clean up powl.c

fix special cases, use multiplication instead of scalbnl
This commit is contained in:
nsz 2012-03-20 19:59:50 +01:00
parent 1e2fea632b
commit 615bbd365f

View file

@ -78,8 +78,6 @@ long double powl(long double x, long double y)
/* Table size */
#define NXT 32
/* log2(Table size) */
#define LNXT 5
/* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z)
* on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1
@ -203,38 +201,35 @@ long double powl(long double x, long double y)
volatile long double z=0;
long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
if (y == 0.0)
return 1.0;
if (isnan(x))
/* make sure no invalid exception is raised by nan comparision */
if (isnan(x)) {
if (!isnan(y) && y == 0.0)
return 1.0;
return x;
if (isnan(y))
}
if (isnan(y)) {
if (x == 1.0)
return 1.0;
return y;
}
if (x == 1.0)
return 1.0; /* 1**y = 1, even if y is nan */
if (x == -1.0 && !isfinite(y))
return 1.0; /* -1**inf = 1 */
if (y == 0.0)
return 1.0; /* x**0 = 1, even if x is nan */
if (y == 1.0)
return x;
// FIXME: this is wrong, see pow special cases in c99 F.9.4.4
if (!isfinite(y) && (x == -1.0 || x == 1.0) )
return y - y; /* +-1**inf is NaN */
if (x == 1.0)
return 1.0;
if (y >= LDBL_MAX) {
if (x > 1.0)
if (x > 1.0 || x < -1.0)
return INFINITY;
if (x > 0.0 && x < 1.0)
return 0.0;
if (x < -1.0)
return INFINITY;
if (x > -1.0 && x < 0.0)
if (x != 0.0)
return 0.0;
}
if (y <= -LDBL_MAX) {
if (x > 1.0)
if (x > 1.0 || x < -1.0)
return 0.0;
if (x > 0.0 && x < 1.0)
return INFINITY;
if (x < -1.0)
return 0.0;
if (x > -1.0 && x < 0.0)
if (x != 0.0)
return INFINITY;
}
if (x >= LDBL_MAX) {
@ -244,6 +239,7 @@ long double powl(long double x, long double y)
}
w = floorl(y);
/* Set iyflg to 1 if y is an integer. */
iyflg = 0;
if (w == y)
@ -271,43 +267,33 @@ long double powl(long double x, long double y)
return 0.0;
}
}
nflg = 0; /* flag = 1 if x<0 raised to integer power */
nflg = 0; /* (x<0)**(odd int) */
if (x <= 0.0) {
if (x == 0.0) {
if (y < 0.0) {
if (signbit(x) && yoddint)
return -INFINITY;
return INFINITY;
/* (-0.0)**(-odd int) = -inf, divbyzero */
return -1.0/0.0;
/* (+-0.0)**(negative) = inf, divbyzero */
return 1.0/0.0;
}
if (y > 0.0) {
if (signbit(x) && yoddint)
return -0.0;
return 0.0;
}
if (y == 0.0)
return 1.0; /* 0**0 */
return 0.0; /* 0**y */
if (signbit(x) && yoddint)
return -0.0;
return 0.0;
}
if (iyflg == 0)
return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
nflg = 1;
/* (x<0)**(integer) */
if (yoddint)
nflg = 1; /* negate result */
x = -x;
}
/* Integer power of an integer. */
if (iyflg) {
i = w;
w = floorl(x);
if (w == x && fabsl(y) < 32768.0) {
w = powil(x, (int)y);
return w;
}
/* (+integer)**(integer) */
if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
w = powil(x, (int)y);
return nflg ? -w : w;
}
if (nflg)
x = fabsl(x);
/* separate significand from exponent */
x = frexpl(x, &i);
e = i;
@ -354,9 +340,7 @@ long double powl(long double x, long double y)
z += x;
/* Compute exponent term of the base 2 logarithm. */
w = -i;
// TODO: use w * 0x1p-5;
w = scalbnl(w, -LNXT); /* divide by NXT */
w = -i / NXT;
w += e;
/* Now base 2 log of x is w + z. */
@ -381,7 +365,7 @@ long double powl(long double x, long double y)
H = Fb + Gb;
Ha = reducl(H);
w = scalbnl( Ga+Ha, LNXT );
w = (Ga + Ha) * NXT;
/* Test the power of 2 for overflow */
if (w > MEXP)
@ -418,18 +402,8 @@ long double powl(long double x, long double y)
z = z + w;
z = scalbnl(z, i); /* multiply by integer power of 2 */
if (nflg) {
/* For negative x,
* find out if the integer exponent
* is odd or even.
*/
w = 0.5*y;
w = floorl(w);
w = 2.0*w;
if (w != y)
z = -z; /* odd exponent */
}
if (nflg)
z = -z;
return z;
}
@ -439,15 +413,14 @@ static long double reducl(long double x)
{
long double t;
t = scalbnl(x, LNXT);
t = x * NXT;
t = floorl(t);
t = scalbnl(t, -LNXT);
t = t / NXT;
return t;
}
/* powil.c
*
* Real raised to integer power, long double precision
/*
* Positive real raised to integer power, long double precision
*
*
* SYNOPSIS:
@ -460,7 +433,7 @@ static long double reducl(long double x)
*
* DESCRIPTION:
*
* Returns argument x raised to the nth power.
* Returns argument x>0 raised to the nth power.
* The routine efficiently decomposes n as a sum of powers of
* two. The desired power is a product of two-to-the-kth
* powers of x. Thus to compute the 32767 power of x requires
@ -482,25 +455,11 @@ static long double powil(long double x, int nn)
{
long double ww, y;
long double s;
int n, e, sign, asign, lx;
if (x == 0.0) {
if (nn == 0)
return 1.0;
else if (nn < 0)
return LDBL_MAX;
return 0.0;
}
int n, e, sign, lx;
if (nn == 0)
return 1.0;
if (x < 0.0) {
asign = -1;
x = -x;
} else
asign = 0;
if (nn < 0) {
sign = -1;
n = -nn;
@ -539,10 +498,8 @@ static long double powil(long double x, int nn)
/* First bit of the power */
if (n & 1)
y = x;
else {
else
y = 1.0;
asign = 0;
}
ww = x;
n >>= 1;
@ -553,8 +510,6 @@ static long double powil(long double x, int nn)
n >>= 1;
}
if (asign)
y = -y; /* odd power of negative number */
if (sign < 0)
y = 1.0/y;
return y;