mirror of
https://github.com/minetest/minetest.git
synced 2025-03-06 20:48:40 +01:00
202 lines
4.7 KiB
C++
202 lines
4.7 KiB
C++
// Luanti
|
|
// SPDX-License-Identifier: LGPL-2.1-or-later
|
|
// Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
|
|
|
|
#include "numeric.h"
|
|
|
|
#include "log.h"
|
|
#include "constants.h" // BS, MAP_BLOCKSIZE
|
|
#include "noise.h" // PseudoRandom, PcgRandom
|
|
#include <cstring>
|
|
#include <cmath>
|
|
|
|
|
|
// myrand
|
|
|
|
static PcgRandom g_pcgrand;
|
|
|
|
u32 myrand()
|
|
{
|
|
return g_pcgrand.next();
|
|
}
|
|
|
|
void mysrand(unsigned int seed)
|
|
{
|
|
g_pcgrand.seed(seed);
|
|
}
|
|
|
|
void myrand_bytes(void *out, size_t len)
|
|
{
|
|
g_pcgrand.bytes(out, len);
|
|
}
|
|
|
|
float myrand_float()
|
|
{
|
|
u32 uv = g_pcgrand.next();
|
|
return (float)uv / (float)U32_MAX;
|
|
}
|
|
|
|
int myrand_range(int min, int max)
|
|
{
|
|
return g_pcgrand.range(min, max);
|
|
}
|
|
|
|
float myrand_range(float min, float max)
|
|
{
|
|
return (max-min) * myrand_float() + min;
|
|
}
|
|
|
|
|
|
/*
|
|
64-bit unaligned version of MurmurHash
|
|
*/
|
|
u64 murmur_hash_64_ua(const void *key, int len, unsigned int seed)
|
|
{
|
|
const u64 m = 0xc6a4a7935bd1e995ULL;
|
|
const int r = 47;
|
|
u64 h = seed ^ (len * m);
|
|
|
|
const u8 *data = (const u8 *)key;
|
|
const u8 *end = data + (len / 8) * 8;
|
|
|
|
while (data != end) {
|
|
u64 k;
|
|
memcpy(&k, data, sizeof(u64));
|
|
data += sizeof(u64);
|
|
|
|
k *= m;
|
|
k ^= k >> r;
|
|
k *= m;
|
|
|
|
h ^= k;
|
|
h *= m;
|
|
}
|
|
|
|
switch (len & 7) {
|
|
case 7: h ^= (u64)data[6] << 48; [[fallthrough]];
|
|
case 6: h ^= (u64)data[5] << 40; [[fallthrough]];
|
|
case 5: h ^= (u64)data[4] << 32; [[fallthrough]];
|
|
case 4: h ^= (u64)data[3] << 24; [[fallthrough]];
|
|
case 3: h ^= (u64)data[2] << 16; [[fallthrough]];
|
|
case 2: h ^= (u64)data[1] << 8; [[fallthrough]];
|
|
case 1: h ^= (u64)data[0];
|
|
h *= m;
|
|
}
|
|
|
|
h ^= h >> r;
|
|
h *= m;
|
|
h ^= h >> r;
|
|
|
|
return h;
|
|
}
|
|
|
|
/*
|
|
blockpos_b: position of block in block coordinates
|
|
camera_pos: position of camera in nodes
|
|
camera_dir: an unit vector pointing to camera direction
|
|
range: viewing range
|
|
distance_ptr: return location for distance from the camera
|
|
*/
|
|
bool isBlockInSight(v3s16 blockpos_b, v3f camera_pos, v3f camera_dir,
|
|
f32 camera_fov, f32 range, f32 *distance_ptr)
|
|
{
|
|
v3s16 blockpos_nodes = blockpos_b * MAP_BLOCKSIZE;
|
|
|
|
// Block center position
|
|
v3f blockpos = v3f::from(blockpos_nodes + MAP_BLOCKSIZE / 2) * BS;
|
|
|
|
// Block position relative to camera
|
|
v3f blockpos_relative = blockpos - camera_pos;
|
|
|
|
// Total distance
|
|
f32 d = MYMAX(0, blockpos_relative.getLength() - BLOCK_MAX_RADIUS);
