map.intlv_mode) {
|
|
case NOHASH_2CHAN:
|
|
case NOHASH_4CHAN:
|
|
case NOHASH_8CHAN:
|
|
case NOHASH_16CHAN:
|
|
case NOHASH_32CHAN:
|
|
case DF2_2CHAN_HASH:
|
|
return make_space_for_coh_st_id_at_intlv_bit(ctx);
|
|
|
|
case DF3_COD4_2CHAN_HASH:
|
|
case DF3_COD2_4CHAN_HASH:
|
|
case DF3_COD1_8CHAN_HASH:
|
|
case DF4_NPS4_2CHAN_HASH:
|
|
case DF4_NPS2_4CHAN_HASH:
|
|
case DF4_NPS1_8CHAN_HASH:
|
|
case DF4p5_NPS4_2CHAN_1K_HASH:
|
|
case DF4p5_NPS4_2CHAN_2K_HASH:
|
|
case DF4p5_NPS2_4CHAN_2K_HASH:
|
|
case DF4p5_NPS1_8CHAN_2K_HASH:
|
|
case DF4p5_NPS1_16CHAN_2K_HASH:
|
|
return make_space_for_coh_st_id_split_2_1(ctx);
|
|
|
|
case MI3_HASH_8CHAN:
|
|
case MI3_HASH_16CHAN:
|
|
case MI3_HASH_32CHAN:
|
|
return make_space_for_coh_st_id_mi300(ctx);
|
|
|
|
default:
|
|
atl_debug_on_bad_intlv_mode(ctx);
|
|
return ~0ULL;
|
|
}
|
|
}
|
|
|
|
static u16 get_coh_st_id_df2(struct addr_ctx *ctx)
|
|
{
|
|
u8 num_socket_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
|
|
u8 num_die_intlv_bits = ilog2(ctx->map.num_intlv_dies);
|
|
u8 num_intlv_bits;
|
|
u16 coh_st_id, mask;
|
|
|
|
coh_st_id = ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);
|
|
|
|
/* Channel interleave bits */
|
|
num_intlv_bits = order_base_2(ctx->map.num_intlv_chan);
|
|
mask = GENMASK(num_intlv_bits - 1, 0);
|
|
coh_st_id &= mask;
|
|
|
|
/* Die interleave bits */
|
|
if (num_die_intlv_bits) {
|
|
u16 die_bits;
|
|
|
|
mask = GENMASK(num_die_intlv_bits - 1, 0);
|
|
die_bits = ctx->coh_st_fabric_id & df_cfg.die_id_mask;
|
|
die_bits >>= df_cfg.die_id_shift;
|
|
|
|
coh_st_id |= (die_bits & mask) << num_intlv_bits;
|
|
num_intlv_bits += num_die_intlv_bits;
|
|
}
|
|
|
|
/* Socket interleave bits */
|
|
if (num_socket_intlv_bits) {
|
|
u16 socket_bits;
|
|
|
|
mask = GENMASK(num_socket_intlv_bits - 1, 0);
|
|
socket_bits = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
|
|
socket_bits >>= df_cfg.socket_id_shift;
|
|
|
|
coh_st_id |= (socket_bits & mask) << num_intlv_bits;
|
|
}
|
|
|
|
return coh_st_id;
|
|
}
|
|
|
|
static u16 get_coh_st_id_df4(struct addr_ctx *ctx)
|
|
{
|
|
/*
|
|
* Start with the original component mask and the number of interleave
|
|
* bits for the channels in this map.
|
|
*/
|
|
u8 num_intlv_bits = ilog2(ctx->map.num_intlv_chan);
|
|
u16 mask = df_cfg.component_id_mask;
|
|
|
|
u16 socket_bits;
|
|
|
|
/* Set the derived Coherent Station ID to the input Coherent Station Fabric ID. */
|
|
u16 coh_st_id = ctx->coh_st_fabric_id & mask;
|
|
|
|
/*
|
|
* Subtract the "base" Destination Fabric ID.
|
|
* This accounts for systems with disabled Coherent Stations.
