Currently in mac80211 each STA object is represented using sta_info datastructure with the associated STA specific information and drivers access ieee80211_sta part of it. With MLO (Multi Link Operation) support being added in 802.11be standard, though the association is logically with a single Multi Link capable STA, at the physical level communication can happen via different advertised links (uniquely identified by Channel, operating class, BSSID) and hence the need to handle multiple link STA parameters within a composite sta_info object called the MLD STA. The different link STA part of MLD STA are identified using the link address which can be same or different as the MLD STA address and unique link id based on the link vif. To support extension of such a model, the sta_info datastructure is modified to hold multiple link STA objects with link specific params currently within sta_info moved to this new structure. Similarly this is done for ieee80211_sta as well which will be accessed within mac80211 as well as by drivers, hence trivial driver changes are expected to support this. For current non MLO supported drivers, only one link STA is present and link information is accessed via 'deflink' member. For MLO drivers, we still need to define the APIs etc. to get the correct link ID and access the correct part of the station info. Currently in mac80211, all link STA info are accessed directly via deflink. These will be updated to access via link pointers indexed by link id with MLO support patches, with link id being 0 for non MLO supported cases. Except for couple of macro related changes, below spatch takes care of updating mac80211 and driver code to access to the link STA info via deflink. @ieee80211_sta@ struct ieee80211_sta *s; struct sta_info *si; identifier var = {supp_rates, ht_cap, vht_cap, he_cap, he_6ghz_capa, eht_cap, rx_nss, bandwidth, txpwr}; @@ ( s-> - var + deflink.var | si->sta. - var + deflink.var ) @sta_info@ struct sta_info *si; identifier var = {gtk, pcpu_rx_stats, rx_stats, rx_stats_avg, status_stats, tx_stats, cur_max_bandwidth}; @@ ( si-> - var + deflink.var ) Signed-off-by: Sriram R <quic_srirrama@quicinc.com> Link: https://lore.kernel.org/r/1649086883-13246-1-git-send-email-quic_srirrama@quicinc.com [remove MLO-drivers notes from commit message, not clear yet; run spatch] Signed-off-by: Johannes Berg <johannes.berg@intel.com>
2231 lines
66 KiB
C
2231 lines
66 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2009-2012 Realtek Corporation.*/
|
|
|
|
#include "../wifi.h"
|
|
#include "../efuse.h"
|
|
#include "../base.h"
|
|
#include "../regd.h"
|
|
#include "../cam.h"
|
|
#include "../ps.h"
|
|
#include "../pci.h"
|
|
#include "reg.h"
|
|
#include "def.h"
|
|
#include "phy.h"
|
|
#include "dm.h"
|
|
#include "fw.h"
|
|
#include "led.h"
|
|
#include "sw.h"
|
|
#include "hw.h"
|
|
|
|
u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u32 value;
|
|
|
|
rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
|
|
rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
|
|
udelay(10);
|
|
value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
|
|
return value;
|
|
}
|
|
|
|
void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
|
|
u16 offset, u32 value, u8 direct)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
|
|
rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
|
|
rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
|
|
}
|
|
|
|
static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
|
|
u8 set_bits, u8 clear_bits)
|
|
{
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtlpci->reg_bcn_ctrl_val |= set_bits;
|
|
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
|
|
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
|
|
}
|
|
|
|
static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 tmp1byte;
|
|
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
|
|
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
|
|
tmp1byte &= ~(BIT(0));
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
|
|
}
|
|
|
|
static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 tmp1byte;
|
|
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
|
|
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
|
|
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
|
|
tmp1byte |= BIT(0);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
|
|
}
|
|
|
|
static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
|
|
{
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
|
|
}
|
|
|
|
static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
|
|
{
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
|
|
}
|
|
|
|
void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
switch (variable) {
|
|
case HW_VAR_RCR:
|
|
*((u32 *) (val)) = rtlpci->receive_config;
|
|
break;
|
|
case HW_VAR_RF_STATE:
|
|
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
|
|
break;
|
|
case HW_VAR_FWLPS_RF_ON:{
|
|
enum rf_pwrstate rfstate;
|
|
u32 val_rcr;
|
|
|
|
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
|
|
(u8 *)(&rfstate));
|
|
if (rfstate == ERFOFF) {
|
|
*((bool *) (val)) = true;
|
|
} else {
|
|
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
|
|
val_rcr &= 0x00070000;
|
|
if (val_rcr)
|
|
*((bool *) (val)) = false;
|
|
else
|
|
*((bool *) (val)) = true;
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_FW_PSMODE_STATUS:
|
|
*((bool *) (val)) = ppsc->fw_current_inpsmode;
|
|
break;
|
|
case HW_VAR_CORRECT_TSF:{
|
|
u64 tsf;
|
|
u32 *ptsf_low = (u32 *)&tsf;
|
|
u32 *ptsf_high = ((u32 *)&tsf) + 1;
|
|
|
|
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
|
|
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
|
|
*((u64 *) (val)) = tsf;
|
|
break;
|
|
}
|
|
case HW_VAR_INT_MIGRATION:
|
|
*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
|
|
break;
|
|
case HW_VAR_INT_AC:
|
|
*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
|
|
break;
|
|
case HAL_DEF_WOWLAN:
|
|
break;
|
|
default:
|
|
pr_err("switch case %#x not processed\n", variable);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
u8 idx;
|
|
|
|
switch (variable) {
|
|
case HW_VAR_ETHER_ADDR:
|
|
for (idx = 0; idx < ETH_ALEN; idx++) {
|
|
rtl_write_byte(rtlpriv, (REG_MACID + idx),
|
|
val[idx]);
|
|
}
|
|
break;
|
|
case HW_VAR_BASIC_RATE: {
|
|
u16 rate_cfg = ((u16 *) val)[0];
|
|
u8 rate_index = 0;
|
|
|
|
rate_cfg = rate_cfg & 0x15f;
|
|
if (mac->vendor == PEER_CISCO &&
|
|
((rate_cfg & 0x150) == 0))
|
|
rate_cfg |= 0x01;
|
|
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
|
|
rtl_write_byte(rtlpriv, REG_RRSR + 1,
|
|
(rate_cfg >> 8) & 0xff);
|
|
while (rate_cfg > 0x1) {
|
|
rate_cfg = (rate_cfg >> 1);
|
|
rate_index++;
|
|
}
|
|
if (rtlhal->fw_version > 0xe)
|
|
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
|
|
rate_index);
|
|
break;
|
|
}
|
|
case HW_VAR_BSSID:
|
|
for (idx = 0; idx < ETH_ALEN; idx++) {
|
|
rtl_write_byte(rtlpriv, (REG_BSSID + idx),
|
|
val[idx]);
|
|
}
|
|
break;
|
|
case HW_VAR_SIFS:
|
|
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
|
|
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
|
|
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
|
|
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
|
|
if (!mac->ht_enable)
|
|
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
|
|
0x0e0e);
|
|
else
|
|
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
|
|
*((u16 *) val));
|
|
break;
|
|