|
|
|
|
if (distance_ptr)
|
|
*distance_ptr = d;
|
|
|
|
// If block is far away, it's not in sight
|
|
if (d > range)
|
|
return false;
|
|
|
|
// If block is (nearly) touching the camera, don't
|
|
// bother validating further (that is, render it anyway)
|
|
if (d == 0)
|
|
return true;
|
|
|
|
// Adjust camera position, for purposes of computing the angle,
|
|
// such that a block that has any portion visible with the
|
|
// current camera position will have the center visible at the
|
|
// adjusted position
|
|
f32 adjdist = BLOCK_MAX_RADIUS / cos((M_PI - camera_fov) / 2);
|
|
|
|
// Block position relative to adjusted camera
|
|
v3f blockpos_adj = blockpos - (camera_pos - camera_dir * adjdist);
|
|
|
|
// Distance in camera direction (+=front, -=back)
|
|
f32 dforward = blockpos_adj.dotProduct(camera_dir);
|
|
|
|
// Cosine of the angle between the camera direction
|
|
// and the block direction (camera_dir is an unit vector)
|
|
f32 cosangle = dforward / blockpos_adj.getLength();
|
|
|
|
// If block is not in the field of view, skip it
|
|
// HOTFIX: use sligthly increased angle (+10%) to fix too aggressive
|
|
// culling. Somebody have to find out whats wrong with the math here.
|
|
// Previous value: camera_fov / 2
|
|
if (cosangle < std::cos(camera_fov * 0.55f))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
inline float adjustDist(float dist, float zoom_fov)
|
|
{
|
|
// 1.775 ~= 72 * PI / 180 * 1.4, the default FOV on the client.
|
|
// The heuristic threshold for zooming is half of that.
|
|
static constexpr const float threshold_fov = 1.775f / 2.0f;
|
|
if (zoom_fov < 0.001f || zoom_fov > threshold_fov)
|
|
return dist;
|
|
|
|
return dist * std::cbrt((1.0f - std::cos(threshold_fov)) /
|
|
(1.0f - std::cos(zoom_fov / 2.0f)));
|
|
}
|
|
|
|
s16 adjustDist(s16 dist, float zoom_fov)
|
|
{
|
|
return std::round(adjustDist((float)dist, zoom_fov));
|
|
}
|
|
|
|
void setPitchYawRollRad(core::matrix4 &m, v3f rot)
|
|
{
|
|
f64 a1 = rot.Z, a2 = rot.X, a3 = rot.Y;
|
|
f64 c1 = cos(a1), s1 = sin(a1);
|
|
f64 c2 = cos(a2), s2 = sin(a2);
|
|
f64 c3 = cos(a3), s3 = sin(a3);
|
|
f32 *M = m.pointer();
|
|
|
|
M[0] = s1 * s2 * s3 + c1 * c3;
|
|
M[1] = s1 * c2;
|
|
M[2] = s1 * s2 * c3 - c1 * s3;
|
|
|
|
M[4] = c1 * s2 * s3 - s1 * c3;
|
|
M[5] = c1 * c2;
|
|
M[6] = c1 * s2 * c3 + s1 * s3;
|
|
|
|
M[8] = c2 * s3;
|
|
M[9] = -s2;
|
|
M[10] = c2 * c3;
|
|
}
|
|
|
|
v3f getPitchYawRollRad(const core::matrix4 &m)
|
|
{
|
|
const f32 *M = m.pointer();
|
|
|
|
f64 a1 = atan2(M[1], M[5]);
|
|
f32 c2 = std::sqrt((f64)M[10]*M[10] + (f64)M[8]*M[8]);
|
|
f32 a2 = atan2f(-M[9], c2);
|
|
f64 c1 = cos(a1);
|
|
f64 s1 = sin(a1);
|
|
f32 a3 = atan2f(s1*M[6] - c1*M[2], c1*M[0] - s1*M[4]);
|
|
|
|
return v3f(a2, a3, a1);
|
|
}
|