|
|
*/
|
|
coh_st_id -= get_dst_fabric_id(ctx) & mask;
|
|
|
|
/*
|
|
* Generate and use a new mask based on the number of bits
|
|
* needed for channel interleaving in this map.
|
|
*/
|
|
mask = GENMASK(num_intlv_bits - 1, 0);
|
|
coh_st_id &= mask;
|
|
|
|
/* Done if socket interleaving is not enabled. */
|
|
if (ctx->map.num_intlv_sockets <= 1)
|
|
return coh_st_id;
|
|
|
|
/*
|
|
* Figure out how many bits are needed for the number of
|
|
* interleaved sockets. And shift the derived Coherent Station ID to account
|
|
* for these.
|
|
*/
|
|
num_intlv_bits = ilog2(ctx->map.num_intlv_sockets);
|
|
coh_st_id <<= num_intlv_bits;
|
|
|
|
/* Generate a new mask for the socket interleaving bits. */
|
|
mask = GENMASK(num_intlv_bits - 1, 0);
|
|
|
|
/* Get the socket interleave bits from the original Coherent Station Fabric ID. */
|
|
socket_bits = (ctx->coh_st_fabric_id & df_cfg.socket_id_mask) >> df_cfg.socket_id_shift;
|
|
|
|
/* Apply the appropriate socket bits to the derived Coherent Station ID. */
|
|
coh_st_id |= socket_bits & mask;
|
|
|
|
return coh_st_id;
|
|
}
|
|
|
|
/*
|
|
* MI300 hash has:
|
|
* (C)hannel[3:0] = coh_st_id[3:0]
|
|
* (S)tack[0] = coh_st_id[4]
|
|
* (D)ie[1:0] = coh_st_id[6:5]
|
|
*
|
|
* Hashed coh_st_id is swizzled so that Stack bit is at the end.
|
|
* coh_st_id = SDDCCCC
|
|
*/
|
|
static u16 get_coh_st_id_mi300(struct addr_ctx *ctx)
|
|
{
|
|
u8 channel_bits, die_bits, stack_bit;
|
|
u16 die_id;
|
|
|
|
/* Subtract the "base" Destination Fabric ID. */
|
|
ctx->coh_st_fabric_id -= get_dst_fabric_id(ctx);
|
|
|
|
die_id = (ctx->coh_st_fabric_id & df_cfg.die_id_mask) >> df_cfg.die_id_shift;
|
|
|
|
channel_bits = FIELD_GET(GENMASK(3, 0), ctx->coh_st_fabric_id);
|
|
stack_bit = FIELD_GET(BIT(4), ctx->coh_st_fabric_id) << 6;
|
|
die_bits = die_id << 4;
|
|
|
|
return stack_bit | die_bits | channel_bits;
|
|
}
|
|
|
|
/*
|
|
* Derive the correct Coherent Station ID that represents the interleave bits
|
|
* used within the system physical address. This accounts for the
|
|
* interleave mode, number of interleaved channels/dies/sockets, and
|
|
* other system/mode-specific bit swizzling.
|
|
*
|
|
* Returns: Coherent Station ID on success.
|
|
* All bits set on error.
