libs: Import the math library from upstream musl 1.2.3.
This commit is contained in:
parent
35f9091bee
commit
438553e923
150 changed files with 10975 additions and 3 deletions
27
configure
vendored
27
configure
vendored
|
@ -725,6 +725,8 @@ TIFF_PE_LIBS
|
|||
TIFF_PE_CFLAGS
|
||||
PNG_PE_LIBS
|
||||
PNG_PE_CFLAGS
|
||||
MUSL_PE_LIBS
|
||||
MUSL_PE_CFLAGS
|
||||
MPG123_PE_LIBS
|
||||
MPG123_PE_CFLAGS
|
||||
LDAP_PE_LIBS
|
||||
|
@ -1577,6 +1579,7 @@ enable_lcms2
|
|||
enable_ldap
|
||||
enable_mfuuid
|
||||
enable_mpg123
|
||||
enable_musl
|
||||
enable_png
|
||||
enable_strmbase
|
||||
enable_strmiids
|
||||
|
@ -1734,6 +1737,8 @@ LDAP_PE_CFLAGS
|
|||
LDAP_PE_LIBS
|
||||
MPG123_PE_CFLAGS
|
||||
MPG123_PE_LIBS
|
||||
MUSL_PE_CFLAGS
|
||||
MUSL_PE_LIBS
|
||||
PNG_PE_CFLAGS
|
||||
PNG_PE_LIBS
|
||||
TIFF_PE_CFLAGS
|
||||
|
@ -2526,6 +2531,10 @@ Some influential environment variables:
|
|||
version
|
||||
MPG123_PE_LIBS
|
||||
Linker flags for the PE mpg123, overriding the bundled version
|
||||
MUSL_PE_CFLAGS
|
||||
C compiler flags for the PE musl, overriding the bundled version
|
||||
MUSL_PE_LIBS
|
||||
Linker flags for the PE musl, overriding the bundled version
|
||||
PNG_PE_CFLAGS
|
||||
C compiler flags for the PE png, overriding the bundled version
|
||||
PNG_PE_LIBS Linker flags for the PE png, overriding the bundled version
|
||||
|
@ -13161,6 +13170,21 @@ fi
|
|||
printf "%s\n" "$as_me:${as_lineno-$LINENO}: mpg123 cflags: $MPG123_PE_CFLAGS" >&5
|
||||
printf "%s\n" "$as_me:${as_lineno-$LINENO}: mpg123 libs: $MPG123_PE_LIBS" >&5
|
||||
|
||||
if ${MUSL_PE_LIBS:+false} :
|
||||
then :
|
||||
MUSL_PE_LIBS=musl
|
||||
if ${MUSL_PE_CFLAGS:+false} :
|
||||
then :
|
||||
MUSL_PE_CFLAGS=
|
||||
else $as_nop
|
||||
enable_musl=no
|
||||
fi
|
||||
else $as_nop
|
||||
enable_musl=no
|
||||
fi
|
||||
printf "%s\n" "$as_me:${as_lineno-$LINENO}: musl cflags: $MUSL_PE_CFLAGS" >&5
|
||||
printf "%s\n" "$as_me:${as_lineno-$LINENO}: musl libs: $MUSL_PE_LIBS" >&5
|
||||
|
||||
if ${PNG_PE_LIBS:+false} :
|
||||
then :
|
||||
PNG_PE_LIBS="png \$(ZLIB_PE_LIBS)"
|
||||
|
@ -21976,6 +22000,7 @@ wine_fn_config_makefile libs/lcms2 enable_lcms2
|
|||
wine_fn_config_makefile libs/ldap enable_ldap
|
||||
wine_fn_config_makefile libs/mfuuid enable_mfuuid
|
||||
wine_fn_config_makefile libs/mpg123 enable_mpg123
|
||||
wine_fn_config_makefile libs/musl enable_musl
|
||||
wine_fn_config_makefile libs/png enable_png
|
||||
wine_fn_config_makefile libs/strmbase enable_strmbase
|
||||
wine_fn_config_makefile libs/strmiids enable_strmiids
|
||||
|
@ -23128,6 +23153,8 @@ LDAP_PE_CFLAGS = $LDAP_PE_CFLAGS
|
|||
LDAP_PE_LIBS = $LDAP_PE_LIBS
|
||||
MPG123_PE_CFLAGS = $MPG123_PE_CFLAGS
|
||||
MPG123_PE_LIBS = $MPG123_PE_LIBS
|
||||
MUSL_PE_CFLAGS = $MUSL_PE_CFLAGS
|
||||
MUSL_PE_LIBS = $MUSL_PE_LIBS
|
||||
PNG_PE_CFLAGS = $PNG_PE_CFLAGS
|
||||
PNG_PE_LIBS = $PNG_PE_LIBS
|
||||
TIFF_PE_CFLAGS = $TIFF_PE_CFLAGS
|
||||
|
|
|
@ -1121,6 +1121,7 @@ WINE_EXTLIB_FLAGS(JXR, jxr, jxr, "-I\$(top_srcdir)/libs/jxr/jxrgluelib -I\$(top_
|
|||
WINE_EXTLIB_FLAGS(LCMS2, lcms2, lcms2, "-I\$(top_srcdir)/libs/lcms2/include")
|
||||
WINE_EXTLIB_FLAGS(LDAP, ldap, ldap, "-I\$(top_srcdir)/libs/ldap/include")
|
||||
WINE_EXTLIB_FLAGS(MPG123, mpg123, mpg123, "-I\$(top_srcdir)/libs/mpg123/src/libmpg123")
|
||||
WINE_EXTLIB_FLAGS(MUSL, musl, musl)
|
||||
WINE_EXTLIB_FLAGS(PNG, png, "png \$(ZLIB_PE_LIBS)", "-I\$(top_srcdir)/libs/png")
|
||||
WINE_EXTLIB_FLAGS(TIFF, tiff, "tiff \$(ZLIB_PE_LIBS)", "-I\$(top_srcdir)/libs/tiff/libtiff")
|
||||
WINE_EXTLIB_FLAGS(VKD3D, vkd3d, vkd3d, "-I\$(top_srcdir)/libs/vkd3d/include")
|
||||
|
@ -3284,6 +3285,7 @@ WINE_CONFIG_MAKEFILE(libs/lcms2)
|
|||
WINE_CONFIG_MAKEFILE(libs/ldap)
|
||||
WINE_CONFIG_MAKEFILE(libs/mfuuid)
|
||||
WINE_CONFIG_MAKEFILE(libs/mpg123)
|
||||
WINE_CONFIG_MAKEFILE(libs/musl)
|
||||
WINE_CONFIG_MAKEFILE(libs/png)
|
||||
WINE_CONFIG_MAKEFILE(libs/strmbase)
|
||||
WINE_CONFIG_MAKEFILE(libs/strmiids)
|
||||
|
|
|
@ -136,7 +136,7 @@ _ACRTIMP int __cdecl _fpclass(double);
|
|||
|
||||
_ACRTIMP double __cdecl nextafter(double, double);
|
||||
|
||||
#ifndef __i386__
|
||||
#if !defined(__i386__) || defined(_NO_CRT_MATH_INLINE)
|
||||
|
||||
_ACRTIMP float __cdecl sinf(float);
|
||||
_ACRTIMP float __cdecl cosf(float);
|
||||
|
@ -206,13 +206,13 @@ static inline int _fpclassf(float x)
|
|||
|
||||
#endif
|
||||
|
||||
#if !defined(__i386__) && !defined(__x86_64__) && (_MSVCR_VER == 0 || _MSVCR_VER >= 110)
|
||||
#if (!defined(__i386__) && !defined(__x86_64__) && (_MSVCR_VER == 0 || _MSVCR_VER >= 110)) || defined(_NO_CRT_MATH_INLINE)
|
||||
_ACRTIMP float __cdecl fabsf(float);
|
||||
#else
|
||||
static inline float fabsf(float x) { return fabs(x); }
|
||||
#endif
|
||||
|
||||
#if !defined(__i386__) || _MSVCR_VER>=120
|
||||
#if !defined(__i386__) || _MSVCR_VER>=120 || defined(_NO_CRT_MATH_INLINE)
|
||||
|
||||
_ACRTIMP float __cdecl _chgsignf(float);
|
||||
_ACRTIMP float __cdecl _copysignf(float, float);
|
||||
|
|
193
libs/musl/COPYRIGHT
Normal file
193
libs/musl/COPYRIGHT
Normal file
|
@ -0,0 +1,193 @@
|
|||
musl as a whole is licensed under the following standard MIT license:
|
||||
|
||||
----------------------------------------------------------------------
|
||||
Copyright © 2005-2020 Rich Felker, et al.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be
|
||||
included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
----------------------------------------------------------------------
|
||||
|
||||
Authors/contributors include:
|
||||
|
||||
A. Wilcox
|
||||
Ada Worcester
|
||||
Alex Dowad
|
||||
Alex Suykov
|
||||
Alexander Monakov
|
||||
Andre McCurdy
|
||||
Andrew Kelley
|
||||
Anthony G. Basile
|
||||
Aric Belsito
|
||||
Arvid Picciani
|
||||
Bartosz Brachaczek
|
||||
Benjamin Peterson
|
||||
Bobby Bingham
|
||||
Boris Brezillon
|
||||
Brent Cook
|
||||
Chris Spiegel
|
||||
Clément Vasseur
|
||||
Daniel Micay
|
||||
Daniel Sabogal
|
||||
Daurnimator
|
||||
David Carlier
|
||||
David Edelsohn
|
||||
Denys Vlasenko
|
||||
Dmitry Ivanov
|
||||
Dmitry V. Levin
|
||||
Drew DeVault
|
||||
Emil Renner Berthing
|
||||
Fangrui Song
|
||||
Felix Fietkau
|
||||
Felix Janda
|
||||
Gianluca Anzolin
|
||||
Hauke Mehrtens
|
||||
He X
|
||||
Hiltjo Posthuma
|
||||
Isaac Dunham
|
||||
Jaydeep Patil
|
||||
Jens Gustedt
|
||||
Jeremy Huntwork
|
||||
Jo-Philipp Wich
|
||||
Joakim Sindholt
|
||||
John Spencer
|
||||
Julien Ramseier
|
||||
Justin Cormack
|
||||
Kaarle Ritvanen
|
||||
Khem Raj
|
||||
Kylie McClain
|
||||
Leah Neukirchen
|
||||
Luca Barbato
|
||||
Luka Perkov
|
||||
M Farkas-Dyck (Strake)
|
||||
Mahesh Bodapati
|
||||
Markus Wichmann
|
||||
Masanori Ogino
|
||||
Michael Clark
|
||||
Michael Forney
|
||||
Mikhail Kremnyov
|
||||
Natanael Copa
|
||||
Nicholas J. Kain
|
||||
orc
|
||||
Pascal Cuoq
|
||||
Patrick Oppenlander
|
||||
Petr Hosek
|
||||
Petr Skocik
|
||||
Pierre Carrier
|
||||
Reini Urban
|
||||
Rich Felker
|
||||
Richard Pennington
|
||||
Ryan Fairfax
|
||||
Samuel Holland
|
||||
Segev Finer
|
||||
Shiz
|
||||
sin
|
||||
Solar Designer
|
||||
Stefan Kristiansson
|
||||
Stefan O'Rear
|
||||
Szabolcs Nagy
|
||||
Timo Teräs
|
||||
Trutz Behn
|
||||
Valentin Ochs
|
||||
Will Dietz
|
||||
William Haddon
|
||||
William Pitcock
|
||||
|
||||
Portions of this software are derived from third-party works licensed
|
||||
under terms compatible with the above MIT license:
|
||||
|
||||
The TRE regular expression implementation (src/regex/reg* and
|
||||
src/regex/tre*) is Copyright © 2001-2008 Ville Laurikari and licensed
|
||||
under a 2-clause BSD license (license text in the source files). The
|
||||
included version has been heavily modified by Rich Felker in 2012, in
|
||||
the interests of size, simplicity, and namespace cleanliness.
|
||||
|
||||
Much of the math library code (src/math/* and src/complex/*) is
|
||||
Copyright © 1993,2004 Sun Microsystems or
|
||||
Copyright © 2003-2011 David Schultz or
|
||||
Copyright © 2003-2009 Steven G. Kargl or
|
||||
Copyright © 2003-2009 Bruce D. Evans or
|
||||
Copyright © 2008 Stephen L. Moshier or
|
||||
Copyright © 2017-2018 Arm Limited
|
||||
and labelled as such in comments in the individual source files. All
|
||||
have been licensed under extremely permissive terms.
|
||||
|
||||
The ARM memcpy code (src/string/arm/memcpy.S) is Copyright © 2008
|
||||
The Android Open Source Project and is licensed under a two-clause BSD
|
||||
license. It was taken from Bionic libc, used on Android.
|
||||
|
||||
The AArch64 memcpy and memset code (src/string/aarch64/*) are
|
||||
Copyright © 1999-2019, Arm Limited.
|
||||
|
||||
The implementation of DES for crypt (src/crypt/crypt_des.c) is
|
||||
Copyright © 1994 David Burren. It is licensed under a BSD license.
|
||||
|
||||
The implementation of blowfish crypt (src/crypt/crypt_blowfish.c) was
|
||||
originally written by Solar Designer and placed into the public
|
||||
domain. The code also comes with a fallback permissive license for use
|
||||
in jurisdictions that may not recognize the public domain.
|
||||
|
||||
The smoothsort implementation (src/stdlib/qsort.c) is Copyright © 2011
|
||||
Valentin Ochs and is licensed under an MIT-style license.
|
||||
|
||||
The x86_64 port was written by Nicholas J. Kain and is licensed under
|
||||
the standard MIT terms.
|
||||
|
||||
The mips and microblaze ports were originally written by Richard
|
||||
Pennington for use in the ellcc project. The original code was adapted
|
||||
by Rich Felker for build system and code conventions during upstream
|
||||
integration. It is licensed under the standard MIT terms.
|
||||
|
||||
The mips64 port was contributed by Imagination Technologies and is
|
||||
licensed under the standard MIT terms.
|
||||
|
||||
The powerpc port was also originally written by Richard Pennington,
|
||||
and later supplemented and integrated by John Spencer. It is licensed
|
||||
under the standard MIT terms.
|
||||
|
||||
All other files which have no copyright comments are original works
|
||||
produced specifically for use as part of this library, written either
|
||||
by Rich Felker, the main author of the library, or by one or more
|
||||
contibutors listed above. Details on authorship of individual files
|
||||
can be found in the git version control history of the project. The
|
||||
omission of copyright and license comments in each file is in the
|
||||
interest of source tree size.
|
||||
|
||||
In addition, permission is hereby granted for all public header files
|
||||
(include/* and arch/*/bits/*) and crt files intended to be linked into
|
||||
applications (crt/*, ldso/dlstart.c, and arch/*/crt_arch.h) to omit
|
||||
the copyright notice and permission notice otherwise required by the
|
||||
license, and to use these files without any requirement of
|
||||
attribution. These files include substantial contributions from:
|
||||
|
||||
Bobby Bingham
|
||||
John Spencer
|
||||
Nicholas J. Kain
|
||||
Rich Felker
|
||||
Richard Pennington
|
||||
Stefan Kristiansson
|
||||
Szabolcs Nagy
|
||||
|
||||
all of whom have explicitly granted such permission.
|
||||
|
||||
This file previously contained text expressing a belief that most of
|
||||
the files covered by the above exception were sufficiently trivial not
|
||||
to be subject to copyright, resulting in confusion over whether it
|
||||
negated the permissions granted in the license. In the spirit of
|
||||
permissive licensing, and of not having licensing issues being an
|
||||
obstacle to adoption, that text has been removed.