case HW_VAR_SLOT_TIME: {
|
|
u8 e_aci;
|
|
|
|
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"HW_VAR_SLOT_TIME %x\n", val[0]);
|
|
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
|
|
for (e_aci = 0; e_aci < AC_MAX; e_aci++)
|
|
rtlpriv->cfg->ops->set_hw_reg(hw,
|
|
HW_VAR_AC_PARAM,
|
|
(&e_aci));
|
|
break;
|
|
}
|
|
case HW_VAR_ACK_PREAMBLE: {
|
|
u8 reg_tmp;
|
|
u8 short_preamble = (bool) (*val);
|
|
|
|
reg_tmp = (mac->cur_40_prime_sc) << 5;
|
|
if (short_preamble)
|
|
reg_tmp |= 0x80;
|
|
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
|
|
break;
|
|
}
|
|
case HW_VAR_AMPDU_MIN_SPACE: {
|
|
u8 min_spacing_to_set;
|
|
u8 sec_min_space;
|
|
|
|
min_spacing_to_set = *val;
|
|
if (min_spacing_to_set <= 7) {
|
|
sec_min_space = 0;
|
|
if (min_spacing_to_set < sec_min_space)
|
|
min_spacing_to_set = sec_min_space;
|
|
mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
|
|
min_spacing_to_set);
|
|
*val = min_spacing_to_set;
|
|
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
|
|
mac->min_space_cfg);
|
|
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
|
|
mac->min_space_cfg);
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_SHORTGI_DENSITY: {
|
|
u8 density_to_set;
|
|
|
|
density_to_set = *val;
|
|
mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
|
|
mac->min_space_cfg |= (density_to_set << 3);
|
|
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
|
|
mac->min_space_cfg);
|
|
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
|
|
mac->min_space_cfg);
|
|
break;
|
|
}
|
|
case HW_VAR_AMPDU_FACTOR: {
|
|
u8 factor_toset;
|
|
u32 regtoset;
|
|
u8 *ptmp_byte = NULL;
|
|
u8 index;
|
|
|
|
if (rtlhal->macphymode == DUALMAC_DUALPHY)
|
|
regtoset = 0xb9726641;
|
|
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
|
|
regtoset = 0x66626641;
|
|
else
|
|
regtoset = 0xb972a841;
|
|
factor_toset = *val;
|
|
if (factor_toset <= 3) {
|
|
factor_toset = (1 << (factor_toset + 2));
|
|
if (factor_toset > 0xf)
|
|
factor_toset = 0xf;
|
|
for (index = 0; index < 4; index++) {
|
|
ptmp_byte = (u8 *)(®toset) + index;
|
|
if ((*ptmp_byte & 0xf0) >
|
|
(factor_toset << 4))
|
|
*ptmp_byte = (*ptmp_byte & 0x0f)
|
|
| (factor_toset << 4);
|
|
if ((*ptmp_byte & 0x0f) > factor_toset)
|
|
*ptmp_byte = (*ptmp_byte & 0xf0)
|
|
| (factor_toset);
|
|
}
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset);
|
|
rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD,
|
|
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
|
|
factor_toset);
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_AC_PARAM: {
|
|
u8 e_aci = *val;
|
|
rtl92d_dm_init_edca_turbo(hw);
|
|
if (rtlpci->acm_method != EACMWAY2_SW)
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
|
|
&e_aci);
|
|
break;
|
|
}
|
|
case HW_VAR_ACM_CTRL: {
|
|
u8 e_aci = *val;
|
|
union aci_aifsn *p_aci_aifsn =
|
|
(union aci_aifsn *)(&(mac->ac[0].aifs));
|
|
u8 acm = p_aci_aifsn->f.acm;
|
|
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
|
|
|
|
acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
|
|
if (acm) {
|
|
switch (e_aci) {
|
|
case AC0_BE:
|
|
acm_ctrl |= ACMHW_BEQEN;
|
|
break;
|
|
case AC2_VI:
|
|
acm_ctrl |= ACMHW_VIQEN;
|
|
break;
|
|
case AC3_VO:
|
|
acm_ctrl |= ACMHW_VOQEN;
|
|
break;
|
|
default:
|
|
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
|
|
acm);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (e_aci) {
|
|
case AC0_BE:
|
|
acm_ctrl &= (~ACMHW_BEQEN);
|
|
break;
|
|
case AC2_VI:
|
|
acm_ctrl &= (~ACMHW_VIQEN);
|
|
break;
|
|
case AC3_VO:
|
|
acm_ctrl &= (~ACMHW_VOQEN);
|
|
break;
|
|
default:
|
|
pr_err("switch case %#x not processed\n",
|
|
e_aci);
|
|
break;
|
|
}
|
|
}
|
|
rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE,
|
|
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
|
|
acm_ctrl);
|
|
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
|
|
break;
|
|
}
|
|
case HW_VAR_RCR:
|
|
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
|
|
rtlpci->receive_config = ((u32 *) (val))[0];
|
|
break;
|
|
case HW_VAR_RETRY_LIMIT: {
|
|
u8 retry_limit = val[0];
|
|
|
|
rtl_write_word(rtlpriv, REG_RL,
|
|
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
|
|
retry_limit << RETRY_LIMIT_LONG_SHIFT);
|
|
break;
|
|
}
|
|
case HW_VAR_DUAL_TSF_RST:
|
|
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
|
|
break;
|
|
case HW_VAR_EFUSE_BYTES:
|
|
rtlefuse->efuse_usedbytes = *((u16 *) val);
|
|
break;
|
|
case HW_VAR_EFUSE_USAGE:
|
|
rtlefuse->efuse_usedpercentage = *val;
|
|
break;
|
|
case HW_VAR_IO_CMD:
|
|
rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
|
|
break;
|
|
case HW_VAR_WPA_CONFIG:
|
|
rtl_write_byte(rtlpriv, REG_SECCFG, *val);
|
|
break;
|
|
case HW_VAR_SET_RPWM:
|
|
rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
|
|
break;
|
|
case HW_VAR_H2C_FW_PWRMODE:
|
|
break;
|
|
case HW_VAR_FW_PSMODE_STATUS:
|
|
ppsc->fw_current_inpsmode = *((bool *) val);
|
|
break;
|
|
case HW_VAR_H2C_FW_JOINBSSRPT: {
|
|
u8 mstatus = (*val);
|
|
u8 tmp_regcr, tmp_reg422;
|
|
bool recover = false;
|
|
|
|
if (mstatus == RT_MEDIA_CONNECT) {
|
|
rtlpriv->cfg->ops->set_hw_reg(hw,
|
|
HW_VAR_AID, NULL);
|
|
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
|
|
rtl_write_byte(rtlpriv, REG_CR + 1,
|
|
(tmp_regcr | BIT(0)));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
|
|
tmp_reg422 = rtl_read_byte(rtlpriv,
|
|
REG_FWHW_TXQ_CTRL + 2);
|
|
if (tmp_reg422 & BIT(6))
|
|
recover = true;
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
|
|
tmp_reg422 & (~BIT(6)));
|
|
rtl92d_set_fw_rsvdpagepkt(hw, 0);
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
|
|
if (recover)
|
|
rtl_write_byte(rtlpriv,
|
|
REG_FWHW_TXQ_CTRL + 2,
|
|
tmp_reg422);
|
|
rtl_write_byte(rtlpriv, REG_CR + 1,
|
|
(tmp_regcr & ~(BIT(0))));
|
|
}
|
|
rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
|
|
break;
|
|
}
|
|
case HW_VAR_AID: {
|
|
u16 u2btmp;
|
|
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
|
|
u2btmp &= 0xC000;
|
|
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
|
|
mac->assoc_id));
|
|
break;
|
|
}
|
|
case HW_VAR_CORRECT_TSF: {
|
|
u8 btype_ibss = val[0];
|
|
|
|
if (btype_ibss)
|
|
_rtl92de_stop_tx_beacon(hw);
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
|
|
rtl_write_dword(rtlpriv, REG_TSFTR,
|
|
(u32) (mac->tsf & 0xffffffff));
|
|
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
|
|
(u32) ((mac->tsf >> 32) & 0xffffffff));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
|
|
if (btype_ibss)
|
|
_rtl92de_resume_tx_beacon(hw);
|
|
|
|
break;
|
|
}
|
|
case HW_VAR_INT_MIGRATION: {
|
|
bool int_migration = *(bool *) (val);
|
|
|
|
if (int_migration) {
|
|
/* Set interrupt migration timer and
|
|
* corresponding Tx/Rx counter.
|
|
* timer 25ns*0xfa0=100us for 0xf packets.
|
|
* 0x306:Rx, 0x307:Tx */
|
|
rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
|
|
rtlpriv->dm.interrupt_migration = int_migration;
|
|
} else {
|
|
/* Reset all interrupt migration settings. */
|
|
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
|
|
rtlpriv->dm.interrupt_migration = int_migration;
|
|
}
|
|
break;
|
|
}
|
|
case HW_VAR_INT_AC: {
|
|
bool disable_ac_int = *((bool *) val);
|
|
|
|
/* Disable four ACs interrupts. */
|
|
if (disable_ac_int) {
|
|
/* Disable VO, VI, BE and BK four AC interrupts
|
|
* to gain more efficient CPU utilization.
|
|
* When extremely highly Rx OK occurs,
|
|
* we will disable Tx interrupts.