|
|
*/
|
|
static u16 calculate_coh_st_id(struct addr_ctx *ctx)
|
|
{
|
|
switch (ctx->map.intlv_mode) {
|
|
case NOHASH_2CHAN:
|
|
case NOHASH_4CHAN:
|
|
case NOHASH_8CHAN:
|
|
case NOHASH_16CHAN:
|
|
case NOHASH_32CHAN:
|
|
case DF3_COD4_2CHAN_HASH:
|
|
case DF3_COD2_4CHAN_HASH:
|
|
case DF3_COD1_8CHAN_HASH:
|
|
case DF2_2CHAN_HASH:
|
|
return get_coh_st_id_df2(ctx);
|
|
|
|
case DF4_NPS4_2CHAN_HASH:
|
|
case DF4_NPS2_4CHAN_HASH:
|
|
case DF4_NPS1_8CHAN_HASH:
|
|
case DF4p5_NPS4_2CHAN_1K_HASH:
|
|
case DF4p5_NPS4_2CHAN_2K_HASH:
|
|
case DF4p5_NPS2_4CHAN_2K_HASH:
|
|
case DF4p5_NPS1_8CHAN_2K_HASH:
|
|
case DF4p5_NPS1_16CHAN_2K_HASH:
|
|
return get_coh_st_id_df4(ctx);
|
|
|
|
case MI3_HASH_8CHAN:
|
|
case MI3_HASH_16CHAN:
|
|
case MI3_HASH_32CHAN:
|
|
return get_coh_st_id_mi300(ctx);
|
|
|
|
/* COH_ST ID is simply the COH_ST Fabric ID adjusted by the Destination Fabric ID. */
|
|
case DF4p5_NPS2_4CHAN_1K_HASH:
|
|
case DF4p5_NPS1_8CHAN_1K_HASH:
|
|
case DF4p5_NPS1_16CHAN_1K_HASH:
|
|
return ctx->coh_st_fabric_id - get_dst_fabric_id(ctx);
|
|
|
|
default:
|
|
atl_debug_on_bad_intlv_mode(ctx);
|
|
return ~0;
|
|
}
|
|
}
|
|
|
|
static u64 insert_coh_st_id_at_intlv_bit(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
|
|
{
|
|
return denorm_addr | (coh_st_id << ctx->map.intlv_bit_pos);
|
|
}
|
|
|
|
static u64 insert_coh_st_id_split_2_1(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
|
|
{
|
|
/* Insert coh_st_id[0] at the interleave bit. */
|
|
denorm_addr |= (coh_st_id & BIT(0)) << ctx->map.intlv_bit_pos;
|
|
|
|
/* Insert coh_st_id[2:1] at bit 12. */
|
|
denorm_addr |= (coh_st_id & GENMASK(2, 1)) << 11;
|
|
|
|
return denorm_addr;
|
|
}
|
|
|
|
static u64 insert_coh_st_id_split_2_2(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
|
|
{
|
|
/* Insert coh_st_id[1:0] at bit 8. */
|
|
denorm_addr |= (coh_st_id & GENMASK(1, 0)) << 8;
|
|
|
|
/*
|
|
* Insert coh_st_id[n:2] at bit 12. 'n' could be 2 or 3.
|
|
* Grab both because bit 3 will be clear if unused.
|
|
*/
|
|
denorm_addr |= (coh_st_id & GENMASK(3, 2)) << 10;
|
|
|
|
return denorm_addr;
|
|
}
|
|
|
|
static u64 insert_coh_st_id(struct addr_ctx *ctx, u64 denorm_addr, u16 coh_st_id)
|
|
{
|
|
switch (ctx->map.intlv_mode) {
|
|
case NOHASH_2CHAN:
|
|
case NOHASH_4CHAN:
|
|
case NOHASH_8CHAN:
|
|
case NOHASH_16CHAN:
|
|
case NOHASH_32CHAN:
|
|
case MI3_HASH_8CHAN:
|
|
case MI3_HASH_16CHAN:
|
|
case MI3_HASH_32CHAN:
|
|
case DF2_2CHAN_HASH:
|
|
return insert_coh_st_id_at_intlv_bit(ctx, denorm_addr, coh_st_id);
|
|
|
|
case DF3_COD4_2CHAN_HASH:
|
|
case DF3_COD2_4CHAN_HASH:
|
|
case DF3_COD1_8CHAN_HASH:
|
|
case DF4_NPS4_2CHAN_HASH:
|
|
case DF4_NPS2_4CHAN_HASH:
|
|
case DF4_NPS1_8CHAN_HASH:
|
|
case DF4p5_NPS4_2CHAN_1K_HASH:
|
|
case DF4p5_NPS4_2CHAN_2K_HASH:
|
|
case DF4p5_NPS2_4CHAN_2K_HASH:
|
|
case DF4p5_NPS1_8CHAN_2K_HASH:
|
|
case DF4p5_NPS1_16CHAN_2K_HASH:
|
|
return insert_coh_st_id_split_2_1(ctx, denorm_addr, coh_st_id);
|
|
|
|
case DF4p5_NPS2_4CHAN_1K_HASH:
|
|
case DF4p5_NPS1_8CHAN_1K_HASH:
|
|
case DF4p5_NPS1_16CHAN_1K_HASH:
|
|
return insert_coh_st_id_split_2_2(ctx, denorm_addr, coh_st_id);
|
|
|
|
default:
|
|
atl_debug_on_bad_intlv_mode(ctx);
|
|
return ~0ULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MI300 systems have a fixed, hardware-defined physical-to-logical
|
|
* Coherent Station mapping. The Remap registers are not used.
