1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/amd/amdgpu/amdgpu_mes.h
Mario Limonciello cc42e76e7d drm/amd: Load MES microcode during early_init
Add an early_init phase to MES for fetching and validating microcode
from the filesystem.

If MES microcode is required but not available during early init, the
firmware framebuffer will have already been released and the screen will
freeze.

Move the request for MES microcode into the early_init phase
so that if it's not available, early_init will fail.

Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Reviewed-by: Lijo Lazar <lijo.lazar@amd.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2023-01-09 17:02:18 -05:00

432 lines
14 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef __AMDGPU_MES_H__
#define __AMDGPU_MES_H__
#include "amdgpu_irq.h"
#include "kgd_kfd_interface.h"
#include "amdgpu_gfx.h"
#include <linux/sched/mm.h>
#define AMDGPU_MES_MAX_COMPUTE_PIPES 8
#define AMDGPU_MES_MAX_GFX_PIPES 2
#define AMDGPU_MES_MAX_SDMA_PIPES 2
#define AMDGPU_MES_API_VERSION_SHIFT 12
#define AMDGPU_MES_FEAT_VERSION_SHIFT 24
#define AMDGPU_MES_VERSION_MASK 0x00000fff
#define AMDGPU_MES_API_VERSION_MASK 0x00fff000
#define AMDGPU_MES_FEAT_VERSION_MASK 0xff000000
enum amdgpu_mes_priority_level {
AMDGPU_MES_PRIORITY_LEVEL_LOW = 0,
AMDGPU_MES_PRIORITY_LEVEL_NORMAL = 1,
AMDGPU_MES_PRIORITY_LEVEL_MEDIUM = 2,
AMDGPU_MES_PRIORITY_LEVEL_HIGH = 3,
AMDGPU_MES_PRIORITY_LEVEL_REALTIME = 4,
AMDGPU_MES_PRIORITY_NUM_LEVELS
};
#define AMDGPU_MES_PROC_CTX_SIZE 0x1000 /* one page area */
#define AMDGPU_MES_GANG_CTX_SIZE 0x1000 /* one page area */
struct amdgpu_mes_funcs;
enum admgpu_mes_pipe {
AMDGPU_MES_SCHED_PIPE = 0,
AMDGPU_MES_KIQ_PIPE,
AMDGPU_MAX_MES_PIPES = 2,
};
struct amdgpu_mes {
struct amdgpu_device *adev;
struct mutex mutex_hidden;
struct idr pasid_idr;
struct idr gang_id_idr;
struct idr queue_id_idr;
struct ida doorbell_ida;
spinlock_t queue_id_lock;
uint32_t sched_version;
uint32_t kiq_version;
uint32_t total_max_queue;
uint32_t doorbell_id_offset;
uint32_t max_doorbell_slices;
uint64_t default_process_quantum;
uint64_t default_gang_quantum;
struct amdgpu_ring ring;
spinlock_t ring_lock;
const struct firmware *fw[AMDGPU_MAX_MES_PIPES];
/* mes ucode */
struct amdgpu_bo *ucode_fw_obj[AMDGPU_MAX_MES_PIPES];
uint64_t ucode_fw_gpu_addr[AMDGPU_MAX_MES_PIPES];
uint32_t *ucode_fw_ptr[AMDGPU_MAX_MES_PIPES];
uint64_t uc_start_addr[AMDGPU_MAX_MES_PIPES];
/* mes ucode data */
struct amdgpu_bo *data_fw_obj[AMDGPU_MAX_MES_PIPES];
uint64_t data_fw_gpu_addr[AMDGPU_MAX_MES_PIPES];
uint32_t *data_fw_ptr[AMDGPU_MAX_MES_PIPES];
uint64_t data_start_addr[AMDGPU_MAX_MES_PIPES];
/* eop gpu obj */
struct amdgpu_bo *eop_gpu_obj[AMDGPU_MAX_MES_PIPES];
uint64_t eop_gpu_addr[AMDGPU_MAX_MES_PIPES];
void *mqd_backup[AMDGPU_MAX_MES_PIPES];
struct amdgpu_irq_src irq[AMDGPU_MAX_MES_PIPES];
uint32_t vmid_mask_gfxhub;
uint32_t vmid_mask_mmhub;
uint32_t compute_hqd_mask[AMDGPU_MES_MAX_COMPUTE_PIPES];
uint32_t gfx_hqd_mask[AMDGPU_MES_MAX_GFX_PIPES];
uint32_t sdma_hqd_mask[AMDGPU_MES_MAX_SDMA_PIPES];