|
138
libs/musl/Makefile.in
Normal file
138
libs/musl/Makefile.in
Normal file
|
@ -0,0 +1,138 @@
|
|||
EXTLIB = libmusl.a
|
||||
EXTRAINCL = -I$(srcdir)/src/internal -I$(srcdir)/arch/generic
|
||||
EXTRADEFS = -D_ACRTIMP= -D_NO_CRT_MATH_INLINE
|
||||
|
||||
SOURCES = \
|
||||
src/math/__cos.c \
|
||||
src/math/__cosdf.c \
|
||||
src/math/__expo2.c \
|
||||
src/math/__expo2f.c \
|
||||
src/math/__fpclassify.c \
|
||||
src/math/__fpclassifyf.c \
|
||||
src/math/__math_divzero.c \
|
||||
src/math/__math_divzerof.c \
|
||||
src/math/__math_invalid.c \
|
||||
src/math/__math_invalidf.c \
|
||||
src/math/__rem_pio2.c \
|
||||
src/math/__rem_pio2_large.c \
|
||||
src/math/__rem_pio2f.c \
|
||||
src/math/__sin.c \
|
||||
src/math/__sindf.c \
|
||||
src/math/__tan.c \
|
||||
src/math/__tandf.c \
|
||||
src/math/acos.c \
|
||||
src/math/acosf.c \
|
||||
src/math/acosh.c \
|
||||
src/math/acoshf.c \
|
||||
src/math/asin.c \
|
||||
src/math/asinf.c \
|
||||
src/math/asinh.c \
|
||||
src/math/asinhf.c \
|
||||
src/math/atan.c \
|
||||
src/math/atan2.c \
|
||||
src/math/atan2f.c \
|
||||
src/math/atanf.c \
|
||||
src/math/atanh.c \
|
||||
src/math/atanhf.c \
|
||||
src/math/cbrt.c \
|
||||
src/math/cbrtf.c \
|
||||
src/math/ceil.c \
|
||||
src/math/ceilf.c \
|
||||
src/math/copysign.c \
|
||||
src/math/copysignf.c \
|
||||
src/math/cos.c \
|
||||
src/math/cosf.c \
|
||||
src/math/cosh.c \
|
||||
src/math/coshf.c \
|
||||
src/math/erf.c \
|
||||
src/math/erff.c \
|
||||
src/math/exp.c \
|
||||
src/math/exp2.c \
|
||||
src/math/exp2f.c \
|
||||
src/math/exp2f_data.c \
|
||||
src/math/exp_data.c \
|
||||
src/math/expf.c \
|
||||
src/math/expm1.c \
|
||||
src/math/expm1f.c \
|
||||
src/math/fabs.c \
|
||||
src/math/fabsf.c \
|
||||
src/math/fdim.c \
|
||||
src/math/fdimf.c \
|
||||
src/math/floor.c \
|
||||
src/math/floorf.c \
|
||||
src/math/fma.c \
|
||||
src/math/fmaf.c \
|
||||
src/math/fmax.c \
|
||||
src/math/fmaxf.c \
|
||||
src/math/fmin.c \
|
||||
src/math/fminf.c \
|
||||
src/math/fmod.c \
|
||||
src/math/fmodf.c \
|
||||
src/math/frexp.c \
|
||||
src/math/frexpf.c \
|
||||
src/math/hypot.c \
|
||||
src/math/hypotf.c \
|
||||
src/math/ilogb.c \
|
||||
src/math/ilogbf.c \
|
||||
src/math/j0.c \
|
||||
src/math/j1.c \
|
||||
src/math/jn.c \
|
||||
src/math/ldexp.c \
|
||||
src/math/lgamma.c \
|
||||
src/math/lgamma_r.c \
|
||||
src/math/lgammaf.c \
|
||||
src/math/lgammaf_r.c \
|
||||
src/math/log.c \
|
||||
src/math/log10.c \
|
||||
src/math/log10f.c \
|
||||
src/math/log1p.c \
|
||||
src/math/log1pf.c \
|
||||
src/math/log2.c \
|
||||
src/math/log2_data.c \
|
||||
src/math/log2f.c \
|
||||
src/math/log2f_data.c \
|
||||
src/math/log_data.c \
|
||||
src/math/logb.c \
|
||||
src/math/logbf.c \
|
||||
src/math/logf.c \
|
||||
src/math/logf_data.c \
|
||||
src/math/modf.c \
|
||||
src/math/modff.c \
|
||||
src/math/nan.c \
|
||||
src/math/nanf.c \
|
||||
src/math/nextafter.c \
|
||||
src/math/nextafterf.c \
|
||||
src/math/nexttoward.c \
|
||||
src/math/nexttowardf.c \
|
||||
src/math/pow.c \
|
||||
src/math/pow_data.c \
|
||||
src/math/powf.c \
|
||||
src/math/powf_data.c \
|
||||
src/math/remainder.c \
|
||||
src/math/remainderf.c \
|
||||
src/math/remquo.c \
|
||||
src/math/remquof.c \
|
||||
src/math/rint.c \
|
||||
src/math/rintf.c \
|
||||
src/math/round.c \
|
||||
src/math/roundf.c \
|
||||
src/math/scalbn.c \
|
||||
src/math/scalbnf.c \
|
||||
src/math/signgam.c \
|
||||
src/math/sin.c \
|
||||
src/math/sincos.c \
|
||||
src/math/sincosf.c \
|
||||
src/math/sinf.c \
|
||||
src/math/sinh.c \
|
||||
src/math/sinhf.c \
|
||||
src/math/sqrt.c \
|
||||
src/math/sqrt_data.c \
|
||||
src/math/sqrtf.c \
|
||||
src/math/tan.c \
|
||||
src/math/tanf.c \
|
||||
src/math/tanh.c \
|
||||
src/math/tanhf.c \
|
||||
src/math/tgamma.c \
|
||||
src/math/tgammaf.c \
|
||||
src/math/trunc.c \
|
||||
src/math/truncf.c
|
1
libs/musl/VERSION
Normal file
1
libs/musl/VERSION
Normal file
|
@ -0,0 +1 @@
|
|||
1.2.3
|
8
libs/musl/src/internal/features.h
Normal file
8
libs/musl/src/internal/features.h
Normal file
|
@ -0,0 +1,8 @@
|
|||
#ifndef FEATURES_H
|
||||
#define FEATURES_H
|
||||
|
||||
#define weak
|
||||
#define hidden
|
||||
#define weak_alias(old, new)
|
||||
|
||||
#endif
|
277
libs/musl/src/internal/libm.h
Normal file
277
libs/musl/src/internal/libm.h
Normal file
|
@ -0,0 +1,277 @@
|
|||
#ifndef _LIBM_H
|
||||
#define _LIBM_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <errno.h>
|
||||
#include <features.h>
|
||||
|
||||
typedef float float_t;
|
||||
typedef double double_t;
|
||||
|
||||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||||
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
union ldshape {
|
||||
long double f;
|
||||
struct {
|
||||
uint64_t m;
|
||||
uint16_t se;
|
||||
} i;
|
||||
};
|
||||
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
|
||||
/* This is the m68k variant of 80-bit long double, and this definition only works
|
||||
* on archs where the alignment requirement of uint64_t is <= 4. */
|
||||
union ldshape {
|
||||
long double f;
|
||||
struct {
|
||||
uint16_t se;
|
||||
uint16_t pad;
|
||||
uint64_t m;
|
||||
} i;
|
||||
};
|
||||
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
union ldshape {
|
||||
long double f;
|
||||
struct {
|
||||
uint64_t lo;
|
||||
uint32_t mid;
|
||||
uint16_t top;
|
||||
uint16_t se;
|
||||
} i;
|
||||
struct {
|
||||
uint64_t lo;
|
||||
uint64_t hi;
|
||||
} i2;
|
||||
};
|
||||
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
|
||||
union ldshape {
|
||||
long double f;
|
||||
struct {
|
||||
uint16_t se;
|
||||
uint16_t top;
|
||||
uint32_t mid;
|
||||
uint64_t lo;
|
||||
} i;
|
||||
struct {
|
||||
uint64_t hi;
|
||||
uint64_t lo;
|
||||
} i2;
|
||||
};
|
||||
#else
|
||||
#error Unsupported long double representation
|
||||
#endif
|
||||
|
||||
/* Support non-nearest rounding mode. */
|
||||
#define WANT_ROUNDING 1
|
||||
/* Support signaling NaNs. */
|
||||
#define WANT_SNAN 0
|
||||
|
||||
#if WANT_SNAN
|
||||
#error SNaN is unsupported
|
||||
#else
|
||||
#define issignalingf_inline(x) 0
|
||||
#define issignaling_inline(x) 0
|
||||
#endif
|
||||
|
||||
#ifndef TOINT_INTRINSICS
|
||||
#define TOINT_INTRINSICS 0
|
||||
#endif
|
||||
|
||||
#if TOINT_INTRINSICS
|
||||
/* Round x to nearest int in all rounding modes, ties have to be rounded
|
||||
consistently with converttoint so the results match. If the result
|
||||
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
|
||||
static double_t roundtoint(double_t);
|
||||
|
||||
/* Convert x to nearest int in all rounding modes, ties have to be rounded
|
||||
consistently with roundtoint. If the result is not representible in an
|
||||
int32_t then the semantics is unspecified. */
|
||||
static int32_t converttoint(double_t);
|
||||
#endif
|
||||
|
||||
/* Helps static branch prediction so hot path can be better optimized. */
|
||||
#ifdef __GNUC__
|
||||
#define predict_true(x) __builtin_expect(!!(x), 1)
|
||||
#define predict_false(x) __builtin_expect(x, 0)
|
||||
#else
|
||||
#define predict_true(x) (x)
|
||||
#define predict_false(x) (x)
|
||||
#endif
|
||||
|
||||
/* Evaluate an expression as the specified type. With standard excess
|
||||
precision handling a type cast or assignment is enough (with
|
||||
-ffloat-store an assignment is required, in old compilers argument
|
||||
passing and return statement may not drop excess precision). */
|
||||
|
||||
static inline float eval_as_float(float x)
|
||||
{
|
||||
float y = x;
|
||||
return y;
|
||||
}
|
||||
|
||||
static inline double eval_as_double(double x)
|
||||
{
|
||||
double y = x;
|
||||
return y;
|
||||
}
|
||||
|
||||
/* fp_barrier returns its input, but limits code transformations
|
||||
as if it had a side-effect (e.g. observable io) and returned
|
||||
an arbitrary value. */
|
||||
|
||||
#ifndef fp_barrierf
|
||||
#define fp_barrierf fp_barrierf
|
||||
static inline float fp_barrierf(float x)
|
||||
{
|
||||
volatile float y = x;
|
||||
return y;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef fp_barrier
|
||||
#define fp_barrier fp_barrier
|
||||
static inline double fp_barrier(double x)
|
||||
{
|
||||
volatile double y = x;
|
||||
return y;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef fp_barrierl
|
||||
#define fp_barrierl fp_barrierl
|
||||
static inline long double fp_barrierl(long double x)
|
||||
{
|
||||
volatile long double y = x;
|
||||
return y;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* fp_force_eval ensures that the input value is computed when that's
|
||||
otherwise unused. To prevent the constant folding of the input
|
||||
expression, an additional fp_barrier may be needed or a compilation
|
||||
mode that does so (e.g. -frounding-math in gcc). Then it can be
|
||||
used to evaluate an expression for its fenv side-effects only. */
|
||||
|
||||
#ifndef fp_force_evalf
|
||||
#define fp_force_evalf fp_force_evalf
|
||||
static inline void fp_force_evalf(float x)
|
||||
{
|
||||
volatile float y;
|
||||
y = x;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef fp_force_eval
|
||||
#define fp_force_eval fp_force_eval
|
||||
static inline void fp_force_eval(double x)
|
||||
{
|
||||
volatile double y;
|
||||
y = x;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef fp_force_evall
|
||||
#define fp_force_evall fp_force_evall
|
||||
static inline void fp_force_evall(long double x)
|
||||
{
|
||||
volatile long double y;
|
||||
y = x;
|
||||
}
|
||||
#endif
|
||||
|
||||
#define FORCE_EVAL(x) do { \
|
||||
if (sizeof(x) == sizeof(float)) { \
|
||||
fp_force_evalf(x); \
|
||||
} else if (sizeof(x) == sizeof(double)) { \
|
||||
fp_force_eval(x); \
|
||||
} else { \
|
||||
fp_force_evall(x); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
#define asuint(f) ((union{float _f; uint32_t _i;}){f})._i
|
||||
#define asfloat(i) ((union{uint32_t _i; float _f;}){i})._f
|
||||
#define asuint64(f) ((union{double _f; uint64_t _i;}){f})._i
|
||||
#define asdouble(i) ((union{uint64_t _i; double _f;}){i})._f
|
||||
|
||||
#define EXTRACT_WORDS(hi,lo,d) \
|
||||
do { \
|
||||
uint64_t __u = asuint64(d); \
|
||||
(hi) = __u >> 32; \
|
||||
(lo) = (uint32_t)__u; \
|
||||
} while (0)
|
||||
|
||||
#define GET_HIGH_WORD(hi,d) \
|
||||
do { \
|
||||
(hi) = asuint64(d) >> 32; \
|
||||
} while (0)
|
||||
|
||||
#define GET_LOW_WORD(lo,d) \
|
||||
do { \
|
||||
(lo) = (uint32_t)asuint64(d); \
|
||||
} while (0)
|
||||
|
||||
#define INSERT_WORDS(d,hi,lo) \
|
||||
do { \
|
||||
(d) = asdouble(((uint64_t)(hi)<<32) | (uint32_t)(lo)); \
|
||||
} while (0)
|
||||
|
||||
#define SET_HIGH_WORD(d,hi) \
|
||||
INSERT_WORDS(d, hi, (uint32_t)asuint64(d))
|
||||
|
||||
#define SET_LOW_WORD(d,lo) \
|
||||
INSERT_WORDS(d, asuint64(d)>>32, lo)
|
||||
|
||||
#define GET_FLOAT_WORD(w,d) \
|
||||
do { \
|
||||
(w) = asuint(d); \
|
||||
} while (0)
|
||||
|
||||
#define SET_FLOAT_WORD(d,w) \
|
||||
do { \
|
||||
(d) = asfloat(w); \
|
||||
} while (0)
|
||||
|
||||
hidden int __rem_pio2_large(double*,double*,int,int,int);
|
||||
|
||||
hidden int __rem_pio2(double,double*);
|
||||
hidden double __sin(double,double,int);
|
||||
hidden double __cos(double,double);
|
||||
hidden double __tan(double,double,int);
|
||||
hidden double __expo2(double,double);
|
||||
|
||||
hidden int __rem_pio2f(float,double*);
|
||||
hidden float __sindf(double);
|
||||
hidden float __cosdf(double);
|
||||
hidden float __tandf(double,int);
|
||||
hidden float __expo2f(float,float);
|
||||
|
||||
hidden int __rem_pio2l(long double, long double *);
|
||||
hidden long double __sinl(long double, long double, int);
|
||||
hidden long double __cosl(long double, long double);
|
||||
hidden long double __tanl(long double, long double, int);
|
||||
|
||||
hidden long double __polevll(long double, const long double *, int);
|
||||
hidden long double __p1evll(long double, const long double *, int);
|
||||
|
||||
extern int __signgam;
|
||||
hidden double __lgamma_r(double, int *);
|
||||
hidden float __lgammaf_r(float, int *);
|
||||
|
||||
/* error handling functions */
|
||||
hidden float __math_xflowf(uint32_t, float);
|
||||
hidden float __math_uflowf(uint32_t);
|
||||
hidden float __math_oflowf(uint32_t);
|
||||
hidden float __math_divzerof(uint32_t);
|
||||
hidden float __math_invalidf(float);
|
||||
hidden double __math_xflow(uint32_t, double);
|
||||
hidden double __math_uflow(uint32_t);
|
||||
hidden double __math_oflow(uint32_t);
|
||||
hidden double __math_divzero(uint32_t);
|
||||
hidden double __math_invalid(double);
|
||||
#if LDBL_MANT_DIG != DBL_MANT_DIG
|
||||
hidden long double __math_invalidl(long double);
|
||||
#endif
|
||||
|
||||
#endif
|
71
libs/musl/src/math/__cos.c
Normal file
71
libs/musl/src/math/__cos.c
Normal file
|
@ -0,0 +1,71 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* __cos( x, y )
|
||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
||||
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||
* [0,pi/4]
|
||||
* 4 14
|
||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
* where the remez error is
|
||||
*
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
* cos(x) ~ 1 - x*x/2 + r
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* ~ cos(x) - x*y,
|
||||
* a correction term is necessary in cos(x) and hence
|
||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
* For better accuracy, rearrange to
|
||||
* cos(x+y) ~ w + (tmp + (r-x*y))
|
||||
* where w = 1 - x*x/2 and tmp is a tiny correction term
|
||||
* (1 - x*x/2 == w + tmp exactly in infinite precision).
|
||||
* The exactness of w + tmp in infinite precision depends on w
|
||||
* and tmp having the same precision as x. If they have extra
|
||||
* precision due to compiler bugs, then the extra precision is
|
||||
* only good provided it is retained in all terms of the final
|
||||
* expression for cos(). Retention happens in all cases tested
|
||||
* under FreeBSD, so don't pessimize things by forcibly clipping
|
||||
* any extra precision in w.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
||||
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
||||
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
||||
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
||||
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
|
||||
double __cos(double x, double y)
|
||||
{
|
||||
double_t hz,z,r,w;
|
||||
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
|
||||
hz = 0.5*z;
|
||||
w = 1.0-hz;
|
||||
return w + (((1.0-w)-hz) + (z*r-x*y));
|
||||
}
|
35
libs/musl/src/math/__cosdf.c
Normal file
35
libs/musl/src/math/__cosdf.c
Normal file
|
@ -0,0 +1,35 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_cosf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Debugged and optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
/* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
|
||||
static const double
|
||||
C0 = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
|
||||
C1 = 0x155553e1053a42.0p-57, /* 0.0416666233237390631894 */
|
||||
C2 = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
|
||||
C3 = 0x199342e0ee5069.0p-68; /* 0.0000243904487962774090654 */
|
||||
|
||||
float __cosdf(double x)
|
||||
{
|
||||
double_t r, w, z;
|
||||
|
||||
/* Try to optimize for parallel evaluation as in __tandf.c. */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
r = C2+z*C3;
|
||||
return ((1.0+z*C0) + w*C1) + (w*z)*r;
|
||||
}
|
17
libs/musl/src/math/__expo2.c
Normal file
17
libs/musl/src/math/__expo2.c
Normal file
|
@ -0,0 +1,17 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
|
||||
static const int k = 2043;
|
||||
static const double kln2 = 0x1.62066151add8bp+10;
|
||||
|
||||
/* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
|
||||
double __expo2(double x, double sign)
|
||||
{
|
||||
double scale;
|
||||
|
||||
/* note that k is odd and scale*scale overflows */
|
||||
INSERT_WORDS(scale, (uint32_t)(0x3ff + k/2) << 20, 0);
|
||||
/* exp(x - k ln2) * 2**(k-1) */
|
||||
/* in directed rounding correct sign before rounding or overflow is important */
|
||||
return exp(x - kln2) * (sign * scale) * scale;
|
||||
}
|
17
libs/musl/src/math/__expo2f.c
Normal file
17
libs/musl/src/math/__expo2f.c
Normal file
|
@ -0,0 +1,17 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
|
||||
static const int k = 235;
|
||||
static const float kln2 = 0x1.45c778p+7f;
|
||||
|
||||
/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
|
||||
float __expo2f(float x, float sign)
|
||||
{
|
||||
float scale;
|
||||
|
||||
/* note that k is odd and scale*scale overflows */
|
||||
SET_FLOAT_WORD(scale, (uint32_t)(0x7f + k/2) << 23);
|
||||
/* exp(x - k ln2) * 2**(k-1) */
|
||||
/* in directed rounding correct sign before rounding or overflow is important */
|
||||
return expf(x - kln2) * (sign * scale) * scale;
|
||||
}
|
11
libs/musl/src/math/__fpclassify.c
Normal file
11
libs/musl/src/math/__fpclassify.c
Normal file
|
@ -0,0 +1,11 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
short __cdecl _dclass(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
int e = u.i>>52 & 0x7ff;
|
||||
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
|
||||
if (e==0x7ff) return u.i<<12 ? FP_NAN : FP_INFINITE;
|
||||
return FP_NORMAL;
|
||||
}
|
11
libs/musl/src/math/__fpclassifyf.c
Normal file
11
libs/musl/src/math/__fpclassifyf.c
Normal file
|
@ -0,0 +1,11 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
short __cdecl _fdclass(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
int e = u.i>>23 & 0xff;
|
||||
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
|
||||
if (e==0xff) return u.i<<9 ? FP_NAN : FP_INFINITE;
|
||||
return FP_NORMAL;
|
||||
}
|
6
libs/musl/src/math/__math_divzero.c
Normal file
6
libs/musl/src/math/__math_divzero.c
Normal file
|
@ -0,0 +1,6 @@
|
|||
#include "libm.h"
|
||||
|
||||
double __math_divzero(uint32_t sign)
|
||||
{
|
||||
return fp_barrier(sign ? -1.0 : 1.0) / 0.0;
|
||||
}
|
6
libs/musl/src/math/__math_divzerof.c
Normal file
6
libs/musl/src/math/__math_divzerof.c
Normal file
|
@ -0,0 +1,6 @@
|
|||
#include "libm.h"
|
||||
|
||||
float __math_divzerof(uint32_t sign)
|
||||
{
|
||||
return fp_barrierf(sign ? -1.0f : 1.0f) / 0.0f;
|
||||
}
|
6
libs/musl/src/math/__math_invalid.c
Normal file
6
libs/musl/src/math/__math_invalid.c
Normal file
|
@ -0,0 +1,6 @@
|
|||
#include "libm.h"
|
||||
|
||||
double __math_invalid(double x)
|
||||
{
|
||||
return (x - x) / (x - x);
|
||||
}
|
6
libs/musl/src/math/__math_invalidf.c
Normal file
6
libs/musl/src/math/__math_invalidf.c
Normal file
|
@ -0,0 +1,6 @@
|
|||
#include "libm.h"
|
||||
|
||||
float __math_invalidf(float x)
|
||||
{
|
||||
return (x - x) / (x - x);
|
||||
}
|
190
libs/musl/src/math/__rem_pio2.c
Normal file
190
libs/musl/src/math/__rem_pio2.c
Normal file
|
@ -0,0 +1,190 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/* __rem_pio2(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __rem_pio2_large() for large x
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
|
||||
#define EPS DBL_EPSILON
|
||||
#elif FLT_EVAL_METHOD==2
|
||||
#define EPS LDBL_EPSILON
|
||||
#endif
|
||||
|
||||
/*
|
||||
* invpio2: 53 bits of 2/pi
|
||||
* pio2_1: first 33 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 33 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 33 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
static const double
|
||||
toint = 1.5/EPS,
|
||||
pio4 = 0x1.921fb54442d18p-1,
|
||||
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
||||
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
||||
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
||||
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
||||
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
||||
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
|
||||
/* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
|
||||
int __rem_pio2(double x, double *y)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t z,w,t,r,fn;
|
||||
double tx[3],ty[2];
|
||||
uint32_t ix;
|
||||
int sign, n, ex, ey, i;
|
||||
|
||||
sign = u.i>>63;
|
||||
ix = u.i>>32 & 0x7fffffff;
|
||||
if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
|
||||
if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
|
||||
goto medium; /* cancellation -- use medium case */
|
||||
if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
|
||||
if (!sign) {
|
||||
z = x - pio2_1; /* one round good to 85 bits */
|
||||
y[0] = z - pio2_1t;
|
||||
y[1] = (z-y[0]) - pio2_1t;
|
||||
return 1;
|
||||
} else {
|
||||
z = x + pio2_1;
|
||||
y[0] = z + pio2_1t;
|
||||
y[1] = (z-y[0]) + pio2_1t;
|
||||
return -1;
|
||||
}
|
||||
} else {
|
||||
if (!sign) {
|
||||
z = x - 2*pio2_1;
|
||||
y[0] = z - 2*pio2_1t;
|
||||
y[1] = (z-y[0]) - 2*pio2_1t;
|
||||
return 2;
|
||||
} else {
|
||||
z = x + 2*pio2_1;
|
||||
y[0] = z + 2*pio2_1t;
|
||||
y[1] = (z-y[0]) + 2*pio2_1t;
|
||||
return -2;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
|
||||
if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
|
||||
if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
|
||||
goto medium;
|
||||
if (!sign) {
|
||||
z = x - 3*pio2_1;
|
||||
y[0] = z - 3*pio2_1t;
|
||||
y[1] = (z-y[0]) - 3*pio2_1t;
|
||||
return 3;
|
||||
} else {
|
||||
z = x + 3*pio2_1;
|
||||
y[0] = z + 3*pio2_1t;
|
||||
y[1] = (z-y[0]) + 3*pio2_1t;
|
||||
return -3;
|
||||
}
|
||||
} else {
|
||||
if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
|
||||
goto medium;
|
||||
if (!sign) {
|
||||
z = x - 4*pio2_1;
|
||||
y[0] = z - 4*pio2_1t;
|
||||
y[1] = (z-y[0]) - 4*pio2_1t;
|
||||
return 4;
|
||||
} else {
|
||||
z = x + 4*pio2_1;
|
||||
y[0] = z + 4*pio2_1t;
|
||||
y[1] = (z-y[0]) + 4*pio2_1t;
|
||||
return -4;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
|
||||
medium:
|
||||
/* rint(x/(pi/2)) */
|
||||
fn = (double_t)x*invpio2 + toint - toint;
|
||||
n = (int32_t)fn;
|
||||
r = x - fn*pio2_1;
|
||||
w = fn*pio2_1t; /* 1st round, good to 85 bits */
|
||||
/* Matters with directed rounding. */
|
||||
if (predict_false(r - w < -pio4)) {
|
||||
n--;
|
||||
fn--;
|
||||
r = x - fn*pio2_1;
|
||||
w = fn*pio2_1t;
|
||||
} else if (predict_false(r - w > pio4)) {
|
||||
n++;
|
||||
fn++;
|
||||
r = x - fn*pio2_1;
|
||||
w = fn*pio2_1t;
|
||||
}
|
||||
y[0] = r - w;
|
||||
u.f = y[0];
|
||||
ey = u.i>>52 & 0x7ff;
|
||||
ex = ix>>20;
|
||||
if (ex - ey > 16) { /* 2nd round, good to 118 bits */
|
||||
t = r;
|
||||
w = fn*pio2_2;
|
||||
r = t - w;
|
||||
w = fn*pio2_2t - ((t-r)-w);
|
||||
y[0] = r - w;
|
||||
u.f = y[0];
|
||||
ey = u.i>>52 & 0x7ff;
|
||||
if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
|
||||
t = r;
|
||||
w = fn*pio2_3;
|
||||
r = t - w;
|
||||
w = fn*pio2_3t - ((t-r)-w);
|
||||
y[0] = r - w;
|
||||
}
|
||||
}
|
||||
y[1] = (r - y[0]) - w;
|
||||
return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if (ix >= 0x7ff00000) { /* x is inf or NaN */
|
||||
y[0] = y[1] = x - x;
|
||||
return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,-ilogb(x)+23) */
|
||||
u.f = x;
|
||||
u.i &= (uint64_t)-1>>12;
|
||||
u.i |= (uint64_t)(0x3ff + 23)<<52;
|
||||
z = u.f;
|
||||
for (i=0; i < 2; i++) {
|
||||
tx[i] = (double)(int32_t)z;
|
||||
z = (z-tx[i])*0x1p24;
|
||||
}
|
||||
tx[i] = z;
|
||||
/* skip zero terms, first term is non-zero */
|
||||
while (tx[i] == 0.0)
|
||||
i--;
|
||||
n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1);
|
||||
if (sign) {
|
||||
y[0] = -ty[0];
|
||||
y[1] = -ty[1];
|
||||
return -n;
|
||||
}
|
||||
y[0] = ty[0];
|
||||
y[1] = ty[1];
|
||||
return n;
|
||||
}
|
442
libs/musl/src/math/__rem_pio2_large.c
Normal file
442
libs/musl/src/math/__rem_pio2_large.c
Normal file
|
@ -0,0 +1,442 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* __rem_pio2_large(x,y,e0,nx,prec)
|
||||
* double x[],y[]; int e0,nx,prec;
|
||||
*
|
||||
* __rem_pio2_large return the last three digits of N with
|
||||
* y = x - N*pi/2
|
||||
* so that |y| < pi/2.