|
|
*/
|
|
static const u16 phy_to_log_coh_st_map_mi300[] = {
|
|
12, 13, 14, 15,
|
|
8, 9, 10, 11,
|
|
4, 5, 6, 7,
|
|
0, 1, 2, 3,
|
|
28, 29, 30, 31,
|
|
24, 25, 26, 27,
|
|
20, 21, 22, 23,
|
|
16, 17, 18, 19,
|
|
};
|
|
|
|
static u16 get_logical_coh_st_fabric_id_mi300(struct addr_ctx *ctx)
|
|
{
|
|
if (ctx->inst_id >= ARRAY_SIZE(phy_to_log_coh_st_map_mi300)) {
|
|
atl_debug(ctx, "Instance ID out of range");
|
|
return ~0;
|
|
}
|
|
|
|
return phy_to_log_coh_st_map_mi300[ctx->inst_id] | (ctx->node_id << df_cfg.node_id_shift);
|
|
}
|
|
|
|
static u16 get_logical_coh_st_fabric_id(struct addr_ctx *ctx)
|
|
{
|
|
u16 component_id, log_fabric_id;
|
|
|
|
/* Start with the physical COH_ST Fabric ID. */
|
|
u16 phys_fabric_id = ctx->coh_st_fabric_id;
|
|
|
|
if (df_cfg.rev == DF4p5 && df_cfg.flags.heterogeneous)
|
|
return get_logical_coh_st_fabric_id_mi300(ctx);
|
|
|
|
/* Skip logical ID lookup if remapping is disabled. */
|
|
if (!FIELD_GET(DF4_REMAP_EN, ctx->map.ctl) &&
|
|
ctx->map.intlv_mode != DF3_6CHAN)
|
|
return phys_fabric_id;
|
|
|
|
/* Mask off the Node ID bits to get the "local" Component ID. */
|
|
component_id = phys_fabric_id & df_cfg.component_id_mask;
|
|
|
|
/*
|
|
* Search the list of logical Component IDs for the one that
|
|
* matches this physical Component ID.
|
|
*/
|
|
for (log_fabric_id = 0; log_fabric_id < MAX_COH_ST_CHANNELS; log_fabric_id++) {
|
|
if (ctx->map.remap_array[log_fabric_id] == component_id)
|
|
break;
|
|
}
|
|
|
|
if (log_fabric_id == MAX_COH_ST_CHANNELS)
|
|
atl_debug(ctx, "COH_ST remap entry not found for 0x%x",
|
|
log_fabric_id);
|
|
|
|
/* Get the Node ID bits from the physical and apply to the logical. */
|
|
return (phys_fabric_id & df_cfg.node_id_mask) | log_fabric_id;
|
|
}
|
|
|
|
static int denorm_addr_common(struct addr_ctx *ctx)
|
|
{
|
|
u64 denorm_addr;
|
|
u16 coh_st_id;
|
|
|
|
/*
|
|
* Convert the original physical COH_ST Fabric ID to a logical value.
|
|
* This is required for non-power-of-two and other interleaving modes.