uint32_t aggregated_doorbells[AMDGPU_MES_PRIORITY_NUM_LEVELS];
uint32_t sch_ctx_offs;
uint64_t sch_ctx_gpu_addr;
uint64_t *sch_ctx_ptr;
uint32_t query_status_fence_offs;
uint64_t query_status_fence_gpu_addr;
uint64_t *query_status_fence_ptr;
uint32_t read_val_offs;
uint64_t read_val_gpu_addr;
uint32_t *read_val_ptr;
uint32_t saved_flags;
/* initialize kiq pipe */
int (*kiq_hw_init)(struct amdgpu_device *adev);
int (*kiq_hw_fini)(struct amdgpu_device *adev);
/* ip specific functions */
const struct amdgpu_mes_funcs *funcs;
};
struct amdgpu_mes_process {
int pasid;
struct amdgpu_vm *vm;
uint64_t pd_gpu_addr;
struct amdgpu_bo *proc_ctx_bo;
uint64_t proc_ctx_gpu_addr;
void *proc_ctx_cpu_ptr;
uint64_t process_quantum;
struct list_head gang_list;
uint32_t doorbell_index;
unsigned long *doorbell_bitmap;
struct mutex doorbell_lock;
};
struct amdgpu_mes_gang {
int gang_id;
int priority;
int inprocess_gang_priority;
int global_priority_level;
struct list_head list;
struct amdgpu_mes_process *process;
struct amdgpu_bo *gang_ctx_bo;
uint64_t gang_ctx_gpu_addr;
void *gang_ctx_cpu_ptr;
uint64_t gang_quantum;
struct list_head queue_list;
};
struct amdgpu_mes_queue {
struct list_head list;
struct amdgpu_mes_gang *gang;
int queue_id;
uint64_t doorbell_off;
struct amdgpu_bo *mqd_obj;
void *mqd_cpu_ptr;
uint64_t mqd_gpu_addr;
uint64_t wptr_gpu_addr;
int queue_type;
int paging;
struct amdgpu_ring *ring;
};
struct amdgpu_mes_queue_properties {
int queue_type;
uint64_t hqd_base_gpu_addr;
uint64_t rptr_gpu_addr;
uint64_t wptr_gpu_addr;
uint64_t wptr_mc_addr;
uint32_t queue_size;
uint64_t eop_gpu_addr;
uint32_t hqd_pipe_priority;
uint32_t hqd_queue_priority;
bool paging;
struct amdgpu_ring *ring;
/* out */
uint64_t doorbell_off;
};
struct amdgpu_mes_gang_properties {
uint32_t priority;
uint32_t gang_quantum;
uint32_t inprocess_gang_priority;
uint32_t priority_level;
int global_priority_level;
};
struct mes_add_queue_input {
uint32_t process_id;
uint64_t page_table_base_addr;
uint64_t process_va_start;
uint64_t process_va_end;
uint64_t process_quantum;
uint64_t process_context_addr;
uint64_t gang_quantum;
uint64_t gang_context_addr;
uint32_t inprocess_gang_priority;
uint32_t gang_global_priority_level;
uint32_t doorbell_offset;
uint64_t mqd_addr;
uint64_t wptr_addr;
uint64_t wptr_mc_addr;
uint32_t queue_type;
uint32_t paging;
uint32_t gws_base;
uint32_t gws_size;
uint64_t tba_addr;
uint64_t tma_addr;
uint32_t is_kfd_process;
uint32_t is_aql_queue;
uint32_t queue_size;
};
struct mes_remove_queue_input {
uint32_t doorbell_offset;
uint64_t gang_context_addr;
};
struct mes_unmap_legacy_queue_input {
enum amdgpu_unmap_queues_action action;
uint32_t queue_type;
uint32_t doorbell_offset;
uint32_t pipe_id;
uint32_t queue_id;
uint64_t trail_fence_addr;
uint64_t trail_fence_data;
};
struct mes_suspend_gang_input {
bool suspend_all_gangs;
uint64_t gang_context_addr;
uint64_t suspend_fence_addr;
uint32_t suspend_fence_value;
};
struct mes_resume_gang_input {
bool resume_all_gangs;
uint64_t gang_context_addr;
};
enum mes_misc_opcode {
MES_MISC_OP_WRITE_REG,
MES_MISC_OP_READ_REG,