|
|
*/
|
|
rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
|
|
RT_AC_INT_MASKS);
|
|
rtlpriv->dm.disable_tx_int = disable_ac_int;
|
|
/* Enable four ACs interrupts. */
|
|
} else {
|
|
rtlpriv->cfg->ops->update_interrupt_mask(hw,
|
|
RT_AC_INT_MASKS, 0);
|
|
rtlpriv->dm.disable_tx_int = disable_ac_int;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
pr_err("switch case %#x not processed\n", variable);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
bool status = true;
|
|
long count = 0;
|
|
u32 value = _LLT_INIT_ADDR(address) |
|
|
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
|
|
|
|
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
|
|
do {
|
|
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
|
|
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
|
|
break;
|
|
if (count > POLLING_LLT_THRESHOLD) {
|
|
pr_err("Failed to polling write LLT done at address %d!\n",
|
|
address);
|
|
status = false;
|
|
break;
|
|
}
|
|
} while (++count);
|
|
return status;
|
|
}
|
|
|
|
static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
unsigned short i;
|
|
u8 txpktbuf_bndy;
|
|
u8 maxpage;
|
|
bool status;
|
|
u32 value32; /* High+low page number */
|
|
u8 value8; /* normal page number */
|
|
|
|
if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
|
|
maxpage = 255;
|
|
txpktbuf_bndy = 246;
|
|
value8 = 0;
|
|
value32 = 0x80bf0d29;
|
|
} else {
|
|
maxpage = 127;
|
|
txpktbuf_bndy = 123;
|
|
value8 = 0;
|
|
value32 = 0x80750005;
|
|
}
|
|
|
|
/* Set reserved page for each queue */
|
|
/* 11. RQPN 0x200[31:0] = 0x80BD1C1C */
|
|
/* load RQPN */
|
|
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
|
|
rtl_write_dword(rtlpriv, REG_RQPN, value32);
|
|
|
|
/* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
|
|
/* TXRKTBUG_PG_BNDY */
|
|
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
|
|
(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
|
|
txpktbuf_bndy));
|
|
|
|
/* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */
|
|
/* Beacon Head for TXDMA */
|
|
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
|
|
|
|
/* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */
|
|
/* BCNQ_PGBNDY */
|
|
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
|
|
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
|
|
|
|
/* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */
|
|
/* WMAC_LBK_BF_HD */
|
|
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
|
|
|
|
/* Set Tx/Rx page size (Tx must be 128 Bytes, */
|
|
/* Rx can be 64,128,256,512,1024 bytes) */
|
|
/* 16. PBP [7:0] = 0x11 */
|
|
/* TRX page size */
|
|
rtl_write_byte(rtlpriv, REG_PBP, 0x11);
|
|
|
|
/* 17. DRV_INFO_SZ = 0x04 */
|
|
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
|
|
|
|
/* 18. LLT_table_init(Adapter); */
|
|
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
|
|
status = _rtl92de_llt_write(hw, i, i + 1);
|
|
if (!status)
|
|
return status;
|
|
}
|
|
|
|
/* end of list */
|
|
status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
|
|
if (!status)
|
|
return status;
|
|
|
|
/* Make the other pages as ring buffer */
|
|
/* This ring buffer is used as beacon buffer if we */
|
|
/* config this MAC as two MAC transfer. */
|
|
/* Otherwise used as local loopback buffer. */
|
|
for (i = txpktbuf_bndy; i < maxpage; i++) {
|
|
status = _rtl92de_llt_write(hw, i, (i + 1));
|
|
if (!status)
|
|
return status;
|
|
}
|
|
|
|
/* Let last entry point to the start entry of ring buffer */
|
|
status = _rtl92de_llt_write(hw, maxpage, txpktbuf_bndy);
|
|
if (!status)
|
|
return status;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0;
|
|
|
|
if (rtlpci->up_first_time)
|
|
return;
|
|
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
|
|
rtl92de_sw_led_on(hw, pled0);
|
|
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
|
|
rtl92de_sw_led_on(hw, pled0);
|
|
else
|
|
rtl92de_sw_led_off(hw, pled0);
|
|
}
|
|
|
|
static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
unsigned char bytetmp;
|
|
unsigned short wordtmp;
|
|
u16 retry;
|
|
|
|
rtl92d_phy_set_poweron(hw);
|
|
/* Add for resume sequence of power domain according
|
|
* to power document V11. Chapter V.11.... */
|
|
/* 0. RSV_CTRL 0x1C[7:0] = 0x00 */
|
|
/* unlock ISO/CLK/Power control register */
|
|
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
|
|
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);
|
|
|
|
/* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */
|
|
/* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */
|
|
/* 3. delay (1ms) this is not necessary when initially power on */
|
|
|
|
/* C. Resume Sequence */
|
|
/* a. SPS0_CTRL 0x11[7:0] = 0x2b */
|
|
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
|
|
|
|
/* b. AFE_XTAL_CTRL [7:0] = 0x0F */
|
|
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);
|
|
|
|
/* c. DRV runs power on init flow */
|
|
|
|
/* auto enable WLAN */
|
|
/* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */
|
|
/* Power On Reset for MAC Block */
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
|
|
udelay(2);
|
|
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
|
|
udelay(2);
|
|
|
|
/* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
|
|
udelay(50);
|
|
retry = 0;
|
|
while ((bytetmp & BIT(0)) && retry < 1000) {
|
|
retry++;
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
|
|
udelay(50);
|
|
}
|
|
|
|
/* Enable Radio off, GPIO, and LED function */
|
|
/* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */
|
|
rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);
|
|
|
|
/* release RF digital isolation */
|
|
/* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */
|
|
/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
|
|
rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
|
|
udelay(2);
|
|
|
|
/* make sure that BB reset OK. */
|
|
/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */
|
|
|
|
/* Disable REG_CR before enable it to assure reset */
|
|
rtl_write_word(rtlpriv, REG_CR, 0x0);
|
|
|
|
/* Release MAC IO register reset */
|
|
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
|
|
|
|
/* clear stopping tx/rx dma */
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);
|
|
|
|
/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */
|
|
|
|
/* System init */
|
|
/* 18. LLT_table_init(Adapter); */
|
|
if (!_rtl92de_llt_table_init(hw))
|
|
return false;
|
|
|
|
/* Clear interrupt and enable interrupt */
|
|
/* 19. HISR 0x124[31:0] = 0xffffffff; */
|
|
/* HISRE 0x12C[7:0] = 0xFF */
|
|
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
|
|
rtl_write_byte(rtlpriv, REG_HISRE, 0xff);
|
|
|
|
/* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */
|
|
/* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */
|
|
/* The IMR should be enabled later after all init sequence
|
|
* is finished. */
|
|
|
|
/* 22. PCIE configuration space configuration */
|
|
/* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */
|
|
/* and PCIe gated clock function is enabled. */
|
|
/* PCIE configuration space will be written after
|
|
* all init sequence.(Or by BIOS) */
|
|
|
|
rtl92d_phy_config_maccoexist_rfpage(hw);
|
|
|
|
/* THe below section is not related to power document Vxx . */
|
|
/* This is only useful for driver and OS setting. */
|
|
/* -------------------Software Relative Setting---------------------- */
|
|
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
|
|
wordtmp &= 0xf;
|
|
wordtmp |= 0xF771;
|
|
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
|
|
|
|
/* Reported Tx status from HW for rate adaptive. */
|
|
/* This should be realtive to power on step 14. But in document V11 */
|
|
/* still not contain the description.!!! */
|
|
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
|
|
|
|
/* Set Tx/Rx page size (Tx must be 128 Bytes,
|
|
* Rx can be 64,128,256,512,1024 bytes) */
|
|
/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */
|
|
|
|
/* Set RCR register */
|
|
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
|
|
/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */
|
|
|
|
/* Set TCR register */
|
|
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
|
|
|
|
/* disable earlymode */
|
|
rtl_write_byte(rtlpriv, 0x4d0, 0x0);
|
|
|
|
/* Set TX/RX descriptor physical address(from OS API). */
|
|
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
|
|
rtlpci->tx_ring[BEACON_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
|
|
rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
|
|
/* Set RX Desc Address */
|
|
rtl_write_dword(rtlpriv, REG_RX_DESA,
|
|
rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
|
|
|
|
/* if we want to support 64 bit DMA, we should set it here,
|
|
* but now we do not support 64 bit DMA*/
|
|
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);
|
|
|
|
/* Reset interrupt migration setting when initialization */
|
|
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
|
|
|
|
/* Reconsider when to do this operation after asking HWSD. */
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
|
|
rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
|
|
do {
|
|
retry++;
|
|
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
|
|
} while ((retry < 200) && !(bytetmp & BIT(7)));
|
|
|
|
/* After MACIO reset,we must refresh LED state. */
|
|
_rtl92de_gen_refresh_led_state(hw);
|
|
|
|
/* Reset H2C protection register */
|
|
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u8 reg_bw_opmode = BW_OPMODE_20MHZ;
|
|
u32 reg_rrsr;
|
|
|
|
reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
|
|
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
|
|
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
|
|
rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
|
|
rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
|
|
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
|
|
rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
|
|
rtl_write_word(rtlpriv, REG_RL, 0x0707);
|
|
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
|
|
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
|