|
|
*/
|
|
ctx->coh_st_fabric_id = get_logical_coh_st_fabric_id(ctx);
|
|
|
|
denorm_addr = make_space_for_coh_st_id(ctx);
|
|
coh_st_id = calculate_coh_st_id(ctx);
|
|
ctx->ret_addr = insert_coh_st_id(ctx, denorm_addr, coh_st_id);
|
|
return 0;
|
|
}
|
|
|
|
static int denorm_addr_df3_6chan(struct addr_ctx *ctx)
|
|
{
|
|
u16 coh_st_id = ctx->coh_st_fabric_id & df_cfg.component_id_mask;
|
|
u8 total_intlv_bits = ctx->map.total_intlv_bits;
|
|
u8 low_bit, intlv_bit = ctx->map.intlv_bit_pos;
|
|
u64 msb_intlv_bits, temp_addr_a, temp_addr_b;
|
|
u8 np2_bits = ctx->map.np2_bits;
|
|
|
|
if (ctx->map.intlv_mode != DF3_6CHAN)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* 'np2_bits' holds the number of bits needed to cover the
|
|
* amount of memory (rounded up) in this map using 64K chunks.
|
|
*
|
|
* Example:
|
|
* Total memory in map: 6GB
|
|
* Rounded up to next power-of-2: 8GB
|
|
* Number of 64K chunks: 0x20000
|
|
* np2_bits = log2(# of chunks): 17
|
|
*
|
|
* Get the two most-significant interleave bits from the
|
|
* input address based on the following:
|
|
*
|
|
* [15 + np2_bits - total_intlv_bits : 14 + np2_bits - total_intlv_bits]
|
|
*/
|
|
low_bit = 14 + np2_bits - total_intlv_bits;
|
|
msb_intlv_bits = ctx->ret_addr >> low_bit;
|
|
msb_intlv_bits &= 0x3;
|
|
|
|
/*
|
|
* If MSB are 11b, then logical COH_ST ID is 6 or 7.
|
|
* Need to adjust based on the mod3 result.
|
|
*/
|
|
if (msb_intlv_bits == 3) {
|
|
u8 addr_mod, phys_addr_msb, msb_coh_st_id;
|
|
|
|
/* Get the remaining interleave bits from the input address. */
|
|
temp_addr_b = GENMASK_ULL(low_bit - 1, intlv_bit) & ctx->ret_addr;
|
|
temp_addr_b >>= intlv_bit;
|
|
|
|
/* Calculate the logical COH_ST offset based on mod3. */
|
|
addr_mod = temp_addr_b % 3;
|
|
|
|
/* Get COH_ST ID bits [2:1]. */
|
|
msb_coh_st_id = (coh_st_id >> 1) & 0x3;
|
|
|
|
/* Get the bit that starts the physical address bits. */
|
|
phys_addr_msb = (intlv_bit + np2_bits + 1);
|
|
phys_addr_msb &= BIT(0);
|
|
phys_addr_msb++;
|
|
phys_addr_msb *= 3 - addr_mod + msb_coh_st_id;
|
|
phys_addr_msb %= 3;
|
|
|
|
/* Move the physical address MSB to the correct place. */
|
|
temp_addr_b |= phys_addr_msb << (low_bit - total_intlv_bits - intlv_bit);
|
|
|
|
/* Generate a new COH_ST ID as follows: coh_st_id = [1, 1, coh_st_id[0]] */
|
|
coh_st_id &= BIT(0);
|
|
coh_st_id |= GENMASK(2, 1);
|
|
} else {
|
|
temp_addr_b = GENMASK_ULL(63, intlv_bit) & ctx->ret_addr;
|
|
temp_addr_b >>= intlv_bit;
|
|
}
|
|
|
|
temp_addr_a = GENMASK_ULL(intlv_bit - 1, 0) & ctx->ret_addr;
|
|
temp_addr_b <<= intlv_bit + total_intlv_bits;
|
|
|
|
ctx->ret_addr = temp_addr_a | temp_addr_b;
|
|
ctx->ret_addr |= coh_st_id << intlv_bit;
|
|
return 0;
|
|
}
|
|
|
|