|
||||
*
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* (2/pi)*x without doing the full multiplication. In general we
|
||||
* skip the part of the product that are known to be a huge integer (
|
||||
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
* independent of the exponent of the input.
|
||||
*
|
||||
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||
*
|
||||
* Input parameters:
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* pieces of 24-bit integers in double precision format.
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* match x's up to 24 bits.
|
||||
*
|
||||
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
* e0 = ilogb(z)-23
|
||||
* z = scalbn(z,-e0)
|
||||
* for i = 0,1,2
|
||||
* x[i] = floor(z)
|
||||
* z = (z-x[i])*2**24
|
||||
*
|
||||
*
|
||||
* y[] ouput result in an array of double precision numbers.
|
||||
* The dimension of y[] is:
|
||||
* 24-bit precision 1
|
||||
* 53-bit precision 2
|
||||
* 64-bit precision 2
|
||||
* 113-bit precision 3
|
||||
* The actual value is the sum of them. Thus for 113-bit
|
||||
* precison, one may have to do something like:
|
||||
*
|
||||
* long double t,w,r_head, r_tail;
|
||||
* t = (long double)y[2] + (long double)y[1];
|
||||
* w = (long double)y[0];
|
||||
* r_head = t+w;
|
||||
* r_tail = w - (r_head - t);
|
||||
*
|
||||
* e0 The exponent of x[0]. Must be <= 16360 or you need to
|
||||
* expand the ipio2 table.
|
||||
*
|
||||
* nx dimension of x[]
|
||||
*
|
||||
* prec an integer indicating the precision:
|
||||
* 0 24 bits (single)
|
||||
* 1 53 bits (double)
|
||||
* 2 64 bits (extended)
|
||||
* 3 113 bits (quad)
|
||||
*
|
||||
* External function:
|
||||
* double scalbn(), floor();
|
||||
*
|
||||
*
|
||||
* Here is the description of some local variables:
|
||||
*
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* in the computation. The minimum and recommended value
|
||||
* for jk is 3,4,4,6 for single, double, extended, and quad.
|
||||
* jk+1 must be 2 larger than you might expect so that our
|
||||
* recomputation test works. (Up to 24 bits in the integer
|
||||
* part (the 24 bits of it that we compute) and 23 bits in
|
||||
* the fraction part may be lost to cancelation before we
|
||||
* recompute.)
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
*
|
||||
* jx nx - 1
|
||||
*
|
||||
* jv index for pointing to the suitable ipio2[] for the
|
||||
* computation. In general, we want
|
||||
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||
* is an integer. Thus
|
||||
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||
* Hence jv = max(0,(e0-3)/24).
|
||||
*
|
||||
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
*
|
||||
* q[] double array with integral value, representing the
|
||||
* 24-bits chunk of the product of x and 2/pi.
|
||||
*
|
||||
* q0 the corresponding exponent of q[0]. Note that the
|
||||
* exponent for q[i] would be q0-24*i.
|
||||
*
|
||||
* PIo2[] double precision array, obtained by cutting pi/2
|
||||
* into 24 bits chunks.
|
||||
*
|
||||
* f[] ipio2[] in floating point
|
||||
*
|
||||
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
*
|
||||
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||
*
|
||||
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||
* it also indicates the *sign* of the result.
|
||||
*
|
||||
*/
|
||||
/*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* floating value is
|
||||
*
|
||||
* ipio2[i] * 2^(-24(i+1)).
|
||||
*
|
||||
* NB: This table must have at least (e0-3)/24 + jk terms.
|
||||
* For quad precision (e0 <= 16360, jk = 6), this is 686.
|
||||
*/
|
||||
static const int32_t ipio2[] = {
|
||||
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
|
||||
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
|
||||
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
|
||||
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
|
||||
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
|
||||
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
|
||||
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
|
||||
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
|
||||
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
|
||||
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
|
||||
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
|
||||
|
||||
#if LDBL_MAX_EXP > 1024
|
||||
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
|
||||
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
|
||||
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
|
||||
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
|
||||
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
|
||||
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
|
||||
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
|
||||
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
|
||||
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
|
||||
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
|
||||
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
|
||||
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
|
||||
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
|
||||
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
|
||||
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
|
||||
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
|
||||
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
|
||||
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
|
||||
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
|
||||
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
|
||||
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
|
||||
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
|
||||
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
|
||||
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
|
||||
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
|
||||
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
|
||||
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
|
||||
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
|
||||
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
|
||||
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
|
||||
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
|
||||
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
|
||||
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
|
||||
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
|
||||
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
|
||||
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
|
||||
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
|
||||
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
|
||||
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
|
||||
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
|
||||
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
|
||||
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
|
||||
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
|
||||
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
|
||||
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
|
||||
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
|
||||
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
|
||||
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
|
||||
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
|
||||
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
|
||||
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
|
||||
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
|
||||
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
|
||||
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
|
||||
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
|
||||
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
|
||||
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
|
||||
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
|
||||
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
|
||||
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
|
||||
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
|
||||
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
|
||||
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
|
||||
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
|
||||
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
|
||||
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
|
||||
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
|
||||
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
|
||||
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
|
||||
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
|
||||
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
|
||||
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
|
||||
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
|
||||
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
|
||||
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
|
||||
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
|
||||
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
|
||||
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
|
||||
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
|
||||
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
|
||||
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
|
||||
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
|
||||
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
|
||||
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
|
||||
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
|
||||
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
|
||||
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
|
||||
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
|
||||
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
|
||||
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
|
||||
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
|
||||
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
|
||||
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
|
||||
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
|
||||
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
|
||||
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
|
||||
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
|
||||
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
|
||||
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
|
||||
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
|
||||
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
|
||||
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
|
||||
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
|
||||
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
|
||||
#endif
|
||||
};
|
||||
|
||||
static const double PIo2[] = {
|
||||
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
||||
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
||||
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
||||
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
||||
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||
};
|
||||
|
||||
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
|
||||
{
|
||||
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
|
||||
double z,fw,f[20],fq[20],q[20];
|
||||
|
||||
/* initialize jk*/
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
jx = nx-1;
|
||||
jv = (e0-3)/24; if(jv<0) jv=0;
|
||||
q0 = e0-24*(jv+1);
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
j = jv-jx; m = jx+jk;
|
||||
for (i=0; i<=m; i++,j++)
|
||||
f[i] = j<0 ? 0.0 : (double)ipio2[j];
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for (i=0; i<=jk; i++) {
|
||||
for (j=0,fw=0.0; j<=jx; j++)
|
||||
fw += x[j]*f[jx+i-j];
|
||||
q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
recompute:
|
||||
/* distill q[] into iq[] reversingly */
|
||||
for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
|
||||
fw = (double)(int32_t)(0x1p-24*z);
|
||||
iq[i] = (int32_t)(z - 0x1p24*fw);
|
||||
z = q[j-1]+fw;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbn(z,q0); /* actual value of z */
|
||||
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
|
||||
n = (int32_t)z;
|
||||
z -= (double)n;
|
||||
ih = 0;
|
||||
if (q0 > 0) { /* need iq[jz-1] to determine n */
|
||||
i = iq[jz-1]>>(24-q0); n += i;
|
||||
iq[jz-1] -= i<<(24-q0);
|
||||
ih = iq[jz-1]>>(23-q0);
|
||||
}
|
||||
else if (q0 == 0) ih = iq[jz-1]>>23;
|
||||
else if (z >= 0.5) ih = 2;
|
||||
|
||||
if (ih > 0) { /* q > 0.5 */
|
||||
n += 1; carry = 0;
|
||||
for (i=0; i<jz; i++) { /* compute 1-q */
|
||||
j = iq[i];
|
||||
if (carry == 0) {
|
||||
if (j != 0) {
|
||||
carry = 1;
|
||||
iq[i] = 0x1000000 - j;
|
||||
}
|
||||
} else
|
||||
iq[i] = 0xffffff - j;
|
||||
}
|
||||
if (q0 > 0) { /* rare case: chance is 1 in 12 */
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz-1] &= 0x7fffff; break;
|
||||
case 2:
|
||||
iq[jz-1] &= 0x3fffff; break;
|
||||
}
|
||||
}
|
||||
if (ih == 2) {
|
||||
z = 1.0 - z;
|
||||
if (carry != 0)
|
||||
z -= scalbn(1.0,q0);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if (z == 0.0) {
|
||||
j = 0;
|
||||
for (i=jz-1; i>=jk; i--) j |= iq[i];
|
||||
if (j == 0) { /* need recomputation */
|
||||
for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
|
||||
|
||||
for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
|
||||
f[jx+i] = (double)ipio2[jv+i];
|
||||
for (j=0,fw=0.0; j<=jx; j++)
|
||||
fw += x[j]*f[jx+i-j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if (z == 0.0) {
|
||||
jz -= 1;
|
||||
q0 -= 24;
|
||||
while (iq[jz] == 0) {
|
||||
jz--;
|
||||
q0 -= 24;
|
||||
}
|
||||
} else { /* break z into 24-bit if necessary */
|
||||
z = scalbn(z,-q0);
|
||||
if (z >= 0x1p24) {
|
||||
fw = (double)(int32_t)(0x1p-24*z);
|
||||
iq[jz] = (int32_t)(z - 0x1p24*fw);
|
||||
jz += 1;
|
||||
q0 += 24;
|
||||
iq[jz] = (int32_t)fw;
|
||||
} else
|
||||
iq[jz] = (int32_t)z;
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbn(1.0,q0);
|
||||
for (i=jz; i>=0; i--) {
|
||||
q[i] = fw*(double)iq[i];
|
||||
fw *= 0x1p-24;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for(i=jz; i>=0; i--) {
|
||||
for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
|
||||
fw += PIo2[k]*q[i+k];
|
||||
fq[jz-i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for (i=jz; i>=0; i--)
|
||||
fw += fq[i];
|
||||
y[0] = ih==0 ? fw : -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for (i=jz; i>=0; i--)
|
||||
fw += fq[i];
|
||||
// TODO: drop excess precision here once double_t is used
|
||||
fw = (double)fw;
|
||||
y[0] = ih==0 ? fw : -fw;
|
||||
fw = fq[0]-fw;
|
||||
for (i=1; i<=jz; i++)
|
||||
fw += fq[i];
|
||||
y[1] = ih==0 ? fw : -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for (i=jz; i>0; i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (i=jz; i>1; i--) {
|
||||
fw = fq[i-1]+fq[i];
|
||||
fq[i] += fq[i-1]-fw;
|
||||
fq[i-1] = fw;
|
||||
}
|
||||
for (fw=0.0,i=jz; i>=2; i--)
|
||||
fw += fq[i];
|
||||
if (ih==0) {
|
||||
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n&7;
|
||||
}
|
86
libs/musl/src/math/__rem_pio2f.c
Normal file
86
libs/musl/src/math/__rem_pio2f.c
Normal file
|
@ -0,0 +1,86 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Debugged and optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* __rem_pio2f(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in *y
|
||||
* use double precision for everything except passing x
|
||||
* use __rem_pio2_large() for large x
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
|
||||
#define EPS DBL_EPSILON
|
||||
#elif FLT_EVAL_METHOD==2
|
||||
#define EPS LDBL_EPSILON
|
||||
#endif
|
||||
|
||||
/*
|
||||
* invpio2: 53 bits of 2/pi
|
||||
* pio2_1: first 25 bits of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
*/
|
||||
static const double
|
||||
toint = 1.5/EPS,
|
||||
pio4 = 0x1.921fb6p-1,
|
||||
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
pio2_1 = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */
|
||||
pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
|
||||
|
||||
int __rem_pio2f(float x, double *y)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
double tx[1],ty[1];
|
||||
double_t fn;
|
||||
uint32_t ix;
|
||||
int n, sign, e0;
|
||||
|
||||
ix = u.i & 0x7fffffff;
|
||||
/* 25+53 bit pi is good enough for medium size */
|
||||
if (ix < 0x4dc90fdb) { /* |x| ~< 2^28*(pi/2), medium size */
|
||||
/* Use a specialized rint() to get fn. */
|
||||
fn = (double_t)x*invpio2 + toint - toint;
|
||||
n = (int32_t)fn;
|
||||
*y = x - fn*pio2_1 - fn*pio2_1t;
|
||||
/* Matters with directed rounding. */
|
||||
if (predict_false(*y < -pio4)) {
|
||||
n--;
|
||||
fn--;
|
||||
*y = x - fn*pio2_1 - fn*pio2_1t;
|
||||
} else if (predict_false(*y > pio4)) {
|
||||
n++;
|
||||
fn++;
|
||||
*y = x - fn*pio2_1 - fn*pio2_1t;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
if(ix>=0x7f800000) { /* x is inf or NaN */
|
||||
*y = x-x;
|
||||
return 0;
|
||||
}
|
||||
/* scale x into [2^23, 2^24-1] */
|
||||
sign = u.i>>31;
|
||||
e0 = (ix>>23) - (0x7f+23); /* e0 = ilogb(|x|)-23, positive */
|
||||
u.i = ix - (e0<<23);
|
||||
tx[0] = u.f;
|
||||
n = __rem_pio2_large(tx,ty,e0,1,0);
|
||||
if (sign) {
|
||||
*y = -ty[0];
|
||||
return -n;
|
||||
}
|
||||
*y = ty[0];
|
||||
return n;
|
||||
}
|
64
libs/musl/src/math/__sin.c
Normal file
64
libs/musl/src/math/__sin.c
Normal file
|
@ -0,0 +1,64 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* __sin( x, y, iy)
|
||||
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 2. Callers must return sin(-0) = -0 without calling here since our
|
||||
* odd polynomial is not evaluated in a way that preserves -0.
|
||||
* Callers may do the optimization sin(x) ~ x for tiny x.
|
||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
* [0,pi/4]
|
||||
* 3 13
|
||||
* sin(x) ~ x + S1*x + ... + S6*x
|
||||
* where
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
* ~ sin(x) + (1-x*x/2)*y
|
||||
* For better accuracy, let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
* then 3 2
|
||||
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||||
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||||
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
||||
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||||
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||
|
||||
double __sin(double x, double y, int iy)
|
||||
{
|
||||
double_t z,r,v,w;
|
||||
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);
|
||||
v = z*x;
|
||||
if (iy == 0)
|
||||
return x + v*(S1 + z*r);
|
||||
else
|
||||
return x - ((z*(0.5*y - v*r) - y) - v*S1);
|
||||
}
|
36
libs/musl/src/math/__sindf.c
Normal file
36
libs/musl/src/math/__sindf.c
Normal file
|
@ -0,0 +1,36 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_sinf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
/* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
|
||||
static const double
|
||||
S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
|
||||
S2 = 0x111110896efbb2.0p-59, /* 0.0083333293858894631756 */
|
||||
S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
|
||||
S4 = 0x16cd878c3b46a7.0p-71; /* 0.0000027183114939898219064 */
|
||||
|
||||
float __sindf(double x)
|
||||
{
|
||||
double_t r, s, w, z;
|
||||
|
||||
/* Try to optimize for parallel evaluation as in __tandf.c. */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
r = S3 + z*S4;
|
||||
s = z*x;
|
||||
return (x + s*(S1 + z*S2)) + s*w*r;
|
||||
}
|
110
libs/musl/src/math/__tan.c
Normal file
110
libs/musl/src/math/__tan.c
Normal file
|
@ -0,0 +1,110 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* __tan( x, y, k )
|
||||
* kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||||
* 2. Callers must return tan(-0) = -0 without calling here since our
|
||||
* odd polynomial is not evaluated in a way that preserves -0.
|
||||
* Callers may do the optimization tan(x) ~ x for tiny x.
|
||||
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
* [0,0.67434]
|
||||
* 3 27
|
||||
* tan(x) ~ x + T1*x + ... + T13*x
|
||||
* where
|
||||
*
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
* ~ tan(x) + (1+x*x)*y
|
||||
* Therefore, for better accuracy in computing tan(x+y), let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
* then
|
||||
* 3 2
|
||||
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
*
|
||||
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||||
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double T[] = {
|
||||
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
||||
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
||||
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
||||
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
||||
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
||||
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
||||
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
||||
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
||||
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
||||
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
||||
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
||||
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
||||
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
||||
},
|
||||
pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
||||
pio4lo = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
|
||||
|
||||
double __tan(double x, double y, int odd)
|
||||
{
|
||||
double_t z, r, v, w, s, a;
|
||||
double w0, a0;
|
||||
uint32_t hx;
|
||||
int big, sign;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
|
||||
if (big) {
|
||||
sign = hx>>31;
|
||||
if (sign) {
|
||||
x = -x;
|
||||
y = -y;
|
||||
}
|
||||
x = (pio4 - x) + (pio4lo - y);
|
||||
y = 0.0;
|
||||
}
|
||||
z = x * x;
|
||||
w = z * z;
|
||||
/*
|
||||
* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
|
||||
v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
|
||||
s = z * x;
|
||||
r = y + z*(s*(r + v) + y) + s*T[0];
|
||||
w = x + r;
|
||||
if (big) {
|
||||
s = 1 - 2*odd;
|
||||
v = s - 2.0 * (x + (r - w*w/(w + s)));
|
||||
return sign ? -v : v;
|
||||
}
|
||||
if (!odd)
|
||||
return w;
|
||||
/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
|
||||
w0 = w;
|
||||
SET_LOW_WORD(w0, 0);
|
||||
v = r - (w0 - x); /* w0+v = r+x */
|
||||
a0 = a = -1.0 / w;
|
||||
SET_LOW_WORD(a0, 0);
|
||||
return a0 + a*(1.0 + a0*w0 + a0*v);
|
||||
}
|
54
libs/musl/src/math/__tandf.c
Normal file
54
libs/musl/src/math/__tandf.c
Normal file
|
@ -0,0 +1,54 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/k_tanf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
/* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
|
||||
static const double T[] = {
|
||||
0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
|
||||
0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
|
||||
0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
|
||||
0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
|
||||
0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
|
||||
0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
|
||||
};
|
||||
|
||||
float __tandf(double x, int odd)
|
||||
{
|
||||
double_t z,r,w,s,t,u;
|
||||
|
||||
z = x*x;
|
||||
/*
|
||||
* Split up the polynomial into small independent terms to give
|
||||
* opportunities for parallel evaluation. The chosen splitting is
|
||||
* micro-optimized for Athlons (XP, X64). It costs 2 multiplications
|
||||
* relative to Horner's method on sequential machines.