|
rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
|
|
rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
|
|
rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
|
|
rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
|
|
/* Aggregation threshold */
|
|
if (rtlhal->macphymode == DUALMAC_DUALPHY)
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
|
|
else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
|
|
else
|
|
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
|
|
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
|
|
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
|
|
rtlpci->reg_bcn_ctrl_val = 0x1f;
|
|
rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
|
|
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
|
|
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
|
|
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
|
|
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
|
|
/* For throughput */
|
|
rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
|
|
/* ACKTO for IOT issue. */
|
|
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
|
|
/* Set Spec SIFS (used in NAV) */
|
|
rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
|
|
rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
|
|
/* Set SIFS for CCK */
|
|
rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
|
|
/* Set SIFS for OFDM */
|
|
rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
|
|
/* Set Multicast Address. */
|
|
rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
|
|
rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
|
|
switch (rtlpriv->phy.rf_type) {
|
|
case RF_1T2R:
|
|
case RF_1T1R:
|
|
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
|
|
break;
|
|
case RF_2T2R:
|
|
case RF_2T2R_GREEN:
|
|
rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
|
|
rtl_write_byte(rtlpriv, 0x34b, 0x93);
|
|
rtl_write_word(rtlpriv, 0x350, 0x870c);
|
|
rtl_write_byte(rtlpriv, 0x352, 0x1);
|
|
if (ppsc->support_backdoor)
|
|
rtl_write_byte(rtlpriv, 0x349, 0x1b);
|
|
else
|
|
rtl_write_byte(rtlpriv, 0x349, 0x03);
|
|
rtl_write_word(rtlpriv, 0x350, 0x2718);
|
|
rtl_write_byte(rtlpriv, 0x352, 0x1);
|
|
}
|
|
|
|
void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 sec_reg_value;
|
|
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
|
|
rtlpriv->sec.pairwise_enc_algorithm,
|
|
rtlpriv->sec.group_enc_algorithm);
|
|
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"not open hw encryption\n");
|
|
return;
|
|
}
|
|
sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
|
|
if (rtlpriv->sec.use_defaultkey) {
|
|
sec_reg_value |= SCR_TXUSEDK;
|
|
sec_reg_value |= SCR_RXUSEDK;
|
|
}
|
|
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
|
|
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"The SECR-value %x\n", sec_reg_value);
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
|
|
}
|
|
|
|
int rtl92de_hw_init(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
bool rtstatus = true;
|
|
u8 tmp_u1b;
|
|
int i;
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
rtlpci->being_init_adapter = true;
|
|
rtlpci->init_ready = false;
|
|
spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
|
|
/* we should do iqk after disable/enable */
|
|
rtl92d_phy_reset_iqk_result(hw);
|
|
/* rtlpriv->intf_ops->disable_aspm(hw); */
|
|
rtstatus = _rtl92de_init_mac(hw);
|
|
if (!rtstatus) {
|
|
pr_err("Init MAC failed\n");
|
|
err = 1;
|
|
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
|
|
return err;
|
|
}
|
|
err = rtl92d_download_fw(hw);
|
|
spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
|
|
if (err) {
|
|
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"Failed to download FW. Init HW without FW..\n");
|
|
return 1;
|
|
}
|
|
rtlhal->last_hmeboxnum = 0;
|
|
rtlpriv->psc.fw_current_inpsmode = false;
|
|
|
|
tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
|
|
tmp_u1b = tmp_u1b | 0x30;
|
|
rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
|
|
|
|
if (rtlhal->earlymode_enable) {
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"EarlyMode Enabled!!!\n");
|
|
|
|
tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
|
|
tmp_u1b = tmp_u1b | 0x1f;
|
|
rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);
|
|
|
|
rtl_write_byte(rtlpriv, 0x4d3, 0x80);
|
|
|
|
tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
|
|
tmp_u1b = tmp_u1b | 0x40;
|
|
rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
|
|
}
|
|
|
|
if (mac->rdg_en) {
|
|
rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
|
|
rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
|
|
rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
|
|
}
|
|
|
|
rtl92d_phy_mac_config(hw);
|
|
/* because last function modify RCR, so we update
|
|
* rcr var here, or TP will unstable for receive_config
|
|
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
|
|
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
|
|
rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
|
|
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
|
|
|
|
rtl92d_phy_bb_config(hw);
|
|
|
|
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
|
|
/* set before initialize RF */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
|
|
|
|
/* config RF */
|
|
rtl92d_phy_rf_config(hw);
|
|
|
|
/* After read predefined TXT, we must set BB/MAC/RF
|
|
* register as our requirement */
|
|
/* After load BB,RF params,we need do more for 92D. */
|
|
rtl92d_update_bbrf_configuration(hw);
|
|
/* set default value after initialize RF, */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
|
|
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
|
|
RF_CHNLBW, RFREG_OFFSET_MASK);
|
|
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
|
|
RF_CHNLBW, RFREG_OFFSET_MASK);
|
|
|
|
/*---- Set CCK and OFDM Block "ON"----*/
|
|
if (rtlhal->current_bandtype == BAND_ON_2_4G)
|
|
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
|
|
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
|
|
if (rtlhal->interfaceindex == 0) {
|
|
/* RFPGA0_ANALOGPARAMETER2: cck clock select,
|
|
* set to 20MHz by default */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
|
|
BIT(11), 3);
|
|
} else {
|
|
/* Mac1 */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
|
|
BIT(10), 3);
|
|
}
|
|
|
|
_rtl92de_hw_configure(hw);
|
|
|
|
/* reset hw sec */
|
|
rtl_cam_reset_all_entry(hw);
|
|
rtl92de_enable_hw_security_config(hw);
|
|
|
|
/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
|
|
/* TX power index for different rate set. */
|
|
rtl92d_phy_get_hw_reg_originalvalue(hw);
|
|
rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
|
|
|
|
ppsc->rfpwr_state = ERFON;
|
|
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
|
|
|
|
_rtl92de_enable_aspm_back_door(hw);
|
|
/* rtlpriv->intf_ops->enable_aspm(hw); */
|
|
|
|
rtl92d_dm_init(hw);
|
|
rtlpci->being_init_adapter = false;
|
|
|
|
if (ppsc->rfpwr_state == ERFON) {
|
|
rtl92d_phy_lc_calibrate(hw);
|
|
/* 5G and 2.4G must wait sometime to let RF LO ready */
|
|
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
|
|
u32 tmp_rega;
|
|
for (i = 0; i < 10000; i++) {
|
|
udelay(MAX_STALL_TIME);
|
|
|
|
tmp_rega = rtl_get_rfreg(hw,
|
|
(enum radio_path)RF90_PATH_A,
|
|
0x2a, MASKDWORD);
|
|
|
|
if (((tmp_rega & BIT(11)) == BIT(11)))
|
|
break;
|
|
}
|
|
/* check that loop was successful. If not, exit now */
|
|
if (i == 10000) {
|
|
rtlpci->init_ready = false;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
rtlpci->init_ready = true;
|
|
return err;
|
|
}
|
|
|
|
static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
|
|
u32 value32;
|
|
|
|
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
|
|
if (!(value32 & 0x000f0000)) {
|
|
version = VERSION_TEST_CHIP_92D_SINGLEPHY;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
|
|
} else {
|
|
version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
|
|
}
|
|
return version;
|
|
}
|
|
|
|
static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
|
|
enum nl80211_iftype type)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
|
|
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
|
|
u8 bcnfunc_enable;
|
|
|
|
bt_msr &= 0xfc;
|
|
|
|
if (type == NL80211_IFTYPE_UNSPECIFIED ||
|
|
type == NL80211_IFTYPE_STATION) {
|
|
_rtl92de_stop_tx_beacon(hw);
|
|
_rtl92de_enable_bcn_sub_func(hw);
|
|
} else if (type == NL80211_IFTYPE_ADHOC ||
|
|
type == NL80211_IFTYPE_AP) {
|
|
_rtl92de_resume_tx_beacon(hw);
|
|
_rtl92de_disable_bcn_sub_func(hw);
|
|
} else {
|
|
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
|
|
"Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
|
|
type);
|
|
}
|
|
bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
|
|
switch (type) {
|
|
case NL80211_IFTYPE_UNSPECIFIED:
|
|
bt_msr |= MSR_NOLINK;
|
|
ledaction = LED_CTL_LINK;
|
|
bcnfunc_enable &= 0xF7;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to NO LINK!\n");
|
|
break;
|
|
case NL80211_IFTYPE_ADHOC:
|
|
bt_msr |= MSR_ADHOC;
|
|
bcnfunc_enable |= 0x08;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to Ad Hoc!\n");
|
|
break;
|
|
case NL80211_IFTYPE_STATION:
|
|
bt_msr |= MSR_INFRA;
|
|
ledaction = LED_CTL_LINK;
|
|
bcnfunc_enable &= 0xF7;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to STA!\n");
|
|
break;
|
|
case NL80211_IFTYPE_AP:
|
|
bt_msr |= MSR_AP;
|
|
bcnfunc_enable |= 0x08;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
|
|
"Set Network type to AP!\n");
|
|
break;
|
|
default:
|
|
pr_err("Network type %d not supported!\n", type);
|
|
return 1;
|
|
}
|
|
rtl_write_byte(rtlpriv, MSR, bt_msr);
|
|
rtlpriv->cfg->ops->led_control(hw, ledaction);
|
|
if ((bt_msr & MSR_MASK) == MSR_AP)
|
|
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
|
|
else
|
|
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
|
|
return 0;
|
|
}
|
|
|
|
void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u32 reg_rcr;
|
|
|
|
if (rtlpriv->psc.rfpwr_state != ERFON)
|
|
return;
|
|
|
|
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
|
|
|
|
if (check_bssid) {
|
|