MES_MISC_OP_WRM_REG_WAIT,
MES_MISC_OP_WRM_REG_WR_WAIT,
};
struct mes_misc_op_input {
enum mes_misc_opcode op;
union {
struct {
uint32_t reg_offset;
uint64_t buffer_addr;
} read_reg;
struct {
uint32_t reg_offset;
uint32_t reg_value;
} write_reg;
struct {
uint32_t ref;
uint32_t mask;
uint32_t reg0;
uint32_t reg1;
} wrm_reg;
};
};
struct amdgpu_mes_funcs {
int (*add_hw_queue)(struct amdgpu_mes *mes,
struct mes_add_queue_input *input);
int (*remove_hw_queue)(struct amdgpu_mes *mes,
struct mes_remove_queue_input *input);
int (*unmap_legacy_queue)(struct amdgpu_mes *mes,
struct mes_unmap_legacy_queue_input *input);
int (*suspend_gang)(struct amdgpu_mes *mes,
struct mes_suspend_gang_input *input);
int (*resume_gang)(struct amdgpu_mes *mes,
struct mes_resume_gang_input *input);
int (*misc_op)(struct amdgpu_mes *mes,
struct mes_misc_op_input *input);
};
#define amdgpu_mes_kiq_hw_init(adev) (adev)->mes.kiq_hw_init((adev))
#define amdgpu_mes_kiq_hw_fini(adev) (adev)->mes.kiq_hw_fini((adev))
int amdgpu_mes_ctx_get_offs(struct amdgpu_ring *ring, unsigned int id_offs);
int amdgpu_mes_init_microcode(struct amdgpu_device *adev, int pipe);
int amdgpu_mes_init(struct amdgpu_device *adev);
void amdgpu_mes_fini(struct amdgpu_device *adev);
int amdgpu_mes_create_process(struct amdgpu_device *adev, int pasid,
struct amdgpu_vm *vm);
void amdgpu_mes_destroy_process(struct amdgpu_device *adev, int pasid);
int amdgpu_mes_add_gang(struct amdgpu_device *adev, int pasid,
struct amdgpu_mes_gang_properties *gprops,
int *gang_id);
int amdgpu_mes_remove_gang(struct amdgpu_device *adev, int gang_id);
int amdgpu_mes_suspend(struct amdgpu_device *adev);
int amdgpu_mes_resume(struct amdgpu_device *adev);
int amdgpu_mes_add_hw_queue(struct amdgpu_device *adev, int gang_id,
struct amdgpu_mes_queue_properties *qprops,
int *queue_id);
int amdgpu_mes_remove_hw_queue(struct amdgpu_device *adev, int queue_id);
int amdgpu_mes_unmap_legacy_queue(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
enum amdgpu_unmap_queues_action action,
u64 gpu_addr, u64 seq);
uint32_t amdgpu_mes_rreg(struct amdgpu_device *adev, uint32_t reg);
int amdgpu_mes_wreg(struct amdgpu_device *adev,
uint32_t reg, uint32_t val);
int amdgpu_mes_reg_wait(struct amdgpu_device *adev, uint32_t reg,
uint32_t val, uint32_t mask);
int amdgpu_mes_reg_write_reg_wait(struct amdgpu_device *adev,
uint32_t reg0, uint32_t reg1,
uint32_t ref, uint32_t mask);
int amdgpu_mes_add_ring(struct amdgpu_device *adev, int gang_id,
int queue_type, int idx,
struct amdgpu_mes_ctx_data *ctx_data,
struct amdgpu_ring **out);
void amdgpu_mes_remove_ring(struct amdgpu_device *adev,
struct amdgpu_ring *ring);
uint32_t amdgpu_mes_get_aggregated_doorbell_index(struct amdgpu_device *adev,
enum amdgpu_mes_priority_level prio);
int amdgpu_mes_ctx_alloc_meta_data(struct amdgpu_device *adev,
struct amdgpu_mes_ctx_data *ctx_data);
void amdgpu_mes_ctx_free_meta_data(struct amdgpu_mes_ctx_data *ctx_data);
int amdgpu_mes_ctx_map_meta_data(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_mes_ctx_data *ctx_data);