|
||||
*
|
||||
* We add the small terms from lowest degree up for efficiency on
|
||||
* non-sequential machines (the lowest degree terms tend to be ready
|
||||
* earlier). Apart from this, we don't care about order of
|
||||
* operations, and don't need to to care since we have precision to
|
||||
* spare. However, the chosen splitting is good for accuracy too,
|
||||
* and would give results as accurate as Horner's method if the
|
||||
* small terms were added from highest degree down.
|
||||
*/
|
||||
r = T[4] + z*T[5];
|
||||
t = T[2] + z*T[3];
|
||||
w = z*z;
|
||||
s = z*x;
|
||||
u = T[0] + z*T[1];
|
||||
r = (x + s*u) + (s*w)*(t + w*r);
|
||||
return odd ? -1.0/r : r;
|
||||
}
|
101
libs/musl/src/math/acos.c
Normal file
101
libs/musl/src/math/acos.c
Normal file
|
@ -0,0 +1,101 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* acos(x)
|
||||
* Method :
|
||||
* acos(x) = pi/2 - asin(x)
|
||||
* acos(-x) = pi/2 + asin(x)
|
||||
* For |x|<=0.5
|
||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
||||
* For x>0.5
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
||||
* = 2f + (2c + 2s*z*R(z))
|
||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
||||
* for f so that f+c ~ sqrt(z).
|
||||
* For x<-0.5
|
||||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
||||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
static double R(double z)
|
||||
{
|
||||
double_t p, q;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
return p/q;
|
||||
}
|
||||
|
||||
double __cdecl acos(double x)
|
||||
{
|
||||
double z,w,s,c,df;
|
||||
uint32_t hx,ix;
|
||||
|
||||
GET_HIGH_WORD(hx, x);
|
||||
ix = hx & 0x7fffffff;
|
||||
/* |x| >= 1 or nan */
|
||||
if (ix >= 0x3ff00000) {
|
||||
uint32_t lx;
|
||||
|
||||
GET_LOW_WORD(lx,x);
|
||||
if ((ix-0x3ff00000 | lx) == 0) {
|
||||
/* acos(1)=0, acos(-1)=pi */
|
||||
if (hx >> 31)
|
||||
return 2*pio2_hi + 0x1p-120f;
|
||||
return 0;
|
||||
}
|
||||
return 0/(x-x);
|
||||
}
|
||||
/* |x| < 0.5 */
|
||||
if (ix < 0x3fe00000) {
|
||||
if (ix <= 0x3c600000) /* |x| < 2**-57 */
|
||||
return pio2_hi + 0x1p-120f;
|
||||
return pio2_hi - (x - (pio2_lo-x*R(x*x)));
|
||||
}
|
||||
/* x < -0.5 */
|
||||
if (hx >> 31) {
|
||||
z = (1.0+x)*0.5;
|
||||
s = sqrt(z);
|
||||
w = R(z)*s-pio2_lo;
|
||||
return 2*(pio2_hi - (s+w));
|
||||
}
|
||||
/* x > 0.5 */
|
||||
z = (1.0-x)*0.5;
|
||||
s = sqrt(z);
|
||||
df = s;
|
||||
SET_LOW_WORD(df,0);
|
||||
c = (z-df*df)/(s+df);
|
||||
w = R(z)*s+c;
|
||||
return 2*(df+w);
|
||||
}
|
71
libs/musl/src/math/acosf.c
Normal file
71
libs/musl/src/math/acosf.c
Normal file
|
@ -0,0 +1,71 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_acosf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
|
||||
pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
|
||||
pS0 = 1.6666586697e-01,
|
||||
pS1 = -4.2743422091e-02,
|
||||
pS2 = -8.6563630030e-03,
|
||||
qS1 = -7.0662963390e-01;
|
||||
|
||||
static float R(float z)
|
||||
{
|
||||
float_t p, q;
|
||||
p = z*(pS0+z*(pS1+z*pS2));
|
||||
q = 1.0f+z*qS1;
|
||||
return p/q;
|
||||
}
|
||||
|
||||
float __cdecl acosf(float x)
|
||||
{
|
||||
float z,w,s,c,df;
|
||||
uint32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
ix = hx & 0x7fffffff;
|
||||
/* |x| >= 1 or nan */
|
||||
if (ix >= 0x3f800000) {
|
||||
if (ix == 0x3f800000) {
|
||||
if (hx >> 31)
|
||||
return 2*pio2_hi + 0x1p-120f;
|
||||
return 0;
|
||||
}
|
||||
return 0/(x-x);
|
||||
}
|
||||
/* |x| < 0.5 */
|
||||
if (ix < 0x3f000000) {
|
||||
if (ix <= 0x32800000) /* |x| < 2**-26 */
|
||||
return pio2_hi + 0x1p-120f;
|
||||
return pio2_hi - (x - (pio2_lo-x*R(x*x)));
|
||||
}
|
||||
/* x < -0.5 */
|
||||
if (hx >> 31) {
|
||||
z = (1+x)*0.5f;
|
||||
s = sqrtf(z);
|
||||
w = R(z)*s-pio2_lo;
|
||||
return 2*(pio2_hi - (s+w));
|
||||
}
|
||||
/* x > 0.5 */
|
||||
z = (1-x)*0.5f;
|
||||
s = sqrtf(z);
|
||||
GET_FLOAT_WORD(hx,s);
|
||||
SET_FLOAT_WORD(df,hx&0xfffff000);
|
||||
c = (z-df*df)/(s+df);
|
||||
w = R(z)*s+c;
|
||||
return 2*(df+w);
|
||||
}
|
24
libs/musl/src/math/acosh.c
Normal file
24
libs/musl/src/math/acosh.c
Normal file
|
@ -0,0 +1,24 @@
|
|||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD==2
|
||||
#undef sqrt
|
||||
#define sqrt sqrtl
|
||||
#endif
|
||||
|
||||
/* acosh(x) = log(x + sqrt(x*x-1)) */
|
||||
double __cdecl acosh(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {.f = x};
|
||||
unsigned e = u.i >> 52 & 0x7ff;
|
||||
|
||||
/* x < 1 domain error is handled in the called functions */
|
||||
|
||||
if (e < 0x3ff + 1)
|
||||
/* |x| < 2, up to 2ulp error in [1,1.125] */
|
||||
return log1p(x-1 + sqrt((x-1)*(x-1)+2*(x-1)));
|
||||
if (e < 0x3ff + 26)
|
||||
/* |x| < 0x1p26 */
|
||||
return log(2*x - 1/(x+sqrt(x*x-1)));
|
||||
/* |x| >= 0x1p26 or nan */
|
||||
return log(x) + 0.693147180559945309417232121458176568;
|
||||
}
|
26
libs/musl/src/math/acoshf.c
Normal file
26
libs/musl/src/math/acoshf.c
Normal file
|
@ -0,0 +1,26 @@
|
|||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD==2
|
||||
#undef sqrtf
|
||||
#define sqrtf sqrtl
|
||||
#elif FLT_EVAL_METHOD==1
|
||||
#undef sqrtf
|
||||
#define sqrtf sqrt
|
||||
#endif
|
||||
|
||||
/* acosh(x) = log(x + sqrt(x*x-1)) */
|
||||
float __cdecl acoshf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
uint32_t a = u.i & 0x7fffffff;
|
||||
|
||||
if (a < 0x3f800000+(1<<23))
|
||||
/* |x| < 2, invalid if x < 1 */
|
||||
/* up to 2ulp error in [1,1.125] */
|
||||
return log1pf(x-1 + sqrtf((x-1)*(x-1)+2*(x-1)));
|
||||
if (u.i < 0x3f800000+(12<<23))
|
||||
/* 2 <= x < 0x1p12 */
|
||||
return logf(2*x - 1/(x+sqrtf(x*x-1)));
|
||||
/* x >= 0x1p12 or x <= -2 or nan */
|
||||
return logf(x) + 0.693147180559945309417232121458176568f;
|
||||
}
|
107
libs/musl/src/math/asin.c
Normal file
107
libs/musl/src/math/asin.c
Normal file
|
@ -0,0 +1,107 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* asin(x)
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
* For x in [0.5,1]
|
||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
||||
* then for x>0.98
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
||||
* f = hi part of s;
|
||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
||||
* and
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
/* coefficients for R(x^2) */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
static double R(double z)
|
||||
{
|
||||
double_t p, q;
|
||||
p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
|
||||
q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
|
||||
return p/q;
|
||||
}
|
||||
|
||||
double __cdecl asin(double x)
|
||||
{
|
||||
double z,r,s;
|
||||
uint32_t hx,ix;
|
||||
|
||||
GET_HIGH_WORD(hx, x);
|
||||
ix = hx & 0x7fffffff;
|
||||
/* |x| >= 1 or nan */
|
||||
if (ix >= 0x3ff00000) {
|
||||
uint32_t lx;
|
||||
GET_LOW_WORD(lx, x);
|
||||
if ((ix-0x3ff00000 | lx) == 0)
|
||||
/* asin(1) = +-pi/2 with inexact */
|
||||
return x*pio2_hi + 0x1p-120f;
|
||||
return 0/(x-x);
|
||||
}
|
||||
/* |x| < 0.5 */
|
||||
if (ix < 0x3fe00000) {
|
||||
/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
|
||||
if (ix < 0x3e500000 && ix >= 0x00100000)
|
||||
return x;
|
||||
return x + x*R(x*x);
|
||||
}
|
||||
/* 1 > |x| >= 0.5 */
|
||||
z = (1 - fabs(x))*0.5;
|
||||
s = sqrt(z);
|
||||
r = R(z);
|
||||
if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
|
||||
x = pio2_hi-(2*(s+s*r)-pio2_lo);
|
||||
} else {
|
||||
double f,c;
|
||||
/* f+c = sqrt(z) */
|
||||
f = s;
|
||||
SET_LOW_WORD(f,0);
|
||||
c = (z-f*f)/(s+f);
|
||||
x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
|
||||
}
|
||||
if (hx >> 31)
|
||||
return -x;
|
||||
return x;
|
||||
}
|
61
libs/musl/src/math/asinf.c
Normal file
61
libs/musl/src/math/asinf.c
Normal file
|
@ -0,0 +1,61 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_asinf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
pio2 = 1.570796326794896558e+00;
|
||||
|
||||
static const float
|
||||
/* coefficients for R(x^2) */
|
||||
pS0 = 1.6666586697e-01,
|
||||
pS1 = -4.2743422091e-02,
|
||||
pS2 = -8.6563630030e-03,
|
||||
qS1 = -7.0662963390e-01;
|
||||
|
||||
static float R(float z)
|
||||
{
|
||||
float_t p, q;
|
||||
p = z*(pS0+z*(pS1+z*pS2));
|
||||
q = 1.0f+z*qS1;
|
||||
return p/q;
|
||||
}
|
||||
|
||||
float __cdecl asinf(float x)
|
||||
{
|
||||
double s;
|
||||
float z;
|
||||
uint32_t hx,ix;
|
||||
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if (ix >= 0x3f800000) { /* |x| >= 1 */
|
||||
if (ix == 0x3f800000) /* |x| == 1 */
|
||||
return x*pio2 + 0x1p-120f; /* asin(+-1) = +-pi/2 with inexact */
|
||||
return 0/(x-x); /* asin(|x|>1) is NaN */
|
||||
}
|
||||
if (ix < 0x3f000000) { /* |x| < 0.5 */
|
||||
/* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
|
||||
if (ix < 0x39800000 && ix >= 0x00800000)
|
||||
return x;
|
||||
return x + x*R(x*x);
|
||||
}
|
||||
/* 1 > |x| >= 0.5 */
|
||||
z = (1 - fabsf(x))*0.5f;
|
||||
s = sqrt(z);
|
||||
x = pio2 - 2*(s+s*R(z));
|
||||
if (hx >> 31)
|
||||
return -x;
|
||||
return x;
|
||||
}
|
28
libs/musl/src/math/asinh.c
Normal file
28
libs/musl/src/math/asinh.c
Normal file
|
@ -0,0 +1,28 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
|
||||
double __cdecl asinh(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {.f = x};
|
||||
unsigned e = u.i >> 52 & 0x7ff;
|
||||
unsigned s = u.i >> 63;
|
||||
|
||||
/* |x| */
|
||||
u.i &= (uint64_t)-1/2;
|
||||
x = u.f;
|
||||
|
||||
if (e >= 0x3ff + 26) {
|
||||
/* |x| >= 0x1p26 or inf or nan */
|
||||
x = log(x) + 0.693147180559945309417232121458176568;
|
||||
} else if (e >= 0x3ff + 1) {
|
||||
/* |x| >= 2 */
|
||||
x = log(2*x + 1/(sqrt(x*x+1)+x));
|
||||
} else if (e >= 0x3ff - 26) {
|
||||
/* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
|
||||
x = log1p(x + x*x/(sqrt(x*x+1)+1));
|
||||
} else {
|
||||
/* |x| < 0x1p-26, raise inexact if x != 0 */
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
}
|
||||
return s ? -x : x;
|
||||
}
|
28
libs/musl/src/math/asinhf.c
Normal file
28
libs/musl/src/math/asinhf.c
Normal file
|
@ -0,0 +1,28 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
|
||||
float __cdecl asinhf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {.f = x};
|
||||
uint32_t i = u.i & 0x7fffffff;
|
||||
unsigned s = u.i >> 31;
|
||||
|
||||
/* |x| */
|
||||
u.i = i;
|
||||
x = u.f;
|
||||
|
||||
if (i >= 0x3f800000 + (12<<23)) {
|
||||
/* |x| >= 0x1p12 or inf or nan */
|
||||
x = logf(x) + 0.693147180559945309417232121458176568f;
|
||||
} else if (i >= 0x3f800000 + (1<<23)) {
|
||||
/* |x| >= 2 */
|
||||
x = logf(2*x + 1/(sqrtf(x*x+1)+x));
|
||||
} else if (i >= 0x3f800000 - (12<<23)) {
|
||||
/* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
|
||||
x = log1pf(x + x*x/(sqrtf(x*x+1)+1));
|
||||
} else {
|
||||
/* |x| < 0x1p-12, raise inexact if x!=0 */
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
}
|
||||
return s ? -x : x;
|
||||
}
|
116
libs/musl/src/math/atan.c
Normal file
116
libs/musl/src/math/atan.c
Normal file
|
@ -0,0 +1,116 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* atan(x)
|
||||
* Method
|
||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
||||
* is further reduced to one of the following intervals and the
|
||||
* arctangent of t is evaluated by the corresponding formula:
|
||||
*
|
||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double atanhi[] = {
|
||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
||||
};
|
||||
|
||||
static const double atanlo[] = {
|
||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
||||
};
|
||||
|
||||
static const double aT[] = {
|
||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
||||
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
||||
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
||||
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
||||
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
||||
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
||||
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
||||
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
||||
};
|
||||
|
||||
double __cdecl atan(double x)
|
||||
{
|
||||
double_t w,s1,s2,z;
|
||||
uint32_t ix,sign;
|
||||
int id;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
sign = ix >> 31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x44100000) { /* if |x| >= 2^66 */
|
||||
if (isnan(x))
|
||||
return x;
|
||||
z = atanhi[3] + 0x1p-120f;
|
||||
return sign ? -z : z;
|
||||
}
|
||||
if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
||||
if (ix < 0x3e400000) { /* |x| < 2^-27 */
|
||||
if (ix < 0x00100000)
|
||||
/* raise underflow for subnormal x */
|
||||
FORCE_EVAL((float)x);
|
||||
return x;
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = fabs(x);
|
||||
if (ix < 0x3ff30000) { /* |x| < 1.1875 */
|
||||
if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */
|
||||
id = 0;
|
||||
x = (2.0*x-1.0)/(2.0+x);
|
||||
} else { /* 11/16 <= |x| < 19/16 */
|
||||
id = 1;
|
||||
x = (x-1.0)/(x+1.0);
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x40038000) { /* |x| < 2.4375 */
|
||||
id = 2;
|
||||
x = (x-1.5)/(1.0+1.5*x);
|
||||
} else { /* 2.4375 <= |x| < 2^66 */
|
||||
id = 3;
|
||||
x = -1.0/x;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* end of argument reduction */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
||||
s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
|
||||
s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
|
||||
if (id < 0)
|
||||
return x - x*(s1+s2);
|
||||
z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x);
|
||||
return sign ? -z : z;
|
||||
}
|
107
libs/musl/src/math/atan2.c
Normal file
107
libs/musl/src/math/atan2.c
Normal file
|
@ -0,0 +1,107 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
/* atan2(y,x)
|
||||
* Method :
|
||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
||||
*
|
||||
* Special cases:
|
||||
*
|
||||
* ATAN2((anything), NaN ) is NaN;
|
||||
* ATAN2(NAN , (anything) ) is NaN;
|
||||
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
||||
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
||||
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
||||
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
||||
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
||||
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
||||
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
|
||||
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
||||
|
||||
double __cdecl atan2(double y, double x)
|
||||
{
|
||||
double z;
|
||||
uint32_t m,lx,ly,ix,iy;
|
||||
|
||||
if (isnan(x) || isnan(y))
|
||||
return x+y;
|
||||
EXTRACT_WORDS(ix, lx, x);
|
||||
EXTRACT_WORDS(iy, ly, y);
|
||||
if ((ix-0x3ff00000 | lx) == 0) /* x = 1.0 */
|
||||
return atan(y);
|
||||
m = ((iy>>31)&1) | ((ix>>30)&2); /* 2*sign(x)+sign(y) */
|
||||
ix = ix & 0x7fffffff;
|
||||
iy = iy & 0x7fffffff;
|
||||
|
||||
/* when y = 0 */
|
||||
if ((iy|ly) == 0) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi; /* atan(+0,-anything) = pi */
|
||||
case 3: return -pi; /* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
if ((ix|lx) == 0)
|
||||
return m&1 ? -pi/2 : pi/2;
|
||||
/* when x is INF */
|
||||
if (ix == 0x7ff00000) {
|
||||
if (iy == 0x7ff00000) {
|
||||
switch(m) {
|
||||
case 0: return pi/4; /* atan(+INF,+INF) */
|
||||
case 1: return -pi/4; /* atan(-INF,+INF) */
|
||||
case 2: return 3*pi/4; /* atan(+INF,-INF) */
|
||||
case 3: return -3*pi/4; /* atan(-INF,-INF) */
|
||||
}
|
||||
} else {
|
||||
switch(m) {
|
||||
case 0: return 0.0; /* atan(+...,+INF) */
|
||||
case 1: return -0.0; /* atan(-...,+INF) */
|
||||
case 2: return pi; /* atan(+...,-INF) */
|
||||
case 3: return -pi; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* |y/x| > 0x1p64 */
|
||||
if (ix+(64<<20) < iy || iy == 0x7ff00000)
|
||||
return m&1 ? -pi/2 : pi/2;
|
||||
|
||||
/* z = atan(|y/x|) without spurious underflow */
|
||||
if ((m&2) && iy+(64<<20) < ix) /* |y/x| < 0x1p-64, x<0 */
|
||||
z = 0;
|
||||
else
|
||||
z = atan(fabs(y/x));
|
||||
switch (m) {
|
||||
case 0: return z; /* atan(+,+) */
|
||||
case 1: return -z; /* atan(-,+) */
|
||||
case 2: return pi - (z-pi_lo); /* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z-pi_lo) - pi; /* atan(-,-) */
|
||||
}
|
||||
}
|
83
libs/musl/src/math/atan2f.c
Normal file
83
libs/musl/src/math/atan2f.c
Normal file
|
@ -0,0 +1,83 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_atan2f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
pi = 3.1415927410e+00, /* 0x40490fdb */
|
||||
pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */
|
||||
|
||||
float __cdecl atan2f(float y, float x)
|
||||
{
|
||||
float z;
|
||||
uint32_t m,ix,iy;
|
||||
|
||||
if (isnan(x) || isnan(y))
|
||||
return x+y;
|
||||
GET_FLOAT_WORD(ix, x);
|
||||
GET_FLOAT_WORD(iy, y);
|
||||
if (ix == 0x3f800000) /* x=1.0 */
|
||||
return atanf(y);
|
||||
m = ((iy>>31)&1) | ((ix>>30)&2); /* 2*sign(x)+sign(y) */
|
||||
ix &= 0x7fffffff;
|
||||
iy &= 0x7fffffff;
|
||||
|
||||
/* when y = 0 */
|
||||
if (iy == 0) {
|
||||
switch (m) {
|
||||
case 0:
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi; /* atan(+0,-anything) = pi */
|
||||
case 3: return -pi; /* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
if (ix == 0)
|
||||
return m&1 ? -pi/2 : pi/2;
|
||||
/* when x is INF */
|
||||
if (ix == 0x7f800000) {
|
||||
if (iy == 0x7f800000) {
|
||||
switch (m) {
|
||||
case 0: return pi/4; /* atan(+INF,+INF) */
|
||||
case 1: return -pi/4; /* atan(-INF,+INF) */
|
||||
case 2: return 3*pi/4; /*atan(+INF,-INF)*/
|
||||
case 3: return -3*pi/4; /*atan(-INF,-INF)*/
|
||||
}
|
||||
} else {
|
||||
switch (m) {
|
||||
case 0: return 0.0f; /* atan(+...,+INF) */
|
||||
case 1: return -0.0f; /* atan(-...,+INF) */
|
||||
case 2: return pi; /* atan(+...,-INF) */
|
||||
case 3: return -pi; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* |y/x| > 0x1p26 */
|
||||
if (ix+(26<<23) < iy || iy == 0x7f800000)
|
||||
return m&1 ? -pi/2 : pi/2;
|
||||
|
||||