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
|
|
} else if (!check_bssid) {
|
|
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
|
|
_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr));
|
|
}
|
|
}
|
|
|
|
int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
if (_rtl92de_set_media_status(hw, type))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* check bssid */
|
|
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
|
|
if (type != NL80211_IFTYPE_AP)
|
|
rtl92de_set_check_bssid(hw, true);
|
|
} else {
|
|
rtl92de_set_check_bssid(hw, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* do iqk or reload iqk */
|
|
/* windows just rtl92d_phy_reload_iqk_setting in set channel,
|
|
* but it's very strict for time sequence so we add
|
|
* rtl92d_phy_reload_iqk_setting here */
|
|
void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
u8 indexforchannel;
|
|
u8 channel = rtlphy->current_channel;
|
|
|
|
indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
|
|
if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
|
|
rtl_dbg(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
|
|
"Do IQK for channel:%d\n", channel);
|
|
rtl92d_phy_iq_calibrate(hw);
|
|
}
|
|
}
|
|
|
|
/* don't set REG_EDCA_BE_PARAM here because
|
|
* mac80211 will send pkt when scan */
|
|
void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
|
|
{
|
|
rtl92d_dm_init_edca_turbo(hw);
|
|
}
|
|
|
|
void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
|
|
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
|
|
rtlpci->irq_enabled = true;
|
|
}
|
|
|
|
void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
|
|
rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
|
|
rtlpci->irq_enabled = false;
|
|
}
|
|
|
|
static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
u8 u1b_tmp;
|
|
unsigned long flags;
|
|
|
|
rtlpriv->intf_ops->enable_aspm(hw);
|
|
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
|
|
rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
|
|
rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);
|
|
|
|
/* 0x20:value 05-->04 */
|
|
rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
|
|
|
|
/* ==== Reset digital sequence ====== */
|
|
rtl92d_firmware_selfreset(hw);
|
|
|
|
/* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
|
|
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);
|
|
|
|
/* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */
|
|
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
|
|
|
|
/* ==== Pull GPIO PIN to balance level and LED control ====== */
|
|
|
|
/* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */
|
|
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);
|
|
|
|
/* i. Value = GPIO_PIN_CTRL[7:0] */
|
|
u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);
|
|
|
|
/* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
|
|
/* write external PIN level */
|
|
rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
|
|
0x00FF0000 | (u1b_tmp << 8));
|
|
|
|
/* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
|
|
rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);
|
|
|
|
/* l. LEDCFG 0x4C[15:0] = 0x8080 */
|
|
rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
|
|
|
|
/* ==== Disable analog sequence === */
|
|
|
|
/* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */
|
|
rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
|
|
|
|
/* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */
|
|
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
|
|
|
|
/* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */
|
|
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);
|
|
|
|
/* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
|
|
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
|
|
|
|
/* ==== interface into suspend === */
|
|
|
|
/* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
|
|
/* According to power document V11, we need to set this */
|
|
/* value as 0x18. Otherwise, we may not L0s sometimes. */
|
|
/* This indluences power consumption. Bases on SD1's test, */
|
|
/* set as 0x00 do not affect power current. And if it */
|
|
/* is set as 0x18, they had ever met auto load fail problem. */
|
|
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);
|
|
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"In PowerOff,reg0x%x=%X\n",
|
|
REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
|
|
/* r. Note: for PCIe interface, PON will not turn */
|
|
/* off m-bias and BandGap in PCIe suspend mode. */
|
|
|
|
/* 0x17[7] 1b': power off in process 0b' : power off over */
|
|
if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
|
|
spin_lock_irqsave(&globalmutex_power, flags);
|
|
u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
|
|
u1b_tmp &= (~BIT(7));
|
|
rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
|
|
spin_unlock_irqrestore(&globalmutex_power, flags);
|
|
}
|
|
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
|
|
}
|
|
|
|
void rtl92de_card_disable(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
enum nl80211_iftype opmode;
|
|
|
|
mac->link_state = MAC80211_NOLINK;
|
|
opmode = NL80211_IFTYPE_UNSPECIFIED;
|
|
_rtl92de_set_media_status(hw, opmode);
|
|
|
|
if (rtlpci->driver_is_goingto_unload ||
|
|
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
|
|
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
|
|
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
|
|
/* Power sequence for each MAC. */
|
|
/* a. stop tx DMA */
|
|
/* b. close RF */
|
|
/* c. clear rx buf */
|
|
/* d. stop rx DMA */
|
|
/* e. reset MAC */
|
|
|
|
/* a. stop tx DMA */
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
|
|
udelay(50);
|
|
|
|
/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
|
|
|
|
/* c. ========RF OFF sequence========== */
|
|
/* 0x88c[23:20] = 0xf. */
|
|
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
|
|
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
|
|
|
|
/* APSD_CTRL 0x600[7:0] = 0x40 */
|
|
rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
|
|
|
|
/* Close antenna 0,0xc04,0xd04 */
|
|
rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
|
|
rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);
|
|
|
|
/* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */
|
|
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
|
|
|
|
/* Mac0 can not do Global reset. Mac1 can do. */
|
|
/* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */
|
|
if (rtlpriv->rtlhal.interfaceindex == 1)
|
|
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
|
|
udelay(50);
|
|
|
|
/* d. stop tx/rx dma before disable REG_CR (0x100) to fix */
|
|
/* dma hang issue when disable/enable device. */
|
|
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
|
|
udelay(50);
|
|
rtl_write_byte(rtlpriv, REG_CR, 0x0);
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
|
|
if (rtl92d_phy_check_poweroff(hw))
|
|
_rtl92de_poweroff_adapter(hw);
|
|
return;
|
|
}
|
|
|
|
void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
|
|
struct rtl_int *intvec)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
|
|
rtl_write_dword(rtlpriv, ISR, intvec->inta);
|
|
}
|
|
|
|
void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
u16 bcn_interval, atim_window;
|
|
|
|
bcn_interval = mac->beacon_interval;
|
|
atim_window = 2;
|
|
rtl92de_disable_interrupt(hw);
|
|
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
|
|
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
|
|
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
|
|
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
|
|
if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
|
|
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
|
|
else
|
|
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
|
|
rtl_write_byte(rtlpriv, 0x606, 0x30);
|
|
}
|
|
|
|
void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
u16 bcn_interval = mac->beacon_interval;
|
|
|
|
rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG,
|
|
"beacon_interval:%d\n", bcn_interval);
|
|
rtl92de_disable_interrupt(hw);
|
|
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
|
|
rtl92de_enable_interrupt(hw);
|
|
}
|
|
|
|
void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
|
|
u32 add_msr, u32 rm_msr)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
|
|
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
|
|
add_msr, rm_msr);
|
|
if (add_msr)
|
|
rtlpci->irq_mask[0] |= add_msr;
|
|
if (rm_msr)
|
|
rtlpci->irq_mask[0] &= (~rm_msr);
|
|
rtl92de_disable_interrupt(hw);
|
|
rtl92de_enable_interrupt(hw);
|
|
}
|
|
|
|
static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
|
|
u8 *rom_content, bool autoloadfail)
|
|
{
|
|
u32 rfpath, eeaddr, group, offset1, offset2;
|
|
u8 i;
|
|
|
|
memset(pwrinfo, 0, sizeof(struct txpower_info));
|
|
if (autoloadfail) {
|
|
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
if (group < CHANNEL_GROUP_MAX_2G) {
|
|
pwrinfo->cck_index[rfpath][group] =
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
|
|
pwrinfo->ht40_1sindex[rfpath][group] =
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G;
|
|
} else {
|
|
pwrinfo->ht40_1sindex[rfpath][group] =
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_5G;
|
|
}
|
|
pwrinfo->ht40_2sindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_2SDIFF;
|
|
pwrinfo->ht20indexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_DIFF;
|
|
pwrinfo->ofdmindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
|
|
pwrinfo->ht40maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
|
|
pwrinfo->ht20maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
|
|
}
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
|
|
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Maybe autoload OK,buf the tx power index value is not filled.
|
|
* If we find it, we set it to default value. */
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
|
|
eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
|
|
+ group;
|
|
pwrinfo->cck_index[rfpath][group] =
|
|
(rom_content[eeaddr] == 0xFF) ?
|
|
(eeaddr > 0x7B ?
