1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/sound/soc/codecs/es8328.c
Nicolas Frattaroli 5b0c02f9b8
ASoC: es8328: fix route from DAC to output
The ES8328 codec driver, which is also used for the ES8388 chip that
appears to have an identical register map, claims that the output can
either take the route from DAC->Mixer->Output or through DAC->Output
directly. To the best of what I could find, this is not true, and
creates problems.

Without DACCONTROL17 bit index 7 set for the left channel, as well as
DACCONTROL20 bit index 7 set for the right channel, I cannot get any
analog audio out on Left Out 2 and Right Out 2 respectively, despite the
DAPM routes claiming that this should be possible. Furthermore, the same
is the case for Left Out 1 and Right Out 1, showing that those two don't
have a direct route from DAC to output bypassing the mixer either.

Those control bits toggle whether the DACs are fed (stale bread?) into
their respective mixers. If one "unmutes" the mixer controls in
alsamixer, then sure, the audio output works, but if it doesn't work
without the mixer being fed the DAC input then evidently it's not a
direct output from the DAC.

ES8328/ES8388 are seemingly not alone in this. ES8323, which uses a
separate driver for what appears to be a very similar register map,
simply flips those two bits on in its probe function, and then pretends
there is no power management whatsoever for the individual controls.
Fair enough.

My theory as to why nobody has noticed this up to this point is that
everyone just assumes it's their fault when they had to unmute an
additional control in ALSA.

Fix this in the es8328 driver by removing the erroneous direct route,
then get rid of the playback switch controls and have those bits tied to
the mixer's widget instead, which until now had no register to play
with.

Fixes: 567e4f9892 ("ASoC: add es8328 codec driver")
Signed-off-by: Nicolas Frattaroli <nicolas.frattaroli@collabora.com>
Link: https://patch.msgid.link/20250222-es8328-route-bludgeoning-v1-1-99bfb7fb22d9@collabora.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-02-24 15:00:47 +00:00

882 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* es8328.c -- ES8328 ALSA SoC Audio driver
*
* Copyright 2014 Sutajio Ko-Usagi PTE LTD
*
* Author: Sean Cross <xobs@kosagi.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/tlv.h>
#include "es8328.h"
static const unsigned int rates_12288[] = {
8000, 12000, 16000, 24000, 32000, 48000, 96000,
};
static const int ratios_12288[] = {
10, 7, 6, 4, 3, 2, 0,
};
static const struct snd_pcm_hw_constraint_list constraints_12288 = {
.count = ARRAY_SIZE(rates_12288),
.list = rates_12288,
};
static const unsigned int rates_11289[] = {
8018, 11025, 22050, 44100, 88200,
};
static const int ratios_11289[] = {
9, 7, 4, 2, 0,
};
static const struct snd_pcm_hw_constraint_list constraints_11289 = {
.count = ARRAY_SIZE(rates_11289),
.list = rates_11289,
};
/* regulator supplies for sgtl5000, VDDD is an optional external supply */
enum sgtl5000_regulator_supplies {