static int denorm_addr_df4_np2(struct addr_ctx *ctx)
|
|
{
|
|
bool hash_ctl_64k, hash_ctl_2M, hash_ctl_1G;
|
|
u16 group, group_offset, log_coh_st_offset;
|
|
unsigned int mod_value, shift_value;
|
|
u16 mask = df_cfg.component_id_mask;
|
|
u64 temp_addr_a, temp_addr_b;
|
|
bool hash_pa8, hashed_bit;
|
|
|
|
switch (ctx->map.intlv_mode) {
|
|
case DF4_NPS4_3CHAN_HASH:
|
|
mod_value = 3;
|
|
shift_value = 13;
|
|
break;
|
|
case DF4_NPS2_6CHAN_HASH:
|
|
mod_value = 3;
|
|
shift_value = 12;
|
|
break;
|
|
case DF4_NPS1_12CHAN_HASH:
|
|
mod_value = 3;
|
|
shift_value = 11;
|
|
break;
|
|
case DF4_NPS2_5CHAN_HASH:
|
|
mod_value = 5;
|
|
shift_value = 13;
|
|
break;
|
|
case DF4_NPS1_10CHAN_HASH:
|
|
mod_value = 5;
|
|
shift_value = 12;
|
|
break;
|
|
default:
|
|
atl_debug_on_bad_intlv_mode(ctx);
|
|
return -EINVAL;
|
|
};
|
|
|
|
if (ctx->map.num_intlv_sockets == 1) {
|
|
hash_pa8 = BIT_ULL(shift_value) & ctx->ret_addr;
|
|
temp_addr_a = remove_bits(shift_value, shift_value, ctx->ret_addr);
|
|
} else {
|
|
hash_pa8 = ctx->coh_st_fabric_id & df_cfg.socket_id_mask;
|
|
temp_addr_a = ctx->ret_addr;
|
|
}
|
|
|
|
/* Make a gap for the real bit [8]. */
|
|
temp_addr_a = expand_bits(8, 1, temp_addr_a);
|
|
|
|
/* Make an additional gap for bits [13:12], as appropriate.*/
|
|
if (ctx->map.intlv_mode == DF4_NPS2_6CHAN_HASH ||
|
|
ctx->map.intlv_mode == DF4_NPS1_10CHAN_HASH) {
|
|
temp_addr_a = expand_bits(13, 1, temp_addr_a);
|
|
} else if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH) {
|
|
temp_addr_a = expand_bits(12, 2, temp_addr_a);
|
|
}
|
|
|
|
/* Keep bits [13:0]. */
|
|
temp_addr_a &= GENMASK_ULL(13, 0);
|
|
|
|
/* Get the appropriate high bits. */
|
|
shift_value += 1 - ilog2(ctx->map.num_intlv_sockets);
|
|
temp_addr_b = GENMASK_ULL(63, shift_value) & ctx->ret_addr;
|
|
temp_addr_b >>= shift_value;
|
|
temp_addr_b *= mod_value;
|
|
|
|
/*
|
|
* Coherent Stations are divided into groups.
|
|
*
|
|
* Multiples of 3 (mod3) are divided into quadrants.
|
|
* e.g. NP4_3CHAN -> [0, 1, 2] [6, 7, 8]
|
|
* [3, 4, 5] [9, 10, 11]
|
|
*
|
|
* Multiples of 5 (mod5) are divided into sides.
|
|
* e.g. NP2_5CHAN -> [0, 1, 2, 3, 4] [5, 6, 7, 8, 9]
|
|
*/
|
|
|
|
/*
|
|
* Calculate the logical offset for the COH_ST within its DRAM Address map.
|
|
* e.g. if map includes [5, 6, 7, 8, 9] and target instance is '8', then
|
|
* log_coh_st_offset = 8 - 5 = 3
|
|
*/
|
|
log_coh_st_offset = (ctx->coh_st_fabric_id & mask) - (get_dst_fabric_id(ctx) & mask);
|
|
|
|
/*
|
|
* Figure out the group number.
|
|
*
|
|
* Following above example,
|
|
* log_coh_st_offset = 3
|
|
* mod_value = 5
|
|
* group = 3 / 5 = 0
|
|
*/
|
|
group = log_coh_st_offset / mod_value;
|
|
|
|
/*
|
|
* Figure out the offset within the group.