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
|
|
rom_content[eeaddr];
|
|
}
|
|
}
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
|
|
offset1 = group / 3;
|
|
offset2 = group % 3;
|
|
eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
|
|
offset2 + offset1 * 21;
|
|
pwrinfo->ht40_1sindex[rfpath][group] =
|
|
(rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_5G :
|
|
EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
|
|
rom_content[eeaddr];
|
|
}
|
|
}
|
|
/* These just for 92D efuse offset. */
|
|
for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;
|
|
|
|
offset1 = group / 3;
|
|
offset2 = group % 3;
|
|
|
|
if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
|
|
pwrinfo->ht40_2sindexdiff[rfpath][group] =
|
|
(rom_content[base1 +
|
|
offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ht40_2sindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_2SDIFF;
|
|
if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ht20indexdiff[rfpath][group] =
|
|
(rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
|
|
+ offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ht20indexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_DIFF;
|
|
if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ofdmindexdiff[rfpath][group] =
|
|
(rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
|
|
+ offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ofdmindexdiff[rfpath][group] =
|
|
EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
|
|
if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ht40maxoffset[rfpath][group] =
|
|
(rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
|
|
+ offset2 + offset1 * 21] >> (rfpath * 4))
|
|
& 0xF;
|
|
else
|
|
pwrinfo->ht40maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
|
|
if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
|
|
+ offset1 * 21] != 0xFF)
|
|
pwrinfo->ht20maxoffset[rfpath][group] =
|
|
(rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
|
|
offset2 + offset1 * 21] >> (rfpath * 4)) &
|
|
0xF;
|
|
else
|
|
pwrinfo->ht20maxoffset[rfpath][group] =
|
|
EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
|
|
}
|
|
}
|
|
if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
|
|
/* 5GL */
|
|
pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
|
|
pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
|
|
/* 5GM */
|
|
pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
|
|
pwrinfo->tssi_b[1] =
|
|
(rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
|
|
(rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
|
|
/* 5GH */
|
|
pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
|
|
0xF0) >> 4 |
|
|
(rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
|
|
pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
|
|
0xFC) >> 2;
|
|
} else {
|
|
for (i = 0; i < 3; i++) {
|
|
pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
|
|
pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
|
|
bool autoload_fail, u8 *hwinfo)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct txpower_info pwrinfo;
|
|
u8 tempval[2], i, pwr, diff;
|
|
u32 ch, rfpath, group;
|
|
|
|
_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
|
|
if (!autoload_fail) {
|
|
/* bit0~2 */
|
|
rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
|
|
rtlefuse->eeprom_thermalmeter =
|
|
hwinfo[EEPROM_THERMAL_METER] & 0x1f;
|
|
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
|
|
tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
|
|
tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
|
|
rtlefuse->txpwr_fromeprom = true;
|
|
if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
|
|
IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
|
|
rtlefuse->internal_pa_5g[0] =
|
|
!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
|
|
rtlefuse->internal_pa_5g[1] =
|
|
!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
|
|
"Is D cut,Internal PA0 %d Internal PA1 %d\n",
|
|
rtlefuse->internal_pa_5g[0],
|
|
rtlefuse->internal_pa_5g[1]);
|
|
}
|
|
rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
|
|
rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
|
|
} else {
|
|
rtlefuse->eeprom_regulatory = 0;
|
|
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
|
|
rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
|
|
tempval[0] = tempval[1] = 3;
|
|
}
|
|
|
|
/* Use default value to fill parameters if
|
|
* efuse is not filled on some place. */
|
|
|
|
/* ThermalMeter from EEPROM */
|
|
if (rtlefuse->eeprom_thermalmeter < 0x06 ||
|
|
rtlefuse->eeprom_thermalmeter > 0x1c)
|
|
rtlefuse->eeprom_thermalmeter = 0x12;
|
|
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
|
|
|
|
/* check XTAL_K */
|
|
if (rtlefuse->crystalcap == 0xFF)
|
|
rtlefuse->crystalcap = 0;
|
|
if (rtlefuse->eeprom_regulatory > 3)
|
|
rtlefuse->eeprom_regulatory = 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
switch (tempval[i]) {
|
|
case 0:
|
|
tempval[i] = 5;
|
|
break;
|
|
case 1:
|
|
tempval[i] = 4;
|
|
break;
|
|
case 2:
|
|
tempval[i] = 3;
|
|
break;
|
|
case 3:
|
|
default:
|
|
tempval[i] = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rtlefuse->delta_iqk = tempval[0];
|
|
if (tempval[1] > 0)
|
|
rtlefuse->delta_lck = tempval[1] - 1;
|
|
if (rtlefuse->eeprom_c9 == 0xFF)
|
|
rtlefuse->eeprom_c9 = 0x00;
|
|
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
|
|
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
|
|
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"CrystalCap = 0x%x\n", rtlefuse->crystalcap);
|
|
rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD,
|
|
"Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
|
|
rtlefuse->delta_iqk, rtlefuse->delta_lck);
|
|
|
|
for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
|
|
for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
|
|
group = rtl92d_get_chnlgroup_fromarray((u8) ch);
|
|
if (ch < CHANNEL_MAX_NUMBER_2G)
|
|
rtlefuse->txpwrlevel_cck[rfpath][ch] =
|
|
pwrinfo.cck_index[rfpath][group];
|
|
rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] =
|
|
pwrinfo.ht40_1sindex[rfpath][group];
|
|
rtlefuse->txpwr_ht20diff[rfpath][ch] =
|
|
pwrinfo.ht20indexdiff[rfpath][group];
|
|
rtlefuse->txpwr_legacyhtdiff[rfpath][ch] =
|
|
pwrinfo.ofdmindexdiff[rfpath][group];
|
|
rtlefuse->pwrgroup_ht20[rfpath][ch] =
|
|
pwrinfo.ht20maxoffset[rfpath][group];
|
|
rtlefuse->pwrgroup_ht40[rfpath][ch] =
|
|
pwrinfo.ht40maxoffset[rfpath][group];
|
|
pwr = pwrinfo.ht40_1sindex[rfpath][group];
|
|
diff = pwrinfo.ht40_2sindexdiff[rfpath][group];
|
|
rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] =
|
|
(pwr > diff) ? (pwr - diff) : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
|
|
u8 *content)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];
|
|
|
|
if (macphy_crvalue & BIT(3)) {
|
|
rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"MacPhyMode SINGLEMAC_SINGLEPHY\n");
|
|
} else {
|
|
rtlhal->macphymode = DUALMAC_DUALPHY;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
|
|
"MacPhyMode DUALMAC_DUALPHY\n");
|
|
}
|
|
}
|
|
|
|
static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
|
|
u8 *content)
|
|
{
|
|
_rtl92de_read_macphymode_from_prom(hw, content);
|
|
rtl92d_phy_config_macphymode(hw);
|
|
rtl92d_phy_config_macphymode_info(hw);
|
|
}
|
|
|
|
static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
enum version_8192d chipver = rtlpriv->rtlhal.version;
|
|
u8 cutvalue[2];
|
|
u16 chipvalue;
|
|
|
|
rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
|
|
&cutvalue[1]);
|
|
rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