DVDD,
AVDD,
PVDD,
HPVDD,
ES8328_SUPPLY_NUM
};
/* vddd is optional supply */
static const char * const supply_names[ES8328_SUPPLY_NUM] = {
"DVDD",
"AVDD",
"PVDD",
"HPVDD",
};
#define ES8328_RATES (SNDRV_PCM_RATE_192000 | \
SNDRV_PCM_RATE_96000 | \
SNDRV_PCM_RATE_88200 | \
SNDRV_PCM_RATE_8000_48000)
#define ES8328_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S18_3LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S32_LE)
struct es8328_priv {
struct regmap *regmap;
struct clk *clk;
int playback_fs;
bool deemph;
int mclkdiv2;
const struct snd_pcm_hw_constraint_list *sysclk_constraints;
const int *mclk_ratios;
bool provider;
struct regulator_bulk_data supplies[ES8328_SUPPLY_NUM];
};
/*
* ES8328 Controls
*/
static const char * const adcpol_txt[] = {"Normal", "L Invert", "R Invert",
"L + R Invert"};
static SOC_ENUM_SINGLE_DECL(adcpol,
ES8328_ADCCONTROL6, 6, adcpol_txt);
static const DECLARE_TLV_DB_SCALE(play_tlv, -3000, 100, 0);
static const DECLARE_TLV_DB_SCALE(dac_adc_tlv, -9600, 50, 0);
static const DECLARE_TLV_DB_SCALE(bypass_tlv, -1500, 300, 0);
static const DECLARE_TLV_DB_SCALE(mic_tlv, 0, 300, 0);
static const struct {
int rate;
unsigned int val;
} deemph_settings[] = {
{ 0, ES8328_DACCONTROL6_DEEMPH_OFF },
{ 32000, ES8328_DACCONTROL6_DEEMPH_32k },
{ 44100, ES8328_DACCONTROL6_DEEMPH_44_1k },
{ 48000, ES8328_DACCONTROL6_DEEMPH_48k },
};
static int es8328_set_deemph(struct snd_soc_component *component)
{
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
int val, i, best;
/*
* If we're using deemphasis select the nearest available sample
* rate.
*/
if (es8328->deemph) {
best = 0;
for (i = 1; i < ARRAY_SIZE(deemph_settings); i++) {
if (abs(deemph_settings[i].rate - es8328->playback_fs) <
abs(deemph_settings[best].rate - es8328->playback_fs))
best = i;
}
val = deemph_settings[best].val;
} else {
val = ES8328_DACCONTROL6_DEEMPH_OFF;
}
dev_dbg(component->dev, "Set deemphasis %d\n", val);
return snd_soc_component_update_bits(component, ES8328_DACCONTROL6,
ES8328_DACCONTROL6_DEEMPH_MASK, val);
}
static int es8328_get_deemph(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = es8328->deemph;
return 0;
}
static int es8328_put_deemph(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
unsigned int deemph = ucontrol->value.integer.value[0];
int ret;
if (deemph > 1)
return -EINVAL;
if (es8328->deemph == deemph)
return 0;
ret = es8328_set_deemph(component);
if (ret < 0)
return ret;
es8328->deemph = deemph;
return 1;
}
static const struct snd_kcontrol_new es8328_snd_controls[] = {
SOC_DOUBLE_R_TLV("Capture Digital Volume",
ES8328_ADCCONTROL8, ES8328_ADCCONTROL9,
0, 0xc0, 1, dac_adc_tlv),
SOC_SINGLE("Capture ZC Switch", ES8328_ADCCONTROL7, 6, 1, 0),
SOC_SINGLE_BOOL_EXT("DAC Deemphasis Switch", 0,
es8328_get_deemph, es8328_put_deemph),
SOC_ENUM("Capture Polarity", adcpol),
SOC_SINGLE_TLV("Left Mixer Left Bypass Volume",
ES8328_DACCONTROL17, 3, 7, 1, bypass_tlv),
SOC_SINGLE_TLV("Left Mixer Right Bypass Volume",
ES8328_DACCONTROL19, 3, 7, 1, bypass_tlv),