int amdgpu_mes_ctx_unmap_meta_data(struct amdgpu_device *adev,
struct amdgpu_mes_ctx_data *ctx_data);
int amdgpu_mes_self_test(struct amdgpu_device *adev);
int amdgpu_mes_alloc_process_doorbells(struct amdgpu_device *adev,
unsigned int *doorbell_index);
void amdgpu_mes_free_process_doorbells(struct amdgpu_device *adev,
unsigned int doorbell_index);
unsigned int amdgpu_mes_get_doorbell_dw_offset_in_bar(
struct amdgpu_device *adev,
uint32_t doorbell_index,
unsigned int doorbell_id);
int amdgpu_mes_doorbell_process_slice(struct amdgpu_device *adev);
/*
* MES lock can be taken in MMU notifiers.
*
* A bit more detail about why to set no-FS reclaim with MES lock:
*
* The purpose of the MMU notifier is to stop GPU access to memory so
* that the Linux VM subsystem can move pages around safely. This is
* done by preempting user mode queues for the affected process. When
* MES is used, MES lock needs to be taken to preempt the queues.
*
* The MMU notifier callback entry point in the driver is
* amdgpu_mn_invalidate_range_start_hsa. The relevant call chain from
* there is:
* amdgpu_amdkfd_evict_userptr -> kgd2kfd_quiesce_mm ->
* kfd_process_evict_queues -> pdd->dev->dqm->ops.evict_process_queues
*
* The last part of the chain is a function pointer where we take the
* MES lock.
*
* The problem with taking locks in the MMU notifier is, that MMU
* notifiers can be called in reclaim-FS context. That's where the
* kernel frees up pages to make room for new page allocations under
* memory pressure. While we are running in reclaim-FS context, we must
* not trigger another memory reclaim operation because that would
* recursively reenter the reclaim code and cause a deadlock. The
* memalloc_nofs_save/restore calls guarantee that.
*
* In addition we also need to avoid lock dependencies on other locks taken
* under the MES lock, for example reservation locks. Here is a possible
* scenario of a deadlock:
* Thread A: takes and holds reservation lock | triggers reclaim-FS |
* MMU notifier | blocks trying to take MES lock
* Thread B: takes and holds MES lock | blocks trying to take reservation lock
*
* In this scenario Thread B gets involved in a deadlock even without
* triggering a reclaim-FS operation itself.
* To fix this and break the lock dependency chain you'd need to either:
* 1. protect reservation locks with memalloc_nofs_save/restore, or
* 2. avoid taking reservation locks under the MES lock.
*
* Reservation locks are taken all over the kernel in different subsystems, we
* have no control over them and their lock dependencies.So the only workable
* solution is to avoid taking other locks under the MES lock.
* As a result, make sure no reclaim-FS happens while holding this lock anywhere
* to prevent deadlocks when an MMU notifier runs in reclaim-FS context.
*/
static inline void amdgpu_mes_lock(struct amdgpu_mes *mes)
{
mutex_lock(&mes->mutex_hidden);
mes->saved_flags = memalloc_noreclaim_save();
}
static inline void amdgpu_mes_unlock(struct amdgpu_mes *mes)
{
memalloc_noreclaim_restore(mes->saved_flags);
mutex_unlock(&mes->mutex_hidden);
}
#endif /* __AMDGPU_MES_H__ */