|
|
&cutvalue[0]);
|
|
chipvalue = (cutvalue[1] << 8) | cutvalue[0];
|
|
switch (chipvalue) {
|
|
case 0xAA55:
|
|
chipver |= CHIP_92D_C_CUT;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
|
|
break;
|
|
case 0x9966:
|
|
chipver |= CHIP_92D_D_CUT;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
|
|
break;
|
|
case 0xCC33:
|
|
chipver |= CHIP_92D_E_CUT;
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
|
|
break;
|
|
default:
|
|
chipver |= CHIP_92D_D_CUT;
|
|
pr_err("Unknown CUT!\n");
|
|
break;
|
|
}
|
|
rtlpriv->rtlhal.version = chipver;
|
|
}
|
|
|
|
static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID,
|
|
EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D,
|
|
EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID,
|
|
COUNTRY_CODE_WORLD_WIDE_13};
|
|
int i;
|
|
u16 usvalue;
|
|
u8 *hwinfo;
|
|
|
|
hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL);
|
|
if (!hwinfo)
|
|
return;
|
|
|
|
if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params))
|
|
goto exit;
|
|
|
|
_rtl92de_efuse_update_chip_version(hw);
|
|
_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);
|
|
|
|
/* Read Permanent MAC address for 2nd interface */
|
|
if (rtlhal->interfaceindex != 0) {
|
|
for (i = 0; i < 6; i += 2) {
|
|
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
|
|
*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
|
|
}
|
|
}
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
|
|
rtlefuse->dev_addr);
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
|
|
_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);
|
|
|
|
/* Read Channel Plan */
|
|
switch (rtlhal->bandset) {
|
|
case BAND_ON_2_4G:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
|
|
break;
|
|
case BAND_ON_5G:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
|
|
break;
|
|
case BAND_ON_BOTH:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
|
|
break;
|
|
default:
|
|
rtlefuse->channel_plan = COUNTRY_CODE_FCC;
|
|
break;
|
|
}
|
|
rtlefuse->txpwr_fromeprom = true;
|
|
exit:
|
|
kfree(hwinfo);
|
|
}
|
|
|
|
void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u8 tmp_u1b;
|
|
|
|
rtlhal->version = _rtl92de_read_chip_version(hw);
|
|
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
|
|
rtlefuse->autoload_status = tmp_u1b;
|
|
if (tmp_u1b & BIT(4)) {
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
|
|
rtlefuse->epromtype = EEPROM_93C46;
|
|
} else {
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
|
|
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
|
|
}
|
|
if (tmp_u1b & BIT(5)) {
|
|
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
|
|
|
|
rtlefuse->autoload_failflag = false;
|
|
_rtl92de_read_adapter_info(hw);
|
|
} else {
|
|
pr_err("Autoload ERR!!\n");
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *sta)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
u32 ratr_value;
|
|
u8 ratr_index = 0;
|
|
u8 nmode = mac->ht_enable;
|
|
u8 mimo_ps = IEEE80211_SMPS_OFF;
|
|
u16 shortgi_rate;
|
|
u32 tmp_ratr_value;
|
|
u8 curtxbw_40mhz = mac->bw_40;
|
|
u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
|
|
1 : 0;
|
|
u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
|
|
1 : 0;
|
|
enum wireless_mode wirelessmode = mac->mode;
|
|
|
|
if (rtlhal->current_bandtype == BAND_ON_5G)
|
|
ratr_value = sta->deflink.supp_rates[1] << 4;
|
|
else
|
|
ratr_value = sta->deflink.supp_rates[0];
|
|
ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
|
|
sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
|
|
switch (wirelessmode) {
|
|
case WIRELESS_MODE_A:
|
|
ratr_value &= 0x00000FF0;
|
|
break;
|
|
case WIRELESS_MODE_B:
|
|
if (ratr_value & 0x0000000c)
|
|
ratr_value &= 0x0000000d;
|
|
else
|
|
ratr_value &= 0x0000000f;
|
|
break;
|
|
case WIRELESS_MODE_G:
|
|
ratr_value &= 0x00000FF5;
|
|
break;
|
|
case WIRELESS_MODE_N_24G:
|
|
case WIRELESS_MODE_N_5G:
|
|
nmode = 1;
|
|
if (mimo_ps == IEEE80211_SMPS_STATIC) {
|
|
ratr_value &= 0x0007F005;
|
|
} else {
|
|
u32 ratr_mask;
|
|
|
|
if (get_rf_type(rtlphy) == RF_1T2R ||
|
|
get_rf_type(rtlphy) == RF_1T1R) {
|
|
ratr_mask = 0x000ff005;
|
|
} else {
|
|
ratr_mask = 0x0f0ff005;
|
|
}
|
|
|
|
ratr_value &= ratr_mask;
|
|
}
|
|
break;
|
|
default:
|
|
if (rtlphy->rf_type == RF_1T2R)
|
|
ratr_value &= 0x000ff0ff;
|
|
else
|
|
ratr_value &= 0x0f0ff0ff;
|
|
|
|
break;
|
|
}
|
|
ratr_value &= 0x0FFFFFFF;
|
|
if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
|
|
(!curtxbw_40mhz && curshortgi_20mhz))) {
|
|
ratr_value |= 0x10000000;
|
|
tmp_ratr_value = (ratr_value >> 12);
|
|
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
|
|
if ((1 << shortgi_rate) & tmp_ratr_value)
|
|
break;
|
|
}
|
|
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
|
|
(shortgi_rate << 4) | (shortgi_rate);
|
|
}
|
|
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
|
|
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
|
|
rtl_read_dword(rtlpriv, REG_ARFR0));
|
|
}
|
|
|
|
static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_phy *rtlphy = &(rtlpriv->phy);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
|
|
struct rtl_sta_info *sta_entry = NULL;
|
|
u32 ratr_bitmap;
|
|
u8 ratr_index;
|
|
u8 curtxbw_40mhz = (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
|
|
u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
|
|
1 : 0;
|
|
u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
|
|
1 : 0;
|
|
enum wireless_mode wirelessmode = 0;
|
|
bool shortgi = false;
|
|
u32 value[2];
|
|
u8 macid = 0;
|
|
u8 mimo_ps = IEEE80211_SMPS_OFF;
|
|
|
|
sta_entry = (struct rtl_sta_info *) sta->drv_priv;
|
|
mimo_ps = sta_entry->mimo_ps;
|
|
wirelessmode = sta_entry->wireless_mode;
|
|
if (mac->opmode == NL80211_IFTYPE_STATION)
|
|
curtxbw_40mhz = mac->bw_40;
|
|
else if (mac->opmode == NL80211_IFTYPE_AP ||
|
|
mac->opmode == NL80211_IFTYPE_ADHOC)
|
|
macid = sta->aid + 1;
|
|
|
|
if (rtlhal->current_bandtype == BAND_ON_5G)
|
|
ratr_bitmap = sta->deflink.supp_rates[1] << 4;
|
|
else
|
|
ratr_bitmap = sta->deflink.supp_rates[0];
|
|
ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 |
|
|
sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
|
|
switch (wirelessmode) {
|
|
case WIRELESS_MODE_B:
|
|
ratr_index = RATR_INX_WIRELESS_B;
|
|
if (ratr_bitmap & 0x0000000c)
|
|
ratr_bitmap &= 0x0000000d;
|
|
else
|
|
ratr_bitmap &= 0x0000000f;
|
|
break;
|
|
case WIRELESS_MODE_G:
|
|
ratr_index = RATR_INX_WIRELESS_GB;
|
|
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x00000f00;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x00000ff0;
|
|
else
|
|
ratr_bitmap &= 0x00000ff5;
|
|
break;
|
|
case WIRELESS_MODE_A:
|
|
ratr_index = RATR_INX_WIRELESS_G;
|
|
ratr_bitmap &= 0x00000ff0;
|
|
break;
|
|
case WIRELESS_MODE_N_24G:
|
|
case WIRELESS_MODE_N_5G:
|
|
if (wirelessmode == WIRELESS_MODE_N_24G)
|
|
ratr_index = RATR_INX_WIRELESS_NGB;
|
|
else
|
|
ratr_index = RATR_INX_WIRELESS_NG;
|
|
if (mimo_ps == IEEE80211_SMPS_STATIC) {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x00070000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x0007f000;
|
|
else
|
|
ratr_bitmap &= 0x0007f005;
|
|
} else {
|
|
if (rtlphy->rf_type == RF_1T2R ||
|
|
rtlphy->rf_type == RF_1T1R) {
|
|
if (curtxbw_40mhz) {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x000f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x000ff000;
|
|
else
|
|
ratr_bitmap &= 0x000ff015;
|
|
} else {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x000f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x000ff000;
|
|
else
|
|