SOC_SINGLE_TLV("Right Mixer Left Bypass Volume",
ES8328_DACCONTROL18, 3, 7, 1, bypass_tlv),
SOC_SINGLE_TLV("Right Mixer Right Bypass Volume",
ES8328_DACCONTROL20, 3, 7, 1, bypass_tlv),
SOC_DOUBLE_R_TLV("PCM Volume",
ES8328_LDACVOL, ES8328_RDACVOL,
0, ES8328_DACVOL_MAX, 1, dac_adc_tlv),
SOC_DOUBLE_R_TLV("Output 1 Playback Volume",
ES8328_LOUT1VOL, ES8328_ROUT1VOL,
0, ES8328_OUT1VOL_MAX, 0, play_tlv),
SOC_DOUBLE_R_TLV("Output 2 Playback Volume",
ES8328_LOUT2VOL, ES8328_ROUT2VOL,
0, ES8328_OUT2VOL_MAX, 0, play_tlv),
SOC_DOUBLE_TLV("Mic PGA Volume", ES8328_ADCCONTROL1,
4, 0, 8, 0, mic_tlv),
};
/*
* DAPM Controls
*/
static const char * const es8328_line_texts[] = {
"Line 1", "Line 2", "PGA", "Differential"};
static const struct soc_enum es8328_lline_enum =
SOC_ENUM_SINGLE(ES8328_DACCONTROL16, 3,
ARRAY_SIZE(es8328_line_texts),
es8328_line_texts);
static const struct snd_kcontrol_new es8328_left_line_controls =
SOC_DAPM_ENUM("Route", es8328_lline_enum);
static const struct soc_enum es8328_rline_enum =
SOC_ENUM_SINGLE(ES8328_DACCONTROL16, 0,
ARRAY_SIZE(es8328_line_texts),
es8328_line_texts);
static const struct snd_kcontrol_new es8328_right_line_controls =
SOC_DAPM_ENUM("Route", es8328_rline_enum);
/* Left Mixer */
static const struct snd_kcontrol_new es8328_left_mixer_controls[] = {
SOC_DAPM_SINGLE("Left Bypass Switch", ES8328_DACCONTROL17, 6, 1, 0),
SOC_DAPM_SINGLE("Right Playback Switch", ES8328_DACCONTROL18, 7, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", ES8328_DACCONTROL18, 6, 1, 0),
};
/* Right Mixer */
static const struct snd_kcontrol_new es8328_right_mixer_controls[] = {
SOC_DAPM_SINGLE("Left Playback Switch", ES8328_DACCONTROL19, 7, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", ES8328_DACCONTROL19, 6, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", ES8328_DACCONTROL20, 6, 1, 0),
};
static const char * const es8328_pga_sel[] = {
"Line 1", "Line 2", "Line 3", "Differential"};
/* Left PGA Mux */
static const struct soc_enum es8328_lpga_enum =
SOC_ENUM_SINGLE(ES8328_ADCCONTROL2, 6,
ARRAY_SIZE(es8328_pga_sel),
es8328_pga_sel);
static const struct snd_kcontrol_new es8328_left_pga_controls =
SOC_DAPM_ENUM("Route", es8328_lpga_enum);
/* Right PGA Mux */
static const struct soc_enum es8328_rpga_enum =
SOC_ENUM_SINGLE(ES8328_ADCCONTROL2, 4,
ARRAY_SIZE(es8328_pga_sel),
es8328_pga_sel);
static const struct snd_kcontrol_new es8328_right_pga_controls =
SOC_DAPM_ENUM("Route", es8328_rpga_enum);
/* Differential Mux */
static const char * const es8328_diff_sel[] = {"Line 1", "Line 2"};
static SOC_ENUM_SINGLE_DECL(diffmux,
ES8328_ADCCONTROL3, 7, es8328_diff_sel);
static const struct snd_kcontrol_new es8328_diffmux_controls =
SOC_DAPM_ENUM("Route", diffmux);
/* Mono ADC Mux */
static const char * const es8328_mono_mux[] = {"Stereo", "Mono (Left)",
"Mono (Right)", "Digital Mono"};
static SOC_ENUM_SINGLE_DECL(monomux,
ES8328_ADCCONTROL3, 3, es8328_mono_mux);
static const struct snd_kcontrol_new es8328_monomux_controls =
SOC_DAPM_ENUM("Route", monomux);
static const struct snd_soc_dapm_widget es8328_dapm_widgets[] = {