|
|
*
|
|
* Following above example,
|
|
* log_coh_st_offset = 3
|
|
* mod_value = 5
|
|
* group_offset = 3 % 5 = 3
|
|
*/
|
|
group_offset = log_coh_st_offset % mod_value;
|
|
|
|
/* Adjust group_offset if the hashed bit [8] is set. */
|
|
if (hash_pa8) {
|
|
if (!group_offset)
|
|
group_offset = mod_value - 1;
|
|
else
|
|
group_offset--;
|
|
}
|
|
|
|
/* Add in the group offset to the high bits. */
|
|
temp_addr_b += group_offset;
|
|
|
|
/* Shift the high bits to the proper starting position. */
|
|
temp_addr_b <<= 14;
|
|
|
|
/* Combine the high and low bits together. */
|
|
ctx->ret_addr = temp_addr_a | temp_addr_b;
|
|
|
|
/* Account for hashing here instead of in dehash_address(). */
|
|
hash_ctl_64k = FIELD_GET(DF4_HASH_CTL_64K, ctx->map.ctl);
|
|
hash_ctl_2M = FIELD_GET(DF4_HASH_CTL_2M, ctx->map.ctl);
|
|
hash_ctl_1G = FIELD_GET(DF4_HASH_CTL_1G, ctx->map.ctl);
|
|
|
|
hashed_bit = !!hash_pa8;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(14), ctx->ret_addr);
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(16), ctx->ret_addr) & hash_ctl_64k;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(21), ctx->ret_addr) & hash_ctl_2M;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(30), ctx->ret_addr) & hash_ctl_1G;
|
|
|
|
ctx->ret_addr |= hashed_bit << 8;
|
|
|
|
/* Done for 3 and 5 channel. */
|
|
if (ctx->map.intlv_mode == DF4_NPS4_3CHAN_HASH ||
|
|
ctx->map.intlv_mode == DF4_NPS2_5CHAN_HASH)
|
|
return 0;
|
|
|
|
/* Select the proper 'group' bit to use for Bit 13. */
|
|
if (ctx->map.intlv_mode == DF4_NPS1_12CHAN_HASH)
|
|
hashed_bit = !!(group & BIT(1));
|
|
else
|
|
hashed_bit = group & BIT(0);
|
|
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(18), ctx->ret_addr) & hash_ctl_64k;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(23), ctx->ret_addr) & hash_ctl_2M;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(32), ctx->ret_addr) & hash_ctl_1G;
|
|
|
|
ctx->ret_addr |= hashed_bit << 13;
|
|
|
|
/* Done for 6 and 10 channel. */
|
|
if (ctx->map.intlv_mode != DF4_NPS1_12CHAN_HASH)
|
|
return 0;
|
|
|
|
hashed_bit = group & BIT(0);
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(17), ctx->ret_addr) & hash_ctl_64k;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(22), ctx->ret_addr) & hash_ctl_2M;
|
|
hashed_bit ^= FIELD_GET(BIT_ULL(31), ctx->ret_addr) & hash_ctl_1G;
|
|
|
|
ctx->ret_addr |= hashed_bit << 12;
|
|
return 0;
|
|
}
|
|
|
|
int denormalize_address(struct addr_ctx *ctx)
|
|
{
|
|
switch (ctx->map.intlv_mode) {
|
|
case NONE:
|
|
return 0;
|
|
case DF4_NPS4_3CHAN_HASH:
|
|
case DF4_NPS2_6CHAN_HASH:
|
|
case DF4_NPS1_12CHAN_HASH:
|
|
case DF4_NPS2_5CHAN_HASH:
|
|
case DF4_NPS1_10CHAN_HASH:
|
|
return denorm_addr_df4_np2(ctx);
|
|
case DF3_6CHAN:
|
|
return denorm_addr_df3_6chan(ctx);
|
|
default:
|
|
return denorm_addr_common(ctx);
|
|
}
|
|
}
|