/* z = atan(|y/x|) with correct underflow */
|
||||
if ((m&2) && iy+(26<<23) < ix) /*|y/x| < 0x1p-26, x < 0 */
|
||||
z = 0.0;
|
||||
else
|
||||
z = atanf(fabsf(y/x));
|
||||
switch (m) {
|
||||
case 0: return z; /* atan(+,+) */
|
||||
case 1: return -z; /* atan(-,+) */
|
||||
case 2: return pi - (z-pi_lo); /* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z-pi_lo) - pi; /* atan(-,-) */
|
||||
}
|
||||
}
|
94
libs/musl/src/math/atanf.c
Normal file
94
libs/musl/src/math/atanf.c
Normal file
|
@ -0,0 +1,94 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_atanf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float atanhi[] = {
|
||||
4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
|
||||
7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
|
||||
9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
|
||||
1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
|
||||
};
|
||||
|
||||
static const float atanlo[] = {
|
||||
5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
|
||||
3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
|
||||
3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
|
||||
7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
|
||||
};
|
||||
|
||||
static const float aT[] = {
|
||||
3.3333328366e-01,
|
||||
-1.9999158382e-01,
|
||||
1.4253635705e-01,
|
||||
-1.0648017377e-01,
|
||||
6.1687607318e-02,
|
||||
};
|
||||
|
||||
float __cdecl atanf(float x)
|
||||
{
|
||||
float_t w,s1,s2,z;
|
||||
uint32_t ix,sign;
|
||||
int id;
|
||||
|
||||
GET_FLOAT_WORD(ix, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
|
||||
if (isnan(x))
|
||||
return x;
|
||||
z = atanhi[3] + 0x1p-120f;
|
||||
return sign ? -z : z;
|
||||
}
|
||||
if (ix < 0x3ee00000) { /* |x| < 0.4375 */
|
||||
if (ix < 0x39800000) { /* |x| < 2**-12 */
|
||||
if (ix < 0x00800000)
|
||||
/* raise underflow for subnormal x */
|
||||
FORCE_EVAL(x*x);
|
||||
return x;
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = fabsf(x);
|
||||
if (ix < 0x3f980000) { /* |x| < 1.1875 */
|
||||
if (ix < 0x3f300000) { /* 7/16 <= |x| < 11/16 */
|
||||
id = 0;
|
||||
x = (2.0f*x - 1.0f)/(2.0f + x);
|
||||
} else { /* 11/16 <= |x| < 19/16 */
|
||||
id = 1;
|
||||
x = (x - 1.0f)/(x + 1.0f);
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x401c0000) { /* |x| < 2.4375 */
|
||||
id = 2;
|
||||
x = (x - 1.5f)/(1.0f + 1.5f*x);
|
||||
} else { /* 2.4375 <= |x| < 2**26 */
|
||||
id = 3;
|
||||
x = -1.0f/x;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* end of argument reduction */
|
||||
z = x*x;
|
||||
w = z*z;
|
||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
||||
s1 = z*(aT[0]+w*(aT[2]+w*aT[4]));
|
||||
s2 = w*(aT[1]+w*aT[3]);
|
||||
if (id < 0)
|
||||
return x - x*(s1+s2);
|
||||
z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
|
||||
return sign ? -z : z;
|
||||
}
|
29
libs/musl/src/math/atanh.c
Normal file
29
libs/musl/src/math/atanh.c
Normal file
|
@ -0,0 +1,29 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
|
||||
double __cdecl atanh(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {.f = x};
|
||||
unsigned e = u.i >> 52 & 0x7ff;
|
||||
unsigned s = u.i >> 63;
|
||||
double_t y;
|
||||
|
||||
/* |x| */
|
||||
u.i &= (uint64_t)-1/2;
|
||||
y = u.f;
|
||||
|
||||
if (e < 0x3ff - 1) {
|
||||
if (e < 0x3ff - 32) {
|
||||
/* handle underflow */
|
||||
if (e == 0)
|
||||
FORCE_EVAL((float)y);
|
||||
} else {
|
||||
/* |x| < 0.5, up to 1.7ulp error */
|
||||
y = 0.5*log1p(2*y + 2*y*y/(1-y));
|
||||
}
|
||||
} else {
|
||||
/* avoid overflow */
|
||||
y = 0.5*log1p(2*(y/(1-y)));
|
||||
}
|
||||
return s ? -y : y;
|
||||
}
|
28
libs/musl/src/math/atanhf.c
Normal file
28
libs/musl/src/math/atanhf.c
Normal file
|
@ -0,0 +1,28 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
|
||||
float __cdecl atanhf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {.f = x};
|
||||
unsigned s = u.i >> 31;
|
||||
float_t y;
|
||||
|
||||
/* |x| */
|
||||
u.i &= 0x7fffffff;
|
||||
y = u.f;
|
||||
|
||||
if (u.i < 0x3f800000 - (1<<23)) {
|
||||
if (u.i < 0x3f800000 - (32<<23)) {
|
||||
/* handle underflow */
|
||||
if (u.i < (1<<23))
|
||||
FORCE_EVAL((float)(y*y));
|
||||
} else {
|
||||
/* |x| < 0.5, up to 1.7ulp error */
|
||||
y = 0.5f*log1pf(2*y + 2*y*y/(1-y));
|
||||
}
|
||||
} else {
|
||||
/* avoid overflow */
|
||||
y = 0.5f*log1pf(2*(y/(1-y)));
|
||||
}
|
||||
return s ? -y : y;
|
||||
}
|
104
libs/musl/src/math/cbrt.c
Normal file
104
libs/musl/src/math/cbrt.c
Normal file
|
@ -0,0 +1,104 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/* cbrt(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
static const uint32_t
|
||||
B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
|
||||
B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
|
||||
|
||||
/* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
|
||||
static const double
|
||||
P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
|
||||
P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
|
||||
P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
|
||||
P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
|
||||
P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
|
||||
|
||||
double __cdecl cbrt(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t r,s,t,w;
|
||||
uint32_t hx = u.i>>32 & 0x7fffffff;
|
||||
|
||||
if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
|
||||
return x+x;
|
||||
|
||||
/*
|
||||
* Rough cbrt to 5 bits:
|
||||
* cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
|
||||
* where e is integral and >= 0, m is real and in [0, 1), and "/" and
|
||||
* "%" are integer division and modulus with rounding towards minus
|
||||
* infinity. The RHS is always >= the LHS and has a maximum relative
|
||||
* error of about 1 in 16. Adding a bias of -0.03306235651 to the
|
||||
* (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
|
||||
* floating point representation, for finite positive normal values,
|
||||
* ordinary integer divison of the value in bits magically gives
|
||||
* almost exactly the RHS of the above provided we first subtract the
|
||||
* exponent bias (1023 for doubles) and later add it back. We do the
|
||||
* subtraction virtually to keep e >= 0 so that ordinary integer
|
||||
* division rounds towards minus infinity; this is also efficient.
|
||||
*/
|
||||
if (hx < 0x00100000) { /* zero or subnormal? */
|
||||
u.f = x*0x1p54;
|
||||
hx = u.i>>32 & 0x7fffffff;
|
||||
if (hx == 0)
|
||||
return x; /* cbrt(0) is itself */
|
||||
hx = hx/3 + B2;
|
||||
} else
|
||||
hx = hx/3 + B1;
|
||||
u.i &= 1ULL<<63;
|
||||
u.i |= (uint64_t)hx << 32;
|
||||
t = u.f;
|
||||
|
||||
/*
|
||||
* New cbrt to 23 bits:
|
||||
* cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
|
||||
* where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
|
||||
* to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
|
||||
* has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
|
||||
* gives us bounds for r = t**3/x.
|
||||
*
|
||||
* Try to optimize for parallel evaluation as in __tanf.c.
|
||||
*/
|
||||
r = (t*t)*(t/x);
|
||||
t = t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
|
||||
|
||||
/*
|
||||
* Round t away from zero to 23 bits (sloppily except for ensuring that
|
||||
* the result is larger in magnitude than cbrt(x) but not much more than
|
||||
* 2 23-bit ulps larger). With rounding towards zero, the error bound
|
||||
* would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
|
||||
* in the rounded t, the infinite-precision error in the Newton
|
||||
* approximation barely affects third digit in the final error
|
||||
* 0.667; the error in the rounded t can be up to about 3 23-bit ulps
|
||||
* before the final error is larger than 0.667 ulps.
|
||||
*/
|
||||
u.f = t;
|
||||
u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
|
||||
t = u.f;
|
||||
|
||||
/* one step Newton iteration to 53 bits with error < 0.667 ulps */
|
||||
s = t*t; /* t*t is exact */
|
||||
r = x/s; /* error <= 0.5 ulps; |r| < |t| */
|
||||
w = t+t; /* t+t is exact */
|
||||
r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
|
||||
t = t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
|
||||
return t;
|
||||
}
|
67
libs/musl/src/math/cbrtf.c
Normal file
67
libs/musl/src/math/cbrtf.c
Normal file
|
@ -0,0 +1,67 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Debugged and optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* cbrtf(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
static const unsigned
|
||||
B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
|
||||
B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
|
||||
|
||||
float __cdecl cbrtf(float x)
|
||||
{
|
||||
double_t r,T;
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
uint32_t hx = u.i & 0x7fffffff;
|
||||
|
||||
if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
|
||||
return x + x;
|
||||
|
||||
/* rough cbrt to 5 bits */
|
||||
if (hx < 0x00800000) { /* zero or subnormal? */
|
||||
if (hx == 0)
|
||||
return x; /* cbrt(+-0) is itself */
|
||||
u.f = x*0x1p24f;
|
||||
hx = u.i & 0x7fffffff;
|
||||
hx = hx/3 + B2;
|
||||
} else
|
||||
hx = hx/3 + B1;
|
||||
u.i &= 0x80000000;
|
||||
u.i |= hx;
|
||||
|
||||
/*
|
||||
* First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
|
||||
* double precision so that its terms can be arranged for efficiency
|
||||
* without causing overflow or underflow.
|
||||
*/
|
||||
T = u.f;
|
||||
r = T*T*T;
|
||||
T = T*((double_t)x+x+r)/(x+r+r);
|
||||
|
||||
/*
|
||||
* Second step Newton iteration to 47 bits. In double precision for
|
||||
* efficiency and accuracy.
|
||||
*/
|
||||
r = T*T*T;
|
||||
T = T*((double_t)x+x+r)/(x+r+r);
|
||||
|
||||
/* rounding to 24 bits is perfect in round-to-nearest mode */
|
||||
return T;
|
||||
}
|
31
libs/musl/src/math/ceil.c
Normal file
31
libs/musl/src/math/ceil.c
Normal file
|
@ -0,0 +1,31 @@
|
|||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
|
||||
#define EPS DBL_EPSILON
|
||||
#elif FLT_EVAL_METHOD==2
|
||||
#define EPS LDBL_EPSILON
|
||||
#endif
|
||||
static const double_t toint = 1/EPS;
|
||||
|
||||
double __cdecl ceil(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
int e = u.i >> 52 & 0x7ff;
|
||||
double_t y;
|
||||
|
||||
if (e >= 0x3ff+52 || x == 0)
|
||||
return x;
|
||||
/* y = int(x) - x, where int(x) is an integer neighbor of x */
|
||||
if (u.i >> 63)
|
||||
y = x - toint + toint - x;
|
||||
else
|
||||
y = x + toint - toint - x;
|
||||
/* special case because of non-nearest rounding modes */
|
||||
if (e <= 0x3ff-1) {
|
||||
FORCE_EVAL(y);
|
||||
return u.i >> 63 ? -0.0 : 1;
|
||||
}
|
||||
if (y < 0)
|
||||
return x + y + 1;
|
||||
return x + y;
|
||||
}
|
27
libs/musl/src/math/ceilf.c
Normal file
27
libs/musl/src/math/ceilf.c
Normal file
|
@ -0,0 +1,27 @@
|
|||
#include "libm.h"
|
||||
|
||||
float __cdecl ceilf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
int e = (int)(u.i >> 23 & 0xff) - 0x7f;
|
||||
uint32_t m;
|
||||
|
||||
if (e >= 23)
|
||||
return x;
|
||||
if (e >= 0) {
|
||||
m = 0x007fffff >> e;
|
||||
if ((u.i & m) == 0)
|
||||
return x;
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31 == 0)
|
||||
u.i += m;
|
||||
u.i &= ~m;
|
||||
} else {
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31)
|
||||
u.f = -0.0;
|
||||
else if (u.i << 1)
|
||||
u.f = 1.0;
|
||||
}
|
||||
return u.f;
|
||||
}
|
8
libs/musl/src/math/copysign.c
Normal file
8
libs/musl/src/math/copysign.c
Normal file
|
@ -0,0 +1,8 @@
|
|||
#include "libm.h"
|
||||
|
||||
double __cdecl copysign(double x, double y) {
|
||||
union {double f; uint64_t i;} ux={x}, uy={y};
|
||||
ux.i &= -1ULL/2;
|
||||
ux.i |= uy.i & 1ULL<<63;
|
||||
return ux.f;
|
||||
}
|
10
libs/musl/src/math/copysignf.c
Normal file
10
libs/musl/src/math/copysignf.c
Normal file
|
@ -0,0 +1,10 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
float __cdecl copysignf(float x, float y)
|
||||
{
|
||||
union {float f; uint32_t i;} ux={x}, uy={y};
|
||||
ux.i &= 0x7fffffff;
|
||||
ux.i |= uy.i & 0x80000000;
|
||||
return ux.f;
|
||||
}
|
77
libs/musl/src/math/cos.c
Normal file
77
libs/musl/src/math/cos.c
Normal file
|
@ -0,0 +1,77 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* cos(x)
|
||||
* Return cosine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __sin ... sine function on [-pi/4,pi/4]
|
||||
* __cos ... cosine function on [-pi/4,pi/4]
|
||||
* __rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
double __cdecl cos(double x)
|
||||
{
|
||||
double y[2];
|
||||
uint32_t ix;
|
||||
unsigned n;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
if (ix <= 0x3fe921fb) {
|
||||
if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
|
||||
/* raise inexact if x!=0 */
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
return 1.0;
|
||||
}
|
||||
return __cos(x, 0);
|
||||
}
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
if (ix >= 0x7ff00000)
|
||||
return x-x;
|
||||
|
||||
/* argument reduction */
|
||||
n = __rem_pio2(x, y);
|
||||
switch (n&3) {
|
||||
case 0: return __cos(y[0], y[1]);
|
||||
case 1: return -__sin(y[0], y[1], 1);
|
||||
case 2: return -__cos(y[0], y[1]);
|
||||
default:
|
||||
return __sin(y[0], y[1], 1);
|
||||
}
|
||||
}
|
78
libs/musl/src/math/cosf.c
Normal file
78
libs/musl/src/math/cosf.c
Normal file
|
@ -0,0 +1,78 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_cosf.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
* Optimized by Bruce D. Evans.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
/* Small multiples of pi/2 rounded to double precision. */
|
||||
static const double
|
||||
c1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
|
||||
c2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
|
||||
c3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
|
||||
c4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
|
||||
|
||||
float __cdecl cosf(float x)
|
||||
{
|
||||
double y;
|
||||
uint32_t ix;
|
||||
unsigned n, sign;
|
||||
|
||||
GET_FLOAT_WORD(ix, x);
|
||||
sign = ix >> 31;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if (ix <= 0x3f490fda) { /* |x| ~<= pi/4 */
|
||||
if (ix < 0x39800000) { /* |x| < 2**-12 */
|
||||
/* raise inexact if x != 0 */
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
return 1.0f;
|
||||
}
|
||||
return __cosdf(x);
|
||||
}
|
||||
if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
|
||||
if (ix > 0x4016cbe3) /* |x| ~> 3*pi/4 */
|
||||
return -__cosdf(sign ? x+c2pio2 : x-c2pio2);
|
||||
else {
|
||||
if (sign)
|
||||
return __sindf(x + c1pio2);
|
||||
else
|
||||
return __sindf(c1pio2 - x);
|
||||
}
|
||||
}
|
||||
if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
|
||||
if (ix > 0x40afeddf) /* |x| ~> 7*pi/4 */
|
||||
return __cosdf(sign ? x+c4pio2 : x-c4pio2);
|
||||
else {
|
||||
if (sign)
|
||||
return __sindf(-x - c3pio2);
|
||||
else
|
||||
return __sindf(x - c3pio2);
|
||||
}
|
||||
}
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
if (ix >= 0x7f800000)
|
||||
return x-x;
|
||||
|
||||
/* general argument reduction needed */
|
||||
n = __rem_pio2f(x,&y);
|
||||
switch (n&3) {
|
||||
case 0: return __cosdf(y);
|
||||
case 1: return __sindf(-y);
|
||||
case 2: return -__cosdf(y);
|
||||
default:
|
||||
return __sindf(y);
|
||||
}
|
||||
}
|
40
libs/musl/src/math/cosh.c
Normal file
40
libs/musl/src/math/cosh.c
Normal file
|
@ -0,0 +1,40 @@
|
|||
#include "libm.h"
|
||||
|
||||
/* cosh(x) = (exp(x) + 1/exp(x))/2
|
||||
* = 1 + 0.5*(exp(x)-1)*(exp(x)-1)/exp(x)
|
||||
* = 1 + x*x/2 + o(x^4)
|
||||
*/
|
||||
double __cdecl cosh(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {.f = x};
|
||||
uint32_t w;
|
||||
double t;
|
||||
|
||||
/* |x| */
|
||||
u.i &= (uint64_t)-1/2;
|
||||
x = u.f;
|
||||
w = u.i >> 32;
|
||||
|
||||
/* |x| < log(2) */
|
||||
if (w < 0x3fe62e42) {
|
||||
if (w < 0x3ff00000 - (26<<20)) {
|
||||
/* raise inexact if x!=0 */
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
return 1;
|
||||
}
|
||||
t = expm1(x);
|
||||
return 1 + t*t/(2*(1+t));
|
||||
}
|
||||
|
||||
/* |x| < log(DBL_MAX) */
|
||||
if (w < 0x40862e42) {
|
||||
t = exp(x);
|
||||
/* note: if x>log(0x1p26) then the 1/t is not needed */
|
||||
return 0.5*(t + 1/t);
|
||||
}
|
||||
|
||||
/* |x| > log(DBL_MAX) or nan */
|
||||
/* note: the result is stored to handle overflow */
|
||||
t = __expo2(x, 1.0);
|
||||
return t;
|
||||
}
|
33
libs/musl/src/math/coshf.c
Normal file
33
libs/musl/src/math/coshf.c
Normal file
|
@ -0,0 +1,33 @@
|
|||
#include "libm.h"
|
||||
|
||||
float __cdecl coshf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {.f = x};
|
||||
uint32_t w;
|
||||
float t;
|
||||
|
||||
/* |x| */
|
||||
u.i &= 0x7fffffff;
|
||||
x = u.f;
|
||||
w = u.i;
|
||||
|
||||
/* |x| < log(2) */
|
||||
if (w < 0x3f317217) {
|
||||
if (w < 0x3f800000 - (12<<23)) {
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
return 1;
|
||||
}
|
||||
t = expm1f(x);
|
||||
return 1 + t*t/(2*(1+t));
|
||||
}
|
||||
|
||||
/* |x| < log(FLT_MAX) */
|
||||
if (w < 0x42b17217) {
|
||||
t = expf(x);
|
||||
return 0.5f*(t + 1/t);
|
||||
}
|
||||
|
||||
/* |x| > log(FLT_MAX) or nan */
|
||||
t = __expo2f(x, 1.0f);
|
||||
return t;
|
||||
}
|
273
libs/musl/src/math/erf.c
Normal file
273
libs/musl/src/math/erf.c
Normal file
|
@ -0,0 +1,273 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_erf.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* double erf(double x)
|
||||
* double erfc(double x)
|
||||
* x
|
||||
* 2 |\
|
||||
* erf(x) = --------- | exp(-t*t)dt
|
||||
* sqrt(pi) \|
|
||||
* 0
|
||||
*
|
||||
* erfc(x) = 1-erf(x)
|
||||
* Note that
|
||||
* erf(-x) = -erf(x)
|
||||
* erfc(-x) = 2 - erfc(x)
|
||||
*
|
||||
* Method:
|
||||
* 1. For |x| in [0, 0.84375]
|
||||
* erf(x) = x + x*R(x^2)
|
||||
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
||||
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
||||
* where R = P/Q where P is an odd poly of degree 8 and
|
||||
* Q is an odd poly of degree 10.