SND_SOC_DAPM_MUX("Differential Mux", SND_SOC_NOPM, 0, 0,
&es8328_diffmux_controls),
SND_SOC_DAPM_MUX("Left ADC Mux", SND_SOC_NOPM, 0, 0,
&es8328_monomux_controls),
SND_SOC_DAPM_MUX("Right ADC Mux", SND_SOC_NOPM, 0, 0,
&es8328_monomux_controls),
SND_SOC_DAPM_MUX("Left PGA Mux", ES8328_ADCPOWER,
ES8328_ADCPOWER_AINL_OFF, 1,
&es8328_left_pga_controls),
SND_SOC_DAPM_MUX("Right PGA Mux", ES8328_ADCPOWER,
ES8328_ADCPOWER_AINR_OFF, 1,
&es8328_right_pga_controls),
SND_SOC_DAPM_MUX("Left Line Mux", SND_SOC_NOPM, 0, 0,
&es8328_left_line_controls),
SND_SOC_DAPM_MUX("Right Line Mux", SND_SOC_NOPM, 0, 0,
&es8328_right_line_controls),
SND_SOC_DAPM_ADC("Right ADC", "Right Capture", ES8328_ADCPOWER,
ES8328_ADCPOWER_ADCR_OFF, 1),
SND_SOC_DAPM_ADC("Left ADC", "Left Capture", ES8328_ADCPOWER,
ES8328_ADCPOWER_ADCL_OFF, 1),
SND_SOC_DAPM_SUPPLY("Mic Bias", ES8328_ADCPOWER,
ES8328_ADCPOWER_MIC_BIAS_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("Mic Bias Gen", ES8328_ADCPOWER,
ES8328_ADCPOWER_ADC_BIAS_GEN_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC STM", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_DACSTM_RESET, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC STM", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_ADCSTM_RESET, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC DIG", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_DACDIG_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC DIG", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_ADCDIG_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC DLL", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_DACDLL_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC DLL", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_ADCDLL_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("ADC Vref", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_ADCVREF_OFF, 1, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC Vref", ES8328_CHIPPOWER,
ES8328_CHIPPOWER_DACVREF_OFF, 1, NULL, 0),
SND_SOC_DAPM_DAC("Right DAC", "Right Playback", ES8328_DACPOWER,
ES8328_DACPOWER_RDAC_OFF, 1),
SND_SOC_DAPM_DAC("Left DAC", "Left Playback", ES8328_DACPOWER,
ES8328_DACPOWER_LDAC_OFF, 1),
SND_SOC_DAPM_MIXER("Left Mixer", ES8328_DACCONTROL17, 7, 0,
&es8328_left_mixer_controls[0],
ARRAY_SIZE(es8328_left_mixer_controls)),
SND_SOC_DAPM_MIXER("Right Mixer", ES8328_DACCONTROL20, 7, 0,
&es8328_right_mixer_controls[0],
ARRAY_SIZE(es8328_right_mixer_controls)),
SND_SOC_DAPM_PGA("Right Out 2", ES8328_DACPOWER,
ES8328_DACPOWER_ROUT2_ON, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left Out 2", ES8328_DACPOWER,
ES8328_DACPOWER_LOUT2_ON, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Out 1", ES8328_DACPOWER,
ES8328_DACPOWER_ROUT1_ON, 0, NULL, 0),
SND_SOC_DAPM_PGA("Left Out 1", ES8328_DACPOWER,
ES8328_DACPOWER_LOUT1_ON, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("LOUT1"),
SND_SOC_DAPM_OUTPUT("ROUT1"),
SND_SOC_DAPM_OUTPUT("LOUT2"),
SND_SOC_DAPM_OUTPUT("ROUT2"),
SND_SOC_DAPM_INPUT("LINPUT1"),