ratr_bitmap &= 0x000ff005;
|
|
}
|
|
} else {
|
|
if (curtxbw_40mhz) {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x0f0f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x0f0ff000;
|
|
else
|
|
ratr_bitmap &= 0x0f0ff015;
|
|
} else {
|
|
if (rssi_level == 1)
|
|
ratr_bitmap &= 0x0f0f0000;
|
|
else if (rssi_level == 2)
|
|
ratr_bitmap &= 0x0f0ff000;
|
|
else
|
|
ratr_bitmap &= 0x0f0ff005;
|
|
}
|
|
}
|
|
}
|
|
if ((curtxbw_40mhz && curshortgi_40mhz) ||
|
|
(!curtxbw_40mhz && curshortgi_20mhz)) {
|
|
|
|
if (macid == 0)
|
|
shortgi = true;
|
|
else if (macid == 1)
|
|
shortgi = false;
|
|
}
|
|
break;
|
|
default:
|
|
ratr_index = RATR_INX_WIRELESS_NGB;
|
|
|
|
if (rtlphy->rf_type == RF_1T2R)
|
|
ratr_bitmap &= 0x000ff0ff;
|
|
else
|
|
ratr_bitmap &= 0x0f0ff0ff;
|
|
break;
|
|
}
|
|
|
|
value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
|
|
value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
|
|
rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG,
|
|
"ratr_bitmap :%x value0:%x value1:%x\n",
|
|
ratr_bitmap, value[0], value[1]);
|
|
rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
|
|
if (macid != 0)
|
|
sta_entry->ratr_index = ratr_index;
|
|
}
|
|
|
|
void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
|
|
struct ieee80211_sta *sta, u8 rssi_level, bool update_bw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
if (rtlpriv->dm.useramask)
|
|
rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw);
|
|
else
|
|
rtl92de_update_hal_rate_table(hw, sta);
|
|
}
|
|
|
|
void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
u16 sifs_timer;
|
|
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
|
|
&mac->slot_time);
|
|
if (!mac->ht_enable)
|
|
sifs_timer = 0x0a0a;
|
|
else
|
|
sifs_timer = 0x1010;
|
|
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
|
|
}
|
|
|
|
bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
|
|
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
|
|
enum rf_pwrstate e_rfpowerstate_toset;
|
|
u8 u1tmp;
|
|
bool actuallyset = false;
|
|
unsigned long flag;
|
|
|
|
if (rtlpci->being_init_adapter)
|
|
return false;
|
|
if (ppsc->swrf_processing)
|
|
return false;
|
|
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
|
|
if (ppsc->rfchange_inprogress) {
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
return false;
|
|
} else {
|
|
ppsc->rfchange_inprogress = true;
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
}
|
|
rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
|
|
REG_MAC_PINMUX_CFG) & ~(BIT(3)));
|
|
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
|
|
e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
|
|
if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
|
|
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
|
|
"GPIOChangeRF - HW Radio ON, RF ON\n");
|
|
e_rfpowerstate_toset = ERFON;
|
|
ppsc->hwradiooff = false;
|
|
actuallyset = true;
|
|
} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
|
|
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
|
|
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
|
|
e_rfpowerstate_toset = ERFOFF;
|
|
ppsc->hwradiooff = true;
|
|
actuallyset = true;
|
|
}
|
|
if (actuallyset) {
|
|
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
|
|
ppsc->rfchange_inprogress = false;
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
} else {
|
|
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
|
|
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
|
|
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
|
|
ppsc->rfchange_inprogress = false;
|
|
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
|
|
}
|
|
*valid = 1;
|
|
return !ppsc->hwradiooff;
|
|
}
|
|
|
|
void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
|
|
u8 *p_macaddr, bool is_group, u8 enc_algo,
|
|
bool is_wepkey, bool clear_all)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
|
|
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
|
|
u8 *macaddr = p_macaddr;
|
|
u32 entry_id;
|
|
bool is_pairwise = false;
|
|
static u8 cam_const_addr[4][6] = {
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
|
|
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
|
|
};
|
|
static u8 cam_const_broad[] = {
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
|
|
};
|
|
|
|
if (clear_all) {
|
|
u8 idx;
|
|
u8 cam_offset = 0;
|
|
u8 clear_number = 5;
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
|
|
for (idx = 0; idx < clear_number; idx++) {
|
|
rtl_cam_mark_invalid(hw, cam_offset + idx);
|
|
rtl_cam_empty_entry(hw, cam_offset + idx);
|
|
|
|
if (idx < 5) {
|
|
memset(rtlpriv->sec.key_buf[idx], 0,
|
|
MAX_KEY_LEN);
|
|
rtlpriv->sec.key_len[idx] = 0;
|
|
}
|
|
}
|
|
} else {
|
|
switch (enc_algo) {
|
|
case WEP40_ENCRYPTION:
|
|
enc_algo = CAM_WEP40;
|
|
break;
|
|
case WEP104_ENCRYPTION:
|
|
enc_algo = CAM_WEP104;
|
|
break;
|
|
case TKIP_ENCRYPTION:
|
|
enc_algo = CAM_TKIP;
|
|
break;
|
|
case AESCCMP_ENCRYPTION:
|
|
enc_algo = CAM_AES;
|
|
break;
|
|
default:
|
|
pr_err("switch case %#x not processed\n",
|
|
enc_algo);
|
|
enc_algo = CAM_TKIP;
|
|
break;
|
|
}
|
|
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
|
|
macaddr = cam_const_addr[key_index];
|
|
entry_id = key_index;
|
|
} else {
|
|
if (is_group) {
|
|
macaddr = cam_const_broad;
|
|
entry_id = key_index;
|
|
} else {
|
|
if (mac->opmode == NL80211_IFTYPE_AP) {
|
|
entry_id = rtl_cam_get_free_entry(hw,
|
|
p_macaddr);
|
|
if (entry_id >= TOTAL_CAM_ENTRY) {
|
|
pr_err("Can not find free hw security cam entry\n");
|
|
return;
|
|
}
|
|
} else {
|
|
entry_id = CAM_PAIRWISE_KEY_POSITION;
|
|
}
|
|
key_index = PAIRWISE_KEYIDX;
|
|
is_pairwise = true;
|
|
}
|
|
}
|
|
if (rtlpriv->sec.key_len[key_index] == 0) {
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"delete one entry, entry_id is %d\n",
|
|
entry_id);
|
|
if (mac->opmode == NL80211_IFTYPE_AP)
|
|
rtl_cam_del_entry(hw, p_macaddr);
|
|
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
|
|
} else {
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"The insert KEY length is %d\n",
|
|
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"The insert KEY is %x %x\n",
|
|
rtlpriv->sec.key_buf[0][0],
|
|
rtlpriv->sec.key_buf[0][1]);
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"add one entry\n");
|
|
if (is_pairwise) {
|
|
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
|
|
"Pairwise Key content",
|
|
rtlpriv->sec.pairwise_key,
|
|
rtlpriv->
|
|
sec.key_len[PAIRWISE_KEYIDX]);
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"set Pairwise key\n");
|
|
rtl_cam_add_one_entry(hw, macaddr, key_index,
|
|
entry_id, enc_algo,
|
|
CAM_CONFIG_NO_USEDK,
|
|
rtlpriv->
|
|
sec.key_buf[key_index]);
|
|
} else {
|
|
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
|
|
"set group key\n");
|
|
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
|
|
rtl_cam_add_one_entry(hw,
|
|
rtlefuse->dev_addr,
|
|
PAIRWISE_KEYIDX,
|
|
CAM_PAIRWISE_KEY_POSITION,
|
|
enc_algo, CAM_CONFIG_NO_USEDK,
|
|
rtlpriv->sec.key_buf[entry_id]);
|
|
}
|
|
rtl_cam_add_one_entry(hw, macaddr, key_index,
|
|
entry_id, enc_algo,
|
|
CAM_CONFIG_NO_USEDK,
|
|
rtlpriv->sec.key_buf
|
|
[entry_id]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void rtl92de_suspend(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
|
|
REG_MAC_PHY_CTRL_NORMAL);
|
|
}
|
|
|
|
void rtl92de_resume(struct ieee80211_hw *hw)
|
|
{
|
|
struct rtl_priv *rtlpriv = rtl_priv(hw);
|
|
|
|
rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
|
|
rtlpriv->rtlhal.macphyctl_reg);
|
|
}
|