|
||||
* -57.90
|
||||
* | R - (erf(x)-x)/x | <= 2
|
||||
*
|
||||
*
|
||||
* Remark. The formula is derived by noting
|
||||
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
||||
* and that
|
||||
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
||||
* is close to one. The interval is chosen because the fix
|
||||
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
||||
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
||||
* guarantee the error is less than one ulp for erf.
|
||||
*
|
||||
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
||||
* c = 0.84506291151 rounded to single (24 bits)
|
||||
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
||||
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
||||
* 1+(c+P1(s)/Q1(s)) if x < 0
|
||||
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
||||
* Remark: here we use the taylor series expansion at x=1.
|
||||
* erf(1+s) = erf(1) + s*Poly(s)
|
||||
* = 0.845.. + P1(s)/Q1(s)
|
||||
* That is, we use rational approximation to approximate
|
||||
* erf(1+s) - (c = (single)0.84506291151)
|
||||
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
||||
* where
|
||||
* P1(s) = degree 6 poly in s
|
||||
* Q1(s) = degree 6 poly in s
|
||||
*
|
||||
* 3. For x in [1.25,1/0.35(~2.857143)],
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
||||
* erf(x) = 1 - erfc(x)
|
||||
* where
|
||||
* R1(z) = degree 7 poly in z, (z=1/x^2)
|
||||
* S1(z) = degree 8 poly in z
|
||||
*
|
||||
* 4. For x in [1/0.35,28]
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
||||
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
||||
* = 2.0 - tiny (if x <= -6)
|
||||
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
||||
* erf(x) = sign(x)*(1.0 - tiny)
|
||||
* where
|
||||
* R2(z) = degree 6 poly in z, (z=1/x^2)
|
||||
* S2(z) = degree 7 poly in z
|
||||
*
|
||||
* Note1:
|
||||
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
||||
* precision number and s := x; then
|
||||
* -x*x = -s*s + (s-x)*(s+x)
|
||||
* exp(-x*x-0.5626+R/S) =
|
||||
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
||||
* Note2:
|
||||
* Here 4 and 5 make use of the asymptotic series
|
||||
* exp(-x*x)
|
||||
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
||||
* x*sqrt(pi)
|
||||
* We use rational approximation to approximate
|
||||
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
|
||||
* Here is the error bound for R1/S1 and R2/S2
|
||||
* |R1/S1 - f(x)| < 2**(-62.57)
|
||||
* |R2/S2 - f(x)| < 2**(-61.52)
|
||||
*
|
||||
* 5. For inf > x >= 28
|
||||
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
||||
* erfc(x) = tiny*tiny (raise underflow) if x > 0
|
||||
* = 2 - tiny if x<0
|
||||
*
|
||||
* 7. Special case:
|
||||
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
||||
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
||||
* erfc/erf(NaN) is NaN
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
|
||||
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
|
||||
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
|
||||
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
|
||||
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
|
||||
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
|
||||
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
|
||||
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
|
||||
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
|
||||
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
|
||||
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
*/
|
||||
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
|
||||
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
|
||||
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
|
||||
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
|
||||
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
|
||||
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
|
||||
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
|
||||
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
|
||||
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
|
||||
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
|
||||
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
|
||||
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
|
||||
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
*/
|
||||
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
|
||||
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
|
||||
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
|
||||
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
|
||||
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
|
||||
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
|
||||
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
|
||||
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
|
||||
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
|
||||
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
|
||||
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
|
||||
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
|
||||
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
|
||||
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
|
||||
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
|
||||
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
*/
|
||||
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
|
||||
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
|
||||
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
|
||||
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
|
||||
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
|
||||
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
|
||||
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
|
||||
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
|
||||
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
|
||||
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
|
||||
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
|
||||
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
|
||||
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
|
||||
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
|
||||
|
||||
static double erfc1(double x)
|
||||
{
|
||||
double_t s,P,Q;
|
||||
|
||||
s = fabs(x) - 1;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
||||
Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
||||
return 1 - erx - P/Q;
|
||||
}
|
||||
|
||||
static double erfc2(uint32_t ix, double x)
|
||||
{
|
||||
double_t s,R,S;
|
||||
double z;
|
||||
|
||||
if (ix < 0x3ff40000) /* |x| < 1.25 */
|
||||
return erfc1(x);
|
||||
|
||||
x = fabs(x);
|
||||
s = 1/(x*x);
|
||||
if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
|
||||
R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
||||
ra5+s*(ra6+s*ra7))))));
|
||||
S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
||||
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
||||
} else { /* |x| > 1/.35 */
|
||||
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
||||
rb5+s*rb6)))));
|
||||
S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
||||
sb5+s*(sb6+s*sb7))))));
|
||||
}
|
||||
z = x;
|
||||
SET_LOW_WORD(z,0);
|
||||
return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;
|
||||
}
|
||||
|
||||
double __cdecl erf(double x)
|
||||
{
|
||||
double r,s,z,y;
|
||||
uint32_t ix;
|
||||
int sign;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x7ff00000) {
|
||||
/* erf(nan)=nan, erf(+-inf)=+-1 */
|
||||
return 1-2*sign + 1/x;
|
||||
}
|
||||
if (ix < 0x3feb0000) { /* |x| < 0.84375 */
|
||||
if (ix < 0x3e300000) { /* |x| < 2**-28 */
|
||||
/* avoid underflow */
|
||||
return 0.125*(8*x + efx8*x);
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
y = r/s;
|
||||
return x + x*y;
|
||||
}
|
||||
if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
|
||||
y = 1 - erfc2(ix,x);
|
||||
else
|
||||
y = 1 - 0x1p-1022;
|
||||
return sign ? -y : y;
|
||||
}
|
||||
|
||||
double __cdecl erfc(double x)
|
||||
{
|
||||
double r,s,z,y;
|
||||
uint32_t ix;
|
||||
int sign;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x7ff00000) {
|
||||
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
|
||||
return 2*sign + 1/x;
|
||||
}
|
||||
if (ix < 0x3feb0000) { /* |x| < 0.84375 */
|
||||
if (ix < 0x3c700000) /* |x| < 2**-56 */
|
||||
return 1.0 - x;
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
y = r/s;
|
||||
if (sign || ix < 0x3fd00000) { /* x < 1/4 */
|
||||
return 1.0 - (x+x*y);
|
||||
}
|
||||
return 0.5 - (x - 0.5 + x*y);
|
||||
}
|
||||
if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
|
||||
return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
|
||||
}
|
||||
return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022;
|
||||
}
|
183
libs/musl/src/math/erff.c
Normal file
183
libs/musl/src/math/erff.c
Normal file
|
@ -0,0 +1,183 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
erx = 8.4506291151e-01, /* 0x3f58560b */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
efx8 = 1.0270333290e+00, /* 0x3f8375d4 */
|
||||
pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
|
||||
pp1 = -3.2504209876e-01, /* 0xbea66beb */
|
||||
pp2 = -2.8481749818e-02, /* 0xbce9528f */
|
||||
pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
|
||||
pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
|
||||
qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
|
||||
qq2 = 6.5022252500e-02, /* 0x3d852a63 */
|
||||
qq3 = 5.0813062117e-03, /* 0x3ba68116 */
|
||||
qq4 = 1.3249473704e-04, /* 0x390aee49 */
|
||||
qq5 = -3.9602282413e-06, /* 0xb684e21a */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
*/
|
||||
pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
|
||||
pa1 = 4.1485610604e-01, /* 0x3ed46805 */
|
||||
pa2 = -3.7220788002e-01, /* 0xbebe9208 */
|
||||
pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
|
||||
pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
|
||||
pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
|
||||
pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
|
||||
qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
|
||||
qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
|
||||
qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
|
||||
qa4 = 1.2617121637e-01, /* 0x3e013307 */
|
||||
qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
|
||||
qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
*/
|
||||
ra0 = -9.8649440333e-03, /* 0xbc21a093 */
|
||||
ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
|
||||
ra2 = -1.0558626175e+01, /* 0xc128f022 */
|
||||
ra3 = -6.2375331879e+01, /* 0xc2798057 */
|
||||
ra4 = -1.6239666748e+02, /* 0xc322658c */
|
||||
ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
|
||||
ra6 = -8.1287437439e+01, /* 0xc2a2932b */
|
||||
ra7 = -9.8143291473e+00, /* 0xc11d077e */
|
||||
sa1 = 1.9651271820e+01, /* 0x419d35ce */
|
||||
sa2 = 1.3765776062e+02, /* 0x4309a863 */
|
||||
sa3 = 4.3456588745e+02, /* 0x43d9486f */
|
||||
sa4 = 6.4538726807e+02, /* 0x442158c9 */
|
||||
sa5 = 4.2900814819e+02, /* 0x43d6810b */
|
||||
sa6 = 1.0863500214e+02, /* 0x42d9451f */
|
||||
sa7 = 6.5702495575e+00, /* 0x40d23f7c */
|
||||
sa8 = -6.0424413532e-02, /* 0xbd777f97 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
*/
|
||||
rb0 = -9.8649431020e-03, /* 0xbc21a092 */
|
||||
rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
|
||||
rb2 = -1.7757955551e+01, /* 0xc18e104b */
|
||||
rb3 = -1.6063638306e+02, /* 0xc320a2ea */
|
||||
rb4 = -6.3756646729e+02, /* 0xc41f6441 */
|
||||
rb5 = -1.0250950928e+03, /* 0xc480230b */
|
||||
rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
|
||||
sb1 = 3.0338060379e+01, /* 0x41f2b459 */
|
||||
sb2 = 3.2579251099e+02, /* 0x43a2e571 */
|
||||
sb3 = 1.5367296143e+03, /* 0x44c01759 */
|
||||
sb4 = 3.1998581543e+03, /* 0x4547fdbb */
|
||||
sb5 = 2.5530502930e+03, /* 0x451f90ce */
|
||||
sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
|
||||
sb7 = -2.2440952301e+01; /* 0xc1b38712 */
|
||||
|
||||
static float erfc1(float x)
|
||||
{
|
||||
float_t s,P,Q;
|
||||
|
||||
s = fabsf(x) - 1;
|
||||
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
|
||||
Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
|
||||
return 1 - erx - P/Q;
|
||||
}
|
||||
|
||||
static float erfc2(uint32_t ix, float x)
|
||||
{
|
||||
float_t s,R,S;
|
||||
float z;
|
||||
|
||||
if (ix < 0x3fa00000) /* |x| < 1.25 */
|
||||
return erfc1(x);
|
||||
|
||||
x = fabsf(x);
|
||||
s = 1/(x*x);
|
||||
if (ix < 0x4036db6d) { /* |x| < 1/0.35 */
|
||||
R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
|
||||
ra5+s*(ra6+s*ra7))))));
|
||||
S = 1.0f+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
|
||||
sa5+s*(sa6+s*(sa7+s*sa8)))))));
|
||||
} else { /* |x| >= 1/0.35 */
|
||||
R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
|
||||
rb5+s*rb6)))));
|
||||
S = 1.0f+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
|
||||
sb5+s*(sb6+s*sb7))))));
|
||||
}
|
||||
GET_FLOAT_WORD(ix, x);
|
||||
SET_FLOAT_WORD(z, ix&0xffffe000);
|
||||
return expf(-z*z - 0.5625f) * expf((z-x)*(z+x) + R/S)/x;
|
||||
}
|
||||
|
||||
float __cdecl erff(float x)
|
||||
{
|
||||
float r,s,z,y;
|
||||
uint32_t ix;
|
||||
int sign;
|
||||
|
||||
GET_FLOAT_WORD(ix, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x7f800000) {
|
||||
/* erf(nan)=nan, erf(+-inf)=+-1 */
|
||||
return 1-2*sign + 1/x;
|
||||
}
|
||||
if (ix < 0x3f580000) { /* |x| < 0.84375 */
|
||||
if (ix < 0x31800000) { /* |x| < 2**-28 */
|
||||
/*avoid underflow */
|
||||
return 0.125f*(8*x + efx8*x);
|
||||
}
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = 1+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
y = r/s;
|
||||
return x + x*y;
|
||||
}
|
||||
if (ix < 0x40c00000) /* |x| < 6 */
|
||||
y = 1 - erfc2(ix,x);
|
||||
else
|
||||
y = 1 - 0x1p-120f;
|
||||
return sign ? -y : y;
|
||||
}
|
||||
|
||||
float __cdecl erfcf(float x)
|
||||
{
|
||||
float r,s,z,y;
|
||||
uint32_t ix;
|
||||
int sign;
|
||||
|
||||
GET_FLOAT_WORD(ix, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x7f800000) {
|
||||
/* erfc(nan)=nan, erfc(+-inf)=0,2 */
|
||||
return 2*sign + 1/x;
|
||||
}
|
||||
|
||||
if (ix < 0x3f580000) { /* |x| < 0.84375 */
|
||||
if (ix < 0x23800000) /* |x| < 2**-56 */
|
||||
return 1.0f - x;
|
||||
z = x*x;
|
||||
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
|
||||
s = 1.0f+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
|
||||
y = r/s;
|
||||
if (sign || ix < 0x3e800000) /* x < 1/4 */
|
||||
return 1.0f - (x+x*y);
|
||||
return 0.5f - (x - 0.5f + x*y);
|
||||
}
|
||||
if (ix < 0x41e00000) { /* |x| < 28 */
|
||||
return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
|
||||
}
|
||||
return sign ? 2 - 0x1p-120f : 0x1p-120f*0x1p-120f;
|
||||
}
|
134
libs/musl/src/math/exp.c
Normal file
134
libs/musl/src/math/exp.c
Normal file
|
@ -0,0 +1,134 @@
|
|||
/*
|
||||
* Double-precision e^x function.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp_data.h"
|
||||
|
||||
#define N (1 << EXP_TABLE_BITS)
|
||||
#define InvLn2N __exp_data.invln2N
|
||||
#define NegLn2hiN __exp_data.negln2hiN
|
||||
#define NegLn2loN __exp_data.negln2loN
|
||||
#define Shift __exp_data.shift
|
||||
#define T __exp_data.tab
|
||||
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
|
||||
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
|
||||
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
|
||||
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
|
||||
|
||||
/* Handle cases that may overflow or underflow when computing the result that
|
||||
is scale*(1+TMP) without intermediate rounding. The bit representation of
|
||||
scale is in SBITS, however it has a computed exponent that may have
|
||||
overflown into the sign bit so that needs to be adjusted before using it as
|
||||
a double. (int32_t)KI is the k used in the argument reduction and exponent
|
||||
adjustment of scale, positive k here means the result may overflow and
|
||||
negative k means the result may underflow. */
|
||||
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
|
||||
{
|
||||
double_t scale, y;
|
||||
|
||||
if ((ki & 0x80000000) == 0) {
|
||||
/* k > 0, the exponent of scale might have overflowed by <= 460. */
|
||||
sbits -= 1009ull << 52;
|
||||
scale = asdouble(sbits);
|
||||
y = 0x1p1009 * (scale + scale * tmp);
|
||||
return eval_as_double(y);
|
||||
}
|
||||
/* k < 0, need special care in the subnormal range. */
|
||||
sbits += 1022ull << 52;
|
||||
scale = asdouble(sbits);
|
||||
y = scale + scale * tmp;
|
||||
if (y < 1.0) {
|
||||
/* Round y to the right precision before scaling it into the subnormal
|
||||
range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
||||
E is the worst-case ulp error outside the subnormal range. So this
|
||||
is only useful if the goal is better than 1 ulp worst-case error. */
|
||||
double_t hi, lo;
|
||||
lo = scale - y + scale * tmp;
|
||||
hi = 1.0 + y;
|
||||
lo = 1.0 - hi + y + lo;
|
||||
y = eval_as_double(hi + lo) - 1.0;
|
||||
/* Avoid -0.0 with downward rounding. */
|
||||
if (WANT_ROUNDING && y == 0.0)
|
||||
y = 0.0;
|
||||
/* The underflow exception needs to be signaled explicitly. */
|
||||
fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
|
||||
}
|
||||
y = 0x1p-1022 * y;
|
||||
return eval_as_double(y);
|
||||
}
|
||||
|
||||
/* Top 12 bits of a double (sign and exponent bits). */
|
||||
static inline uint32_t top12(double x)
|
||||
{
|
||||
return asuint64(x) >> 52;
|
||||
}
|
||||
|
||||
double __cdecl exp(double x)
|
||||
{
|
||||
uint32_t abstop;
|
||||
uint64_t ki, idx, top, sbits;
|
||||
double_t kd, z, r, r2, scale, tail, tmp;
|
||||
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
|
||||
if (abstop - top12(0x1p-54) >= 0x80000000)
|
||||
/* Avoid spurious underflow for tiny x. */
|
||||
/* Note: 0 is common input. */
|
||||
return WANT_ROUNDING ? 1.0 + x : 1.0;
|
||||
if (abstop >= top12(1024.0)) {
|
||||
if (asuint64(x) == asuint64(-INFINITY))
|
||||
return 0.0;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return 1.0 + x;
|
||||
if (asuint64(x) >> 63)
|
||||
return __math_uflow(0);
|
||||
else
|
||||
return __math_oflow(0);
|
||||
}
|
||||
/* Large x is special cased below. */
|
||||
abstop = 0;
|
||||
}
|
||||
|
||||
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
|
||||
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
|
||||
z = InvLn2N * x;
|
||||
#if TOINT_INTRINSICS
|
||||
kd = roundtoint(z);
|
||||
ki = converttoint(z);
|
||||
#elif EXP_USE_TOINT_NARROW
|
||||
/* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
|
||||
kd = eval_as_double(z + Shift);
|
||||
ki = asuint64(kd) >> 16;
|
||||
kd = (double_t)(int32_t)ki;
|
||||
#else
|
||||
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
|
||||
kd = eval_as_double(z + Shift);
|
||||
ki = asuint64(kd);
|
||||
kd -= Shift;
|
||||
#endif
|
||||
r = x + kd * NegLn2hiN + kd * NegLn2loN;
|
||||
/* 2^(k/N) ~= scale * (1 + tail). */
|
||||
idx = 2 * (ki % N);
|
||||
top = ki << (52 - EXP_TABLE_BITS);
|
||||
tail = asdouble(T[idx]);
|
||||
/* This is only a valid scale when -1023*N < k < 1024*N. */
|
||||
sbits = T[idx + 1] + top;
|
||||
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
|
||||
/* Evaluation is optimized assuming superscalar pipelined execution. */
|
||||
r2 = r * r;
|
||||
/* Without fma the worst case error is 0.25/N ulp larger. */
|
||||
/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
|
||||
tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
|
||||
if (predict_false(abstop == 0))
|
||||
return specialcase(tmp, sbits, ki);
|
||||
scale = asdouble(sbits);
|
||||
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
|
||||
is no spurious underflow here even without fma. */
|
||||
return eval_as_double(scale + scale * tmp);
|
||||
}
|
121
libs/musl/src/math/exp2.c
Normal file
121
libs/musl/src/math/exp2.c
Normal file
|
@ -0,0 +1,121 @@
|
|||
/*
|
||||
* Double-precision 2^x function.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp_data.h"
|
||||
|
||||
#define N (1 << EXP_TABLE_BITS)
|
||||
#define Shift __exp_data.exp2_shift
|
||||
#define T __exp_data.tab
|
||||
#define C1 __exp_data.exp2_poly[0]
|
||||
#define C2 __exp_data.exp2_poly[1]
|
||||
#define C3 __exp_data.exp2_poly[2]
|
||||
#define C4 __exp_data.exp2_poly[3]
|
||||
#define C5 __exp_data.exp2_poly[4]
|
||||
|
||||
/* Handle cases that may overflow or underflow when computing the result that
|
||||
is scale*(1+TMP) without intermediate rounding. The bit representation of
|
||||
scale is in SBITS, however it has a computed exponent that may have
|
||||
overflown into the sign bit so that needs to be adjusted before using it as
|
||||
a double. (int32_t)KI is the k used in the argument reduction and exponent
|
||||
adjustment of scale, positive k here means the result may overflow and
|
||||
negative k means the result may underflow. */
|
||||
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
|
||||
{
|
||||
double_t scale, y;
|
||||
|
||||
if ((ki & 0x80000000) == 0) {
|
||||
/* k > 0, the exponent of scale might have overflowed by 1. */
|
||||
sbits -= 1ull << 52;
|
||||
scale = asdouble(sbits);
|
||||
y = 2 * (scale + scale * tmp);
|
||||
return eval_as_double(y);
|
||||
}
|
||||
/* k < 0, need special care in the subnormal range. */
|
||||
sbits += 1022ull << 52;
|
||||
scale = asdouble(sbits);
|
||||
y = scale + scale * tmp;
|
||||
if (y < 1.0) {
|
||||
/* Round y to the right precision before scaling it into the subnormal
|
||||
range to avoid double rounding that can cause 0.5+E/2 ulp error where
|
||||
E is the worst-case ulp error outside the subnormal range. So this
|
||||
is only useful if the goal is better than 1 ulp worst-case error. */
|
||||
double_t hi, lo;
|
||||
lo = scale - y + scale * tmp;
|
||||
hi = 1.0 + y;
|
||||
lo = 1.0 - hi + y + lo;
|
||||
y = eval_as_double(hi + lo) - 1.0;
|
||||
/* Avoid -0.0 with downward rounding. */
|
||||
if (WANT_ROUNDING && y == 0.0)
|
||||
y = 0.0;
|
||||
/* The underflow exception needs to be signaled explicitly. */
|
||||
fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
|
||||
}
|
||||
y = 0x1p-1022 * y;
|
||||
return eval_as_double(y);
|
||||
}
|
||||
|
||||
/* Top 12 bits of a double (sign and exponent bits). */
|
||||
static inline uint32_t top12(double x)
|
||||
{
|
||||
return asuint64(x) >> 52;
|
||||
}
|
||||
|
||||
double __cdecl exp2(double x)
|
||||
{
|
||||
uint32_t abstop;
|
||||
uint64_t ki, idx, top, sbits;
|
||||
double_t kd, r, r2, scale, tail, tmp;
|
||||
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
|
||||
if (abstop - top12(0x1p-54) >= 0x80000000)
|
||||
/* Avoid spurious underflow for tiny x. */
|
||||
/* Note: 0 is common input. */
|
||||
return WANT_ROUNDING ? 1.0 + x : 1.0;
|
||||
if (abstop >= top12(1024.0)) {
|
||||
if (asuint64(x) == asuint64(-INFINITY))
|
||||
return 0.0;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return 1.0 + x;
|
||||
if (!(asuint64(x) >> 63))
|
||||
return __math_oflow(0);
|
||||
else if (asuint64(x) >= asuint64(-1075.0))
|
||||
return __math_uflow(0);
|
||||
}
|
||||
if (2 * asuint64(x) > 2 * asuint64(928.0))
|
||||
/* Large x is special cased below. */
|
||||
abstop = 0;
|
||||
}
|
||||
|
||||
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
|
||||
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
|
||||
kd = eval_as_double(x + Shift);
|
||||
ki = asuint64(kd); /* k. */
|
||||
kd -= Shift; /* k/N for int k. */
|
||||
r = x - kd;
|
||||
/* 2^(k/N) ~= scale * (1 + tail). */
|
||||
idx = 2 * (ki % N);
|
||||
top = ki << (52 - EXP_TABLE_BITS);
|
||||
tail = asdouble(T[idx]);
|
||||
/* This is only a valid scale when -1023*N < k < 1024*N. */
|
||||
sbits = T[idx + 1] + top;
|
||||
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
|
||||
/* Evaluation is optimized assuming superscalar pipelined execution. */
|
||||
r2 = r * r;
|
||||
/* Without fma the worst case error is 0.5/N ulp larger. */
|
||||
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
|
||||
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
|
||||
if (predict_false(abstop == 0))
|
||||
return specialcase(tmp, sbits, ki);
|
||||
scale = asdouble(sbits);
|
||||
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
|
||||
is no spurious underflow here even without fma. */
|
||||
return eval_as_double(scale + scale * tmp);
|
||||
}
|
69
libs/musl/src/math/exp2f.c
Normal file
69
libs/musl/src/math/exp2f.c
Normal file
|
@ -0,0 +1,69 @@
|
|||
/*
|
||||
* Single-precision 2^x function.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
|
||||
/*
|
||||
EXP2F_TABLE_BITS = 5
|
||||
EXP2F_POLY_ORDER = 3
|
||||
|
||||
ULP error: 0.502 (nearest rounding.)
|
||||
Relative error: 1.69 * 2^-34 in [-1/64, 1/64] (before rounding.)
|
||||
Wrong count: 168353 (all nearest rounding wrong results with fma.)
|
||||
Non-nearest ULP error: 1 (rounded ULP error)
|
||||
*/
|
||||
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
#define T __exp2f_data.tab
|
||||
#define C __exp2f_data.poly
|
||||
#define SHIFT __exp2f_data.shift_scaled
|
||||
|
||||
static inline uint32_t top12(float x)
|
||||
{
|
||||
return asuint(x) >> 20;
|
||||
}
|
||||
|
||||
float __cdecl exp2f(float x)
|
||||
{
|
||||
uint32_t abstop;
|
||||
uint64_t ki, t;
|
||||
double_t kd, xd, z, r, r2, y, s;
|
||||
|
||||
xd = (double_t)x;
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (predict_false(abstop >= top12(128.0f))) {
|
||||
/* |x| >= 128 or x is nan. */
|
||||
if (asuint(x) == asuint(-INFINITY))
|
||||
return 0.0f;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return x + x;
|
||||
if (x > 0.0f)
|
||||
return __math_oflowf(0);
|
||||
if (x <= -150.0f)
|
||||
return __math_uflowf(0);
|
||||
}
|
||||
|
||||
/* x = k/N + r with r in [-1/(2N), 1/(2N)] and int k. */
|
||||
kd = eval_as_double(xd + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT; /* k/N for int k. */
|
||||
r = xd - kd;
|
||||
|
||||
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
t += ki << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
}
|
35
libs/musl/src/math/exp2f_data.c
Normal file
35
libs/musl/src/math/exp2f_data.c
Normal file
|
@ -0,0 +1,35 @@
|
|||
/*
|
||||
* Shared data between expf, exp2f and powf.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "exp2f_data.h"
|
||||
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
|
||||
const struct exp2f_data __exp2f_data = {
|
||||
/* tab[i] = uint(2^(i/N)) - (i << 52-BITS)
|
||||
used for computing 2^(k/N) for an int |k| < 150 N as
|
||||
double(tab[k%N] + (k << 52-BITS)) */
|
||||
.tab = {
|
||||
0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f, 0x3fef9301d0125b51,
|
||||
0x3fef72b83c7d517b, 0x3fef54873168b9aa, 0x3fef387a6e756238, 0x3fef1e9df51fdee1,
|
||||
0x3fef06fe0a31b715, 0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,
|
||||
0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429, 0x3feea47eb03a5585,
|
||||
0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74, 0x3feea11473eb0187, 0x3feea589994cce13,
|
||||
0x3feeace5422aa0db, 0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 0x3feed503b23e255d,
|
||||
0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c, 0x3fef3720dcef9069,
|
||||
0x3fef5818dcfba487, 0x3fef7c97337b9b5f, 0x3fefa4afa2a490da, 0x3fefd0765b6e4540,
|
||||
},
|
||||
.shift_scaled = 0x1.8p+52 / N,
|
||||
.poly = {
|
||||
0x1.c6af84b912394p-5, 0x1.ebfce50fac4f3p-3, 0x1.62e42ff0c52d6p-1,
|
||||
},
|
||||
.shift = 0x1.8p+52,
|
||||
.invln2_scaled = 0x1.71547652b82fep+0 * N,
|
||||
.poly_scaled = {
|
||||
0x1.c6af84b912394p-5/N/N/N, 0x1.ebfce50fac4f3p-3/N/N, 0x1.62e42ff0c52d6p-1/N,
|
||||
},
|
||||
};
|
23
libs/musl/src/math/exp2f_data.h
Normal file
23
libs/musl/src/math/exp2f_data.h
Normal file
|
@ -0,0 +1,23 @@
|
|||
/*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _EXP2F_DATA_H
|
||||
#define _EXP2F_DATA_H
|
||||
|
||||
#include <features.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/* Shared between expf, exp2f and powf. */
|
||||
#define EXP2F_TABLE_BITS 5
|
||||
#define EXP2F_POLY_ORDER 3
|
||||
extern hidden const struct exp2f_data {
|
||||
uint64_t tab[1 << EXP2F_TABLE_BITS];
|
||||
double shift_scaled;
|
||||
double poly[EXP2F_POLY_ORDER];
|
||||
double shift;
|
||||
double invln2_scaled;
|
||||
double poly_scaled[EXP2F_POLY_ORDER];
|
||||
} __exp2f_data;
|
||||
|
||||
#endif
|
182
libs/musl/src/math/exp_data.c
Normal file
182
libs/musl/src/math/exp_data.c
Normal file
|
@ -0,0 +1,182 @@
|
|||
/*
|
||||
* Shared data between exp, exp2 and pow.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "exp_data.h"
|
||||
|
||||
#define N (1 << EXP_TABLE_BITS)
|
||||
|
||||
const struct exp_data __exp_data = {
|
||||
// N/ln2
|
||||
.invln2N = 0x1.71547652b82fep0 * N,
|
||||
// -ln2/N
|
||||
.negln2hiN = -0x1.62e42fefa0000p-8,
|
||||
.negln2loN = -0x1.cf79abc9e3b3ap-47,
|
||||
// Used for rounding when !TOINT_INTRINSICS
|
||||
#if EXP_USE_TOINT_NARROW
|
||||
.shift = 0x1800000000.8p0,
|
||||
#else
|
||||
.shift = 0x1.8p52,
|
||||
#endif
|
||||
// exp polynomial coefficients.
|
||||
.poly = {
|
||||
// abs error: 1.555*2^-66
|
||||
// ulp error: 0.509 (0.511 without fma)
|
||||
// if |x| < ln2/256+eps
|
||||
// abs error if |x| < ln2/256+0x1p-15: 1.09*2^-65
|
||||
// abs error if |x| < ln2/128: 1.7145*2^-56
|
||||
0x1.ffffffffffdbdp-2,
|
||||
0x1.555555555543cp-3,
|
||||
0x1.55555cf172b91p-5,
|
||||
0x1.1111167a4d017p-7,
|
||||
},
|
||||
.exp2_shift = 0x1.8p52 / N,
|
||||
// exp2 polynomial coefficients.
|
||||
.exp2_poly = {
|
||||
// abs error: 1.2195*2^-65
|
||||
// ulp error: 0.507 (0.511 without fma)
|
||||
// if |x| < 1/256
|
||||
// abs error if |x| < 1/128: 1.9941*2^-56
|
||||
0x1.62e42fefa39efp-1,
|
||||
0x1.ebfbdff82c424p-3,
|
||||
0x1.c6b08d70cf4b5p-5,
|
||||
0x1.3b2abd24650ccp-7,
|
||||
0x1.5d7e09b4e3a84p-10,
|
||||
},
|
||||
// 2^(k/N) ~= H[k]*(1 + T[k]) for int k in [0,N)
|
||||
// tab[2*k] = asuint64(T[k])
|
||||
// tab[2*k+1] = asuint64(H[k]) - (k << 52)/N
|
||||
.tab = {
|
||||
0x0, 0x3ff0000000000000,
|
||||
0x3c9b3b4f1a88bf6e, 0x3feff63da9fb3335,
|
||||
0xbc7160139cd8dc5d, 0x3fefec9a3e778061,
|
||||
0xbc905e7a108766d1, 0x3fefe315e86e7f85,
|
||||
0x3c8cd2523567f613, 0x3fefd9b0d3158574,
|
||||
0xbc8bce8023f98efa, 0x3fefd06b29ddf6de,
|
||||
0x3c60f74e61e6c861, 0x3fefc74518759bc8,
|
||||
0x3c90a3e45b33d399, 0x3fefbe3ecac6f383,
|
||||
0x3c979aa65d837b6d, 0x3fefb5586cf9890f,
|
||||
0x3c8eb51a92fdeffc, 0x3fefac922b7247f7,
|
||||
0x3c3ebe3d702f9cd1, 0x3fefa3ec32d3d1a2,
|
||||
0xbc6a033489906e0b, 0x3fef9b66affed31b,
|
||||
0xbc9556522a2fbd0e, 0x3fef9301d0125b51,
|
||||
0xbc5080ef8c4eea55, 0x3fef8abdc06c31cc,
|
||||
0xbc91c923b9d5f416, 0x3fef829aaea92de0,
|
||||
0x3c80d3e3e95c55af, 0x3fef7a98c8a58e51,
|
||||
0xbc801b15eaa59348, 0x3fef72b83c7d517b,
|
||||
0xbc8f1ff055de323d, 0x3fef6af9388c8dea,
|
||||
0x3c8b898c3f1353bf, 0x3fef635beb6fcb75,
|
||||
0xbc96d99c7611eb26, 0x3fef5be084045cd4,
|
||||
0x3c9aecf73e3a2f60, 0x3fef54873168b9aa,
|
||||
0xbc8fe782cb86389d, 0x3fef4d5022fcd91d,
|
||||
0x3c8a6f4144a6c38d, 0x3fef463b88628cd6,
|
||||
0x3c807a05b0e4047d, 0x3fef3f49917ddc96,
|
||||
0x3c968efde3a8a894, 0x3fef387a6e756238,
|
||||
0x3c875e18f274487d, 0x3fef31ce4fb2a63f,
|
||||
0x3c80472b981fe7f2, 0x3fef2b4565e27cdd,
|
||||
0xbc96b87b3f71085e, 0x3fef24dfe1f56381,
|
||||
0x3c82f7e16d09ab31, 0x3fef1e9df51fdee1,
|
||||
0xbc3d219b1a6fbffa, 0x3fef187fd0dad990,
|
||||
0x3c8b3782720c0ab4, 0x3fef1285a6e4030b,
|
||||
0x3c6e149289cecb8f, 0x3fef0cafa93e2f56,
|
||||
0x3c834d754db0abb6, 0x3fef06fe0a31b715,
|
||||
0x3c864201e2ac744c, 0x3fef0170fc4cd831,
|
||||
0x3c8fdd395dd3f84a, 0x3feefc08b26416ff,
|
||||
0xbc86a3803b8e5b04, 0x3feef6c55f929ff1,
|
||||
0xbc924aedcc4b5068, 0x3feef1a7373aa9cb,
|
||||
0xbc9907f81b512d8e, 0x3feeecae6d05d866,
|
||||
0xbc71d1e83e9436d2, 0x3feee7db34e59ff7,
|
||||
0xbc991919b3ce1b15, 0x3feee32dc313a8e5,
|
||||
0x3c859f48a72a4c6d, 0x3feedea64c123422,
|
||||
0xbc9312607a28698a, 0x3feeda4504ac801c,
|
||||
0xbc58a78f4817895b, 0x3feed60a21f72e2a,
|
||||
0xbc7c2c9b67499a1b, 0x3feed1f5d950a897,
|
||||
0x3c4363ed60c2ac11, 0x3feece086061892d,
|
||||
0x3c9666093b0664ef, 0x3feeca41ed1d0057,
|
||||
0x3c6ecce1daa10379, 0x3feec6a2b5c13cd0,
|
||||
0x3c93ff8e3f0f1230, 0x3feec32af0d7d3de,
|
||||
0x3c7690cebb7aafb0, 0x3feebfdad5362a27,
|
||||
0x3c931dbdeb54e077, 0x3feebcb299fddd0d,
|
||||
0xbc8f94340071a38e, 0x3feeb9b2769d2ca7,
|
||||
0xbc87deccdc93a349, 0x3feeb6daa2cf6642,
|
||||
0xbc78dec6bd0f385f, 0x3feeb42b569d4f82,
|
||||
0xbc861246ec7b5cf6, 0x3feeb1a4ca5d920f,
|
||||
0x3c93350518fdd78e, 0x3feeaf4736b527da,
|
||||
0x3c7b98b72f8a9b05, 0x3feead12d497c7fd,
|
||||
0x3c9063e1e21c5409, 0x3feeab07dd485429,
|
||||
0x3c34c7855019c6ea, 0x3feea9268a5946b7,
|
||||
0x3c9432e62b64c035, 0x3feea76f15ad2148,
|
||||
0xbc8ce44a6199769f, 0x3feea5e1b976dc09,
|
||||
0xbc8c33c53bef4da8, 0x3feea47eb03a5585,
|
||||
0xbc845378892be9ae, 0x3feea34634ccc320,
|
||||
0xbc93cedd78565858, 0x3feea23882552225,
|
||||
0x3c5710aa807e1964, 0x3feea155d44ca973,
|
||||
0xbc93b3efbf5e2228, 0x3feea09e667f3bcd,
|
||||
0xbc6a12ad8734b982, 0x3feea012750bdabf,
|
||||
0xbc6367efb86da9ee, 0x3fee9fb23c651a2f,
|
||||
0xbc80dc3d54e08851, 0x3fee9f7df9519484,
|
||||
0xbc781f647e5a3ecf, 0x3fee9f75e8ec5f74,
|
||||
0xbc86ee4ac08b7db0, 0x3fee9f9a48a58174,
|
||||
0xbc8619321e55e68a, 0x3fee9feb564267c9,
|
||||
0x3c909ccb5e09d4d3, 0x3feea0694fde5d3f,
|
||||
0xbc7b32dcb94da51d, 0x3feea11473eb0187,
|
||||
0x3c94ecfd5467c06b, 0x3feea1ed0130c132,
|
||||
0x3c65ebe1abd66c55, 0x3feea2f336cf4e62,
|
||||
0xbc88a1c52fb3cf42, 0x3feea427543e1a12,
|
||||
0xbc9369b6f13b3734, 0x3feea589994cce13,
|
||||
0xbc805e843a19ff1e, 0x3feea71a4623c7ad,
|
||||
0xbc94d450d872576e, 0x3feea8d99b4492ed,
|
||||
0x3c90ad675b0e8a00, 0x3feeaac7d98a6699,
|
||||
0x3c8db72fc1f0eab4, 0x3feeace5422aa0db,
|
||||
0xbc65b6609cc5e7ff, 0x3feeaf3216b5448c,
|
||||
0x3c7bf68359f35f44, 0x3feeb1ae99157736,
|
||||
0xbc93091fa71e3d83, 0x3feeb45b0b91ffc6,
|
||||
0xbc5da9b88b6c1e29, 0x3feeb737b0cdc5e5,
|
||||
0xbc6c23f97c90b959, 0x3feeba44cbc8520f,
|
||||
0xbc92434322f4f9aa, 0x3feebd829fde4e50,
|
||||
0xbc85ca6cd7668e4b, 0x3feec0f170ca07ba,
|
||||
0x3c71affc2b91ce27, 0x3feec49182a3f090,
|
||||
0x3c6dd235e10a73bb, 0x3feec86319e32323,
|
||||
0xbc87c50422622263, 0x3feecc667b5de565,
|
||||
0x3c8b1c86e3e231d5, 0x3feed09bec4a2d33,
|
||||
0xbc91bbd1d3bcbb15, 0x3feed503b23e255d,
|
||||
0x3c90cc319cee31d2, 0x3feed99e1330b358,
|
||||
0x3c8469846e735ab3, 0x3feede6b5579fdbf,
|
||||
0xbc82dfcd978e9db4, 0x3feee36bbfd3f37a,
|
||||
0x3c8c1a7792cb3387, 0x3feee89f995ad3ad,
|
||||
0xbc907b8f4ad1d9fa, 0x3feeee07298db666,
|
||||
0xbc55c3d956dcaeba, 0x3feef3a2b84f15fb,
|
||||
0xbc90a40e3da6f640, 0x3feef9728de5593a,
|
||||
0xbc68d6f438ad9334, 0x3feeff76f2fb5e47,
|
||||
0xbc91eee26b588a35, 0x3fef05b030a1064a,
|
||||
0x3c74ffd70a5fddcd, 0x3fef0c1e904bc1d2,
|
||||
0xbc91bdfbfa9298ac, 0x3fef12c25bd71e09,
|
||||
0x3c736eae30af0cb3, 0x3fef199bdd85529c,
|
||||
0x3c8ee3325c9ffd94, 0x3fef20ab5fffd07a,
|
||||
0x3c84e08fd10959ac, 0x3fef27f12e57d14b,
|
||||
0x3c63cdaf384e1a67, 0x3fef2f6d9406e7b5,
|
||||
0x3c676b2c6c921968, 0x3fef3720dcef9069,
|
||||
0xbc808a1883ccb5d2, 0x3fef3f0b555dc3fa,
|
||||
0xbc8fad5d3ffffa6f, 0x3fef472d4a07897c,
|
||||
0xbc900dae3875a949, 0x3fef4f87080d89f2,
|
||||
0x3c74a385a63d07a7, 0x3fef5818dcfba487,
|
||||
0xbc82919e2040220f, 0x3fef60e316c98398,
|
||||
0x3c8e5a50d5c192ac, 0x3fef69e603db3285,
|
||||
0x3c843a59ac016b4b, 0x3fef7321f301b460,
|
||||
0xbc82d52107b43e1f, 0x3fef7c97337b9b5f,
|
||||
0xbc892ab93b470dc9, 0x3fef864614f5a129,
|
||||
0x3c74b604603a88d3, 0x3fef902ee78b3ff6,
|
||||
0x3c83c5ec519d7271, 0x3fef9a51fbc74c83,
|
||||
0xbc8ff7128fd391f0, 0x3fefa4afa2a490da,
|
||||
0xbc8dae98e223747d, 0x3fefaf482d8e67f1,
|
||||
0x3c8ec3bc41aa2008, 0x3fefba1bee615a27,
|
||||
0x3c842b94c3a9eb32, 0x3fefc52b376bba97,
|
||||
0x3c8a64a931d185ee, 0x3fefd0765b6e4540,
|
||||
0xbc8e37bae43be3ed, 0x3fefdbfdad9cbe14,
|
||||
0x3c77893b4d91cd9d, 0x3fefe7c1819e90d8,
|
||||
0x3c5305c14160cc89, 0x3feff3c22b8f71f1,
|
||||
},
|
||||
};
|
26
libs/musl/src/math/exp_data.h
Normal file
26
libs/musl/src/math/exp_data.h
Normal file
|
@ -0,0 +1,26 @@
|
|||
/*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _EXP_DATA_H
|
||||
#define _EXP_DATA_H
|
||||
|
||||
#include <features.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#define EXP_TABLE_BITS 7
|
||||
#define EXP_POLY_ORDER 5
|
||||
#define EXP_USE_TOINT_NARROW 0
|
||||
#define EXP2_POLY_ORDER 5
|
||||
extern hidden const struct exp_data {
|
||||
double invln2N;
|
||||
double shift;
|
||||
double negln2hiN;
|
||||
double negln2loN;
|
||||
double poly[4]; /* Last four coefficients. */
|
||||
double exp2_shift;
|
||||
double exp2_poly[EXP2_POLY_ORDER];
|
||||
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
|
||||
} __exp_data;
|
||||
|
||||
#endif
|
80
libs/musl/src/math/expf.c
Normal file
80
libs/musl/src/math/expf.c
Normal file
|
@ -0,0 +1,80 @@
|
|||
/*
|
||||
* Single-precision e^x function.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "exp2f_data.h"
|
||||
|
||||
/*
|
||||
EXP2F_TABLE_BITS = 5
|
||||
EXP2F_POLY_ORDER = 3
|
||||
|
||||
ULP error: 0.502 (nearest rounding.)
|
||||
Relative error: 1.69 * 2^-34 in [-ln2/64, ln2/64] (before rounding.)
|
||||
Wrong count: 170635 (all nearest rounding wrong results with fma.)
|
||||
Non-nearest ULP error: 1 (rounded ULP error)
|
||||
*/
|
||||
|
||||
#define N (1 << EXP2F_TABLE_BITS)
|
||||
#define InvLn2N __exp2f_data.invln2_scaled
|
||||
#define T __exp2f_data.tab
|
||||
#define C __exp2f_data.poly_scaled
|
||||
|
||||
static inline uint32_t top12(float x)
|
||||
{
|
||||
return asuint(x) >> 20;
|
||||
}
|
||||
|
||||
float __cdecl expf(float x)
|
||||
{
|
||||
uint32_t abstop;
|
||||
uint64_t ki, t;
|
||||
double_t kd, xd, z, r, r2, y, s;
|
||||
|
||||
xd = (double_t)x;
|
||||
abstop = top12(x) & 0x7ff;
|
||||
if (predict_false(abstop >= top12(88.0f))) {
|
||||
/* |x| >= 88 or x is nan. */
|
||||
if (asuint(x) == asuint(-INFINITY))
|
||||
return 0.0f;
|
||||
if (abstop >= top12(INFINITY))
|
||||
return x + x;
|
||||
if (x > 0x1.62e42ep6f) /* x > log(0x1p128) ~= 88.72 */
|
||||
return __math_oflowf(0);
|
||||
if (x < -0x1.9fe368p6f) /* x < log(0x1p-150) ~= -103.97 */
|
||||
return __math_uflowf(0);
|
||||
}
|
||||
|
||||
/* x*N/Ln2 = k + r with r in [-1/2, 1/2] and int k. */
|
||||
z = InvLn2N * xd;
|
||||
|
||||
/* Round and convert z to int, the result is in [-150*N, 128*N] and
|
||||
ideally ties-to-even rule is used, otherwise the magnitude of r
|
||||
can be bigger which gives larger approximation error. */
|
||||
#if TOINT_INTRINSICS
|
||||
kd = roundtoint(z);
|
||||
ki = converttoint(z);
|
||||
#else
|
||||
# define SHIFT __exp2f_data.shift
|
||||
kd = eval_as_double(z + SHIFT);
|
||||
ki = asuint64(kd);
|
||||
kd -= SHIFT;
|
||||
#endif
|
||||
r = z - kd;
|
||||
|
||||
/* exp(x) = 2^(k/N) * 2^(r/N) ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
|
||||
t = T[ki % N];
|
||||
t += ki << (52 - EXP2F_TABLE_BITS);
|
||||
s = asdouble(t);
|
||||
z = C[0] * r + C[1];
|
||||
r2 = r * r;
|
||||
y = C[2] * r + 1;
|
||||
y = z * r2 + y;
|
||||
y = y * s;
|
||||
return eval_as_float(y);
|
||||
}
|
201
libs/musl/src/math/expm1.c
Normal file
201
libs/musl/src/math/expm1.c
Normal file
|
@ -0,0 +1,201 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* expm1(x)
|
||||
* Returns exp(x)-1, the exponential of x minus 1.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
||||
*
|
||||
* Here a correction term c will be computed to compensate
|
||||
* the error in r when rounded to a floating-point number.
|
||||
*
|
||||
* 2. Approximating expm1(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Since
|
||||
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
||||
* we define R1(r*r) by
|
||||
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
||||
* That is,
|
||||
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
||||
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
||||
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
||||
* We use a special Remez algorithm on [0,0.347] to generate
|
||||
* a polynomial of degree 5 in r*r to approximate R1. The
|
||||
* maximum error of this polynomial approximation is bounded
|
||||
* by 2**-61. In other words,
|
||||
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
||||
* where Q1 = -1.6666666666666567384E-2,
|
||||
* Q2 = 3.9682539681370365873E-4,
|
||||
* Q3 = -9.9206344733435987357E-6,
|
||||
* Q4 = 2.5051361420808517002E-7,
|
||||
* Q5 = -6.2843505682382617102E-9;
|
||||
* z = r*r,
|
||||
* with error bounded by
|
||||
* | 5 | -61
|
||||
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
||||
* | |
|
||||
*
|
||||
* expm1(r) = exp(r)-1 is then computed by the following
|
||||
* specific way which minimize the accumulation rounding error:
|
||||
* 2 3
|
||||
* r r [ 3 - (R1 + R1*r/2) ]
|
||||
* expm1(r) = r + --- + --- * [--------------------]
|
||||
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
||||
*
|
||||
* To compensate the error in the argument reduction, we use
|
||||
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
||||
* ~ expm1(r) + c + r*c
|
||||
* Thus c+r*c will be added in as the correction terms for
|
||||
* expm1(r+c). Now rearrange the term to avoid optimization
|
||||
* screw up:
|
||||
* ( 2 2 )
|
||||
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
||||
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
||||
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
||||
* ( )
|
||||
*
|
||||
* = r - E
|
||||
* 3. Scale back to obtain expm1(x):
|
||||
* From step 1, we have
|
||||
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
||||
* = or 2^k*[expm1(r) + (1-2^-k)]
|
||||
* 4. Implementation notes:
|
||||
* (A). To save one multiplication, we scale the coefficient Qi
|
||||
* to Qi*2^i, and replace z by (x^2)/2.
|
||||
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
||||
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
||||
* (ii) if k=0, return r-E
|
||||
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
||||
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
||||
* else return 1.0+2.0*(r-E);
|
||||
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
||||
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
||||
* (vii) return 2^k(1-((E+2^-k)-r))
|
||||
*
|
||||
* Special cases:
|
||||
* expm1(INF) is INF, expm1(NaN) is NaN;
|
||||
* expm1(-INF) is -1, and
|
||||
* for finite argument, only expm1(0)=0 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
||||
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
|
||||
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
||||
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
||||
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
||||
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
||||
|
||||
double __cdecl expm1(double x)
|
||||
{
|
||||
double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
uint32_t hx = u.i>>32 & 0x7fffffff;
|
||||
int k, sign = u.i>>63;
|
||||
|
||||
/* filter out huge and non-finite argument */
|
||||
if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
||||
if (isnan(x))
|
||||
return x;
|
||||
if (sign)
|
||||
return -1;
|
||||
if (x > o_threshold) {
|
||||
x *= 0x1p1023;
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
if (!sign) {
|
||||
hi = x - ln2_hi;
|
||||
lo = ln2_lo;
|
||||
k = 1;
|
||||
} else {
|
||||
hi = x + ln2_hi;
|
||||
lo = -ln2_lo;
|
||||
k = -1;
|
||||
}
|
||||
} else {
|
||||
k = invln2*x + (sign ? -0.5 : 0.5);
|
||||
t = k;
|
||||
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
||||
lo = t*ln2_lo;
|
||||
}
|
||||
x = hi-lo;
|
||||
c = (hi-x)-lo;
|
||||
} else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */
|
||||
if (hx < 0x00100000)
|
||||
FORCE_EVAL((float)x);
|
||||
return x;
|
||||
} else
|
||||
k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
hfx = 0.5*x;
|
||||
hxs = x*hfx;
|
||||
r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
||||
t = 3.0-r1*hfx;
|
||||
e = hxs*((r1-t)/(6.0 - x*t));
|
||||
if (k == 0) /* c is 0 */
|
||||
return x - (x*e-hxs);
|
||||
e = x*(e-c) - c;
|
||||
e -= hxs;
|
||||
/* exp(x) ~ 2^k (x_reduced - e + 1) */
|
||||
if (k == -1)
|
||||
return 0.5*(x-e) - 0.5;
|
||||
if (k == 1) {
|
||||
if (x < -0.25)
|
||||
return -2.0*(e-(x+0.5));
|
||||
return 1.0+2.0*(x-e);
|
||||
}
|
||||
u.i = (uint64_t)(0x3ff + k)<<52; /* 2^k */
|
||||
twopk = u.f;
|
||||
if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
|
||||
y = x - e + 1.0;
|
||||
if (k == 1024)
|
||||
y = y*2.0*0x1p1023;
|
||||
else
|
||||
y = y*twopk;
|
||||
return y - 1.0;
|
||||
}
|
||||
u.i = (uint64_t)(0x3ff - k)<<52; /* 2^-k */
|
||||
if (k < 20)
|
||||
y = (x-e+(1-u.f))*twopk;
|
||||
else
|
||||
y = (x-(e+u.f)+1)*twopk;
|
||||
return y;
|
||||
}
|
110
libs/musl/src/math/expm1f.c
Normal file
110
libs/musl/src/math/expm1f.c
Normal file
|
@ -0,0 +1,110 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1f.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
|
||||
ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
|
||||
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
|
||||
/*
|
||||
* Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
|
||||
* |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
|
||||
* Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
|
||||
*/
|
||||
Q1 = -3.3333212137e-2, /* -0x888868.0p-28 */
|
||||
Q2 = 1.5807170421e-3; /* 0xcf3010.0p-33 */
|
||||
|
||||
float __cdecl expm1f(float x)
|
||||
{
|
||||
float_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
uint32_t hx = u.i & 0x7fffffff;
|
||||
int k, sign = u.i >> 31;
|
||||
|
||||
/* filter out huge and non-finite argument */
|
||||
if (hx >= 0x4195b844) { /* if |x|>=27*ln2 */
|
||||
if (hx > 0x7f800000) /* NaN */
|
||||
return x;
|
||||
if (sign)
|
||||
return -1;
|
||||
if (hx > 0x42b17217) { /* x > log(FLT_MAX) */
|
||||
x *= 0x1p127f;
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
|
||||
if (hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
|
||||
if (!sign) {
|
||||
hi = x - ln2_hi;
|
||||
lo = ln2_lo;
|
||||
k = 1;
|
||||
} else {
|
||||
hi = x + ln2_hi;
|
||||
lo = -ln2_lo;
|
||||
k = -1;
|
||||
}
|
||||
} else {
|
||||
k = invln2*x + (sign ? -0.5f : 0.5f);
|
||||
t = k;
|
||||
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
||||
lo = t*ln2_lo;
|
||||
}
|
||||
x = hi-lo;
|
||||
c = (hi-x)-lo;
|
||||
} else if (hx < 0x33000000) { /* when |x|<2**-25, return x */
|
||||
if (hx < 0x00800000)
|
||||
FORCE_EVAL(x*x);
|
||||
return x;
|
||||
} else
|
||||
k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
hfx = 0.5f*x;
|
||||
hxs = x*hfx;
|
||||
r1 = 1.0f+hxs*(Q1+hxs*Q2);
|
||||
t = 3.0f - r1*hfx;
|
||||
e = hxs*((r1-t)/(6.0f - x*t));
|
||||
if (k == 0) /* c is 0 */
|
||||
return x - (x*e-hxs);
|
||||
e = x*(e-c) - c;
|
||||
e -= hxs;
|
||||
/* exp(x) ~ 2^k (x_reduced - e + 1) */
|
||||
if (k == -1)
|
||||
return 0.5f*(x-e) - 0.5f;
|
||||
if (k == 1) {
|
||||
if (x < -0.25f)
|
||||
return -2.0f*(e-(x+0.5f));
|
||||
return 1.0f + 2.0f*(x-e);
|
||||
}
|
||||
u.i = (0x7f+k)<<23; /* 2^k */
|
||||
twopk = u.f;
|
||||
if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
|
||||
y = x - e + 1.0f;
|
||||
if (k == 128)
|
||||
y = y*2.0f*0x1p127f;
|
||||
else
|
||||
y = y*twopk;
|
||||
return y - 1.0f;
|
||||
}
|
||||
u.i = (0x7f-k)<<23; /* 2^-k */
|
||||
if (k < 23)
|
||||
y = (x-e+(1-u.f))*twopk;
|
||||
else
|
||||
y = (x-(e+u.f)+1)*twopk;
|
||||
return y;
|
||||
}
|
9
libs/musl/src/math/fabs.c
Normal file
9
libs/musl/src/math/fabs.c
Normal file
|
@ -0,0 +1,9 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
double __cdecl fabs(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
u.i &= -1ULL/2;
|
||||
return u.f;
|
||||
}
|
9
libs/musl/src/math/fabsf.c
Normal file
9
libs/musl/src/math/fabsf.c
Normal file
|
@ -0,0 +1,9 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
float __cdecl fabsf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
u.i &= 0x7fffffff;
|
||||
return u.f;
|
||||
}
|
10
libs/musl/src/math/fdim.c
Normal file
10
libs/musl/src/math/fdim.c
Normal file
|
@ -0,0 +1,10 @@
|
|||
#include <math.h>
|
||||
|
||||
double __cdecl fdim(double x, double y)
|
||||
{
|
||||
if (isnan(x))
|
||||
return x;
|
||||
if (isnan(y))
|
||||
return y;
|
||||
return x > y ? x - y : 0;
|
||||
}
|
10
libs/musl/src/math/fdimf.c
Normal file
10
libs/musl/src/math/fdimf.c
Normal file
|
@ -0,0 +1,10 @@
|
|||
#include <math.h>
|
||||
|
||||
float __cdecl fdimf(float x, float y)
|
||||
{
|
||||
if (isnan(x))
|
||||
return x;
|
||||
if (isnan(y))
|
||||
return y;
|
||||
return x > y ? x - y : 0;
|
||||
}
|
31
libs/musl/src/math/floor.c
Normal file
31
libs/musl/src/math/floor.c
Normal file
|
@ -0,0 +1,31 @@
|
|||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
|
||||
#define EPS DBL_EPSILON
|
||||
#elif FLT_EVAL_METHOD==2
|
||||
#define EPS LDBL_EPSILON
|
||||
#endif
|
||||
static const double_t toint = 1/EPS;
|
||||
|
||||
double __cdecl floor(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
int e = u.i >> 52 & 0x7ff;
|
||||
double_t y;
|
||||
|
||||
if (e >= 0x3ff+52 || x == 0)
|
||||
return x;
|
||||
/* y = int(x) - x, where int(x) is an integer neighbor of x */
|
||||
if (u.i >> 63)
|
||||
y = x - toint + toint - x;
|
||||
else
|
||||
y = x + toint - toint - x;
|
||||
/* special case because of non-nearest rounding modes */
|
||||
if (e <= 0x3ff-1) {
|
||||
FORCE_EVAL(y);
|
||||
return u.i >> 63 ? -1 : 0;
|
||||
}
|
||||
if (y > 0)
|
||||
return x + y - 1;
|
||||
return x + y;
|
||||
}
|
27
libs/musl/src/math/floorf.c
Normal file
27
libs/musl/src/math/floorf.c
Normal file
|
@ -0,0 +1,27 @@
|
|||
#include "libm.h"
|
||||
|
||||
float __cdecl floorf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
int e = (int)(u.i >> 23 & 0xff) - 0x7f;
|
||||
uint32_t m;
|
||||
|
||||
if (e >= 23)
|
||||
return x;
|
||||
if (e >= 0) {
|
||||
m = 0x007fffff >> e;
|
||||
if ((u.i & m) == 0)
|
||||
return x;
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31)
|
||||
u.i += m;
|
||||
u.i &= ~m;
|
||||
} else {
|
||||
FORCE_EVAL(x + 0x1p120f);
|
||||
if (u.i >> 31 == 0)
|
||||
u.i = 0;
|
||||
else if (u.i << 1)
|
||||
u.f = -1.0;
|
||||
}
|
||||
return u.f;
|
||||
}
|
200
libs/musl/src/math/fma.c
Normal file
200
libs/musl/src/math/fma.c
Normal file
|
@ -0,0 +1,200 @@
|
|||
#include <stdint.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include "libm.h"
|
||||
|
||||
static inline int a_clz_64(uint64_t x)
|
||||
{
|
||||
#ifdef __GNUC
|
||||
if (x>>32) return __builtin_clz(x>>32);
|
||||
return __builtin_clz(x) + 32;
|
||||
#else
|
||||
uint32_t y;
|
||||
int r;
|
||||
if (x>>32) y=x>>32, r=0; else y=x, r=32;
|
||||
if (y>>16) y>>=16; else r |= 16;
|
||||
if (y>>8) y>>=8; else r |= 8;
|
||||
if (y>>4) y>>=4; else r |= 4;
|
||||
if (y>>2) y>>=2; else r |= 2;
|
||||
return r | !(y>>1);
|
||||
#endif
|
||||
}
|
||||
|
||||
#define ASUINT64(x) ((union {double f; uint64_t i;}){x}).i
|
||||
#define ZEROINFNAN (0x7