SND_SOC_DAPM_INPUT("LINPUT2"),
SND_SOC_DAPM_INPUT("RINPUT1"),
SND_SOC_DAPM_INPUT("RINPUT2"),
};
static const struct snd_soc_dapm_route es8328_dapm_routes[] = {
{ "Left Line Mux", "Line 1", "LINPUT1" },
{ "Left Line Mux", "Line 2", "LINPUT2" },
{ "Left Line Mux", "PGA", "Left PGA Mux" },
{ "Left Line Mux", "Differential", "Differential Mux" },
{ "Right Line Mux", "Line 1", "RINPUT1" },
{ "Right Line Mux", "Line 2", "RINPUT2" },
{ "Right Line Mux", "PGA", "Right PGA Mux" },
{ "Right Line Mux", "Differential", "Differential Mux" },
{ "Left PGA Mux", "Line 1", "LINPUT1" },
{ "Left PGA Mux", "Line 2", "LINPUT2" },
{ "Left PGA Mux", "Differential", "Differential Mux" },
{ "Right PGA Mux", "Line 1", "RINPUT1" },
{ "Right PGA Mux", "Line 2", "RINPUT2" },
{ "Right PGA Mux", "Differential", "Differential Mux" },
{ "Differential Mux", "Line 1", "LINPUT1" },
{ "Differential Mux", "Line 1", "RINPUT1" },
{ "Differential Mux", "Line 2", "LINPUT2" },
{ "Differential Mux", "Line 2", "RINPUT2" },
{ "Left ADC Mux", "Stereo", "Left PGA Mux" },
{ "Left ADC Mux", "Mono (Left)", "Left PGA Mux" },
{ "Left ADC Mux", "Digital Mono", "Left PGA Mux" },
{ "Right ADC Mux", "Stereo", "Right PGA Mux" },
{ "Right ADC Mux", "Mono (Right)", "Right PGA Mux" },
{ "Right ADC Mux", "Digital Mono", "Right PGA Mux" },
{ "Left ADC", NULL, "Left ADC Mux" },
{ "Right ADC", NULL, "Right ADC Mux" },
{ "ADC DIG", NULL, "ADC STM" },
{ "ADC DIG", NULL, "ADC Vref" },
{ "ADC DIG", NULL, "ADC DLL" },
{ "Left ADC", NULL, "ADC DIG" },
{ "Right ADC", NULL, "ADC DIG" },
{ "Mic Bias", NULL, "Mic Bias Gen" },
{ "Left Line Mux", "Line 1", "LINPUT1" },
{ "Left Line Mux", "Line 2", "LINPUT2" },
{ "Left Line Mux", "PGA", "Left PGA Mux" },
{ "Left Line Mux", "Differential", "Differential Mux" },
{ "Right Line Mux", "Line 1", "RINPUT1" },
{ "Right Line Mux", "Line 2", "RINPUT2" },
{ "Right Line Mux", "PGA", "Right PGA Mux" },
{ "Right Line Mux", "Differential", "Differential Mux" },
{ "Left Mixer", NULL, "Left DAC" },
{ "Left Mixer", "Left Bypass Switch", "Left Line Mux" },
{ "Left Mixer", "Right Playback Switch", "Right DAC" },
{ "Left Mixer", "Right Bypass Switch", "Right Line Mux" },
{ "Right Mixer", "Left Playback Switch", "Left DAC" },
{ "Right Mixer", "Left Bypass Switch", "Left Line Mux" },
{ "Right Mixer", NULL, "Right DAC" },
{ "Right Mixer", "Right Bypass Switch", "Right Line Mux" },
{ "DAC DIG", NULL, "DAC STM" },
{ "DAC DIG", NULL, "DAC Vref" },
{ "DAC DIG", NULL, "DAC DLL" },
{ "Left DAC", NULL, "DAC DIG" },
{ "Right DAC", NULL, "DAC DIG" },
{ "Left Out 1", NULL, "Left Mixer" },
{ "LOUT1", NULL, "Left Out 1" },
{ "Right Out 1", NULL, "Right Mixer" },
{ "ROUT1", NULL, "Right Out 1" },
{ "Left Out 2", NULL, "Left Mixer" },
{ "LOUT2", NULL, "Left Out 2" },
{ "Right Out 2", NULL, "Right Mixer" },
{ "ROUT2", NULL, "Right Out 2" },
};
static int es8328_mute(struct snd_soc_dai *dai, int mute, int direction)
{
return snd_soc_component_update_bits(dai->component, ES8328_DACCONTROL3,
ES8328_DACCONTROL3_DACMUTE,
mute ? ES8328_DACCONTROL3_DACMUTE : 0);
}
static int es8328_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
if (es8328->provider && es8328->sysclk_constraints)
snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
es8328->sysclk_constraints);
return 0;
}
static int es8328_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
int i;
int reg;
int wl;
int ratio;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
reg = ES8328_DACCONTROL2;
else
reg = ES8328_ADCCONTROL5;
if (es8328->provider) {
if (!es8328->sysclk_constraints) {
dev_err(component->dev, "No MCLK configured\n");
return -EINVAL;
}
for (i = 0; i < es8328->sysclk_constraints->count; i++)
if (es8328->sysclk_constraints->list[i] ==
params_rate(params))
break;
if (i == es8328->sysclk_constraints->count) {
dev_err(component->dev,
"LRCLK %d unsupported with current clock\n",
params_rate(params));
return -EINVAL;
}
ratio = es8328->mclk_ratios[i];
} else {
ratio = 0;
es8328->mclkdiv2 = 0;
}
snd_soc_component_update_bits(component, ES8328_MASTERMODE,
ES8328_MASTERMODE_MCLKDIV2,
es8328->mclkdiv2 ? ES8328_MASTERMODE_MCLKDIV2 : 0);
switch (params_width(params)) {
case 16:
wl = 3;
break;
case 18:
wl = 2;
break;
case 20:
wl = 1;
break;
case 24:
wl = 0;
break;
case 32:
wl = 4;
break;
default:
return -EINVAL;
}
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
snd_soc_component_update_bits(component, ES8328_DACCONTROL1,
ES8328_DACCONTROL1_DACWL_MASK,
wl << ES8328_DACCONTROL1_DACWL_SHIFT);
es8328->playback_fs = params_rate(params);
es8328_set_deemph(component);
} else
snd_soc_component_update_bits(component, ES8328_ADCCONTROL4,
ES8328_ADCCONTROL4_ADCWL_MASK,
wl << ES8328_ADCCONTROL4_ADCWL_SHIFT);
return snd_soc_component_update_bits(component, reg, ES8328_RATEMASK, ratio);
}
static int es8328_set_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
int mclkdiv2 = 0;
unsigned int round_freq;
/*
* Allow a small tolerance for frequencies within 100hz. Note
* this value is chosen arbitrarily.
*/
round_freq = DIV_ROUND_CLOSEST(freq, 100) * 100;
switch (round_freq) {
case 0:
es8328->sysclk_constraints = NULL;
es8328->mclk_ratios = NULL;
break;
case 22579200:
mclkdiv2 = 1;
fallthrough;
case 11289600:
es8328->sysclk_constraints = &constraints_11289;
es8328->mclk_ratios = ratios_11289;
break;
case 24576000:
mclkdiv2 = 1;
fallthrough;
case 12288000:
es8328->sysclk_constraints = &constraints_12288;
es8328->mclk_ratios = ratios_12288;
break;
default:
return -EINVAL;
}
es8328->mclkdiv2 = mclkdiv2;
return 0;
}
static int es8328_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct es8328_priv *es8328 = snd_soc_component_get_drvdata(component);
u8 dac_mode = 0;
u8 adc_mode = 0;
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
/* Master serial port mode, with BCLK generated automatically */
snd_soc_component_update_bits(component, ES8328_MASTERMODE,
ES8328_MASTERMODE_MSC,
ES8328_MASTERMODE_MSC);
es8328->provider = true;
break;
case SND_SOC_DAIFMT_CBC_CFC:
/* Slave serial port mode */
snd_soc_component_update_bits(component, ES8328_MASTERMODE,
ES8328_MASTERMODE_MSC, 0);
es8328->provider = false;
break;
default:
return -EINVAL;
}
/* interface format */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
dac_mode |= ES8328_DACCONTROL1_DACFORMAT_I2S;
adc_mode |= ES8328_ADCCONTROL4_ADCFORMAT_I2S;
break;
case SND_SOC_DAIFMT_RIGHT_J:
dac_mode |= ES8328_DACCONTROL1_DACFORMAT_RJUST;
adc_mode |= ES8328_ADCCONTROL4_ADCFORMAT_RJUST;
break;
case SND_SOC_DAIFMT_LEFT_J:
dac_mode |= ES8328_DACCONTROL1_DACFORMAT_LJUST;
adc_mode |= ES8328_ADCCONTROL4_ADCFORMAT_LJUST;
break;
default:
return -EINVAL;
}
/* clock inversion */
if ((fmt & SND_SOC_DAIFMT_INV_MASK) != SND_SOC_DAIFMT_NB_NF)
return -EINVAL;
snd_soc_component_update_bits(component, ES8328_DACCONTROL1,
ES8328_DACCONTROL1_DACFORMAT_MASK, dac_mode);
snd_soc_component_update_bits(component, ES8328_ADCCONTROL4,
ES8328_ADCCONTROL4_ADCFORMAT_MASK, adc_mode);
return 0;
}
static int es8328_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* VREF, VMID=2x50k, digital enabled */
snd_soc_component_write(component, ES8328_CHIPPOWER, 0);
snd_soc_component_update_bits(component, ES8328_CONTROL1,
ES8328_CONTROL1_VMIDSEL_MASK |
ES8328_CONTROL1_ENREF,
ES8328_CONTROL1_VMIDSEL_50k |
ES8328_CONTROL1_ENREF);
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
snd_soc_component_update_bits(component, ES8328_CONTROL1,
ES8328_CONTROL1_VMIDSEL_MASK |
ES8328_CONTROL1_ENREF,
ES8328_CONTROL1_VMIDSEL_5k |
ES8328_CONTROL1_ENREF);
/* Charge caps */
msleep(100);
}
snd_soc_component_write(component, ES8328_CONTROL2,
ES8328_CONTROL2_OVERCURRENT_ON |
ES8328_CONTROL2_THERMAL_SHUTDOWN_ON);
/* VREF, VMID=2*500k, digital stopped */
snd_soc_component_update_bits(component, ES8328_CONTROL1,
ES8328_CONTROL1_VMIDSEL_MASK |
ES8328_CONTROL1_ENREF,
ES8328_CONTROL1_VMIDSEL_500k |
ES8328_CONTROL1_ENREF);
break;
case SND_SOC_BIAS_OFF:
snd_soc_component_update_bits(component, ES8328_CONTROL1,
ES8328_CONTROL1_VMIDSEL_MASK |
ES8328_CONTROL1_ENREF,
0);
break;
}
return 0;
}
static const struct snd_soc_dai_ops es8328_dai_ops = {
.startup = es8328_startup,
.hw_params = es8328_hw_params,
.mute_stream = es8328_mute,
.set_sysclk = es8328_set_sysclk,
.set_fmt = es8328_set_dai_fmt,
.no_capture_mute = 1,
};
static struct snd_soc_dai_driver es8328_dai = {
.name = "es8328-hifi-analog",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = ES8328_RATES,
.formats = ES8328_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 2,
.channels_max = 2,
.rates = ES8328_RATES,
.formats = ES8328_FORMATS,
},
.ops = &es8328_dai_ops,
.symmetric_rate = 1,
};
static int es8328_suspend(struct snd_soc_component *component)
{
struct es8328_priv *es8328;
int ret;
es8328 = snd_soc_component_get_drvdata(component);
clk_disable_unprepare(es8328->clk);
ret = regulator_bulk_disable(ARRAY_SIZE(es8328->supplies),
es8328->supplies);
if (ret) {
dev_err(component->dev, "unable to disable regulators\n");
return ret;
}
return 0;
}
static int es8328_resume(struct snd_soc_component *component)
{
struct regmap *regmap = dev_get_regmap(component->dev, NULL);
struct es8328_priv *es8328;
int ret;
es8328 = snd_soc_component_get_drvdata(component);
ret = clk_prepare_enable(es8328->clk);
if (ret) {
dev_err(component->dev, "unable to enable clock\n");
return ret;
}
ret = regulator_bulk_enable(ARRAY_SIZE(es8328->supplies),
es8328->supplies);
if (ret) {
dev_err(component->dev, "unable to enable regulators\n");
return ret;
}
regcache_mark_dirty(regmap);
ret = regcache_sync(regmap);
if (ret) {
dev_err(component->dev, "unable to sync regcache\n");
return ret;
}
return 0;
}
static int es8328_component_probe(struct snd_soc_component *component)
{
struct es8328_priv *es8328;
int ret;
es8328 = snd_soc_component_get_drvdata(component);
ret = regulator_bulk_enable(ARRAY_SIZE(es8328->supplies),
es8328->supplies);
if (ret) {
dev_err(component->dev, "unable to enable regulators\n");
return ret;
}
/* Setup clocks */
es8328->clk = devm_clk_get(component->dev, NULL);
if (IS_ERR(es8328->clk)) {
dev_err(component->dev, "codec clock missing or invalid\n");
ret = PTR_ERR(es8328->clk);
goto clk_fail;
}
ret = clk_prepare_enable(es8328->clk);
if (ret) {
dev_err(component->dev, "unable to prepare codec clk\n");
goto clk_fail;
}
return 0;
clk_fail:
regulator_bulk_disable(ARRAY_SIZE(es8328->supplies),
es8328->supplies);
return ret;
}
static void es8328_remove(struct snd_soc_component *component)
{
struct es8328_priv *es8328;
es8328 = snd_soc_component_get_drvdata(component);
clk_disable_unprepare(es8328->clk);
regulator_bulk_disable(ARRAY_SIZE(es8328->supplies),
es8328->supplies);
}
const struct regmap_config es8328_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = ES8328_REG_MAX,
.cache_type = REGCACHE_MAPLE,
.use_single_read = true,
.use_single_write = true,
};
EXPORT_SYMBOL_GPL(es8328_regmap_config);
static const struct snd_soc_component_driver es8328_component_driver = {
.probe = es8328_component_probe,
.remove = es8328_remove,
.suspend = es8328_suspend,
.resume = es8328_resume,
.set_bias_level = es8328_set_bias_level,
.controls = es8328_snd_controls,
.num_controls = ARRAY_SIZE(es8328_snd_controls),
.dapm_widgets = es8328_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(es8328_dapm_widgets),
.dapm_routes = es8328_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(es8328_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
};
int es8328_probe(struct device *dev, struct regmap *regmap)
{
struct es8328_priv *es8328;
int ret;
int i;
if (IS_ERR(regmap))
return PTR_ERR(regmap);
es8328 = devm_kzalloc(dev, sizeof(*es8328), GFP_KERNEL);
if (es8328 == NULL)
return -ENOMEM;
es8328->regmap = regmap;
for (i = 0; i < ARRAY_SIZE(es8328->supplies); i++)
es8328->supplies[i].supply = supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(es8328->supplies),
es8328->supplies);
if (ret) {
dev_err(dev, "unable to get regulators\n");
return ret;
}
dev_set_drvdata(dev, es8328);
return devm_snd_soc_register_component(dev,
&es8328_component_driver, &es8328_dai, 1);
}
EXPORT_SYMBOL_GPL(es8328_probe);
MODULE_DESCRIPTION("ASoC ES8328 driver");
MODULE_AUTHOR("Sean Cross <xobs@kosagi.com>");
MODULE_LICENSE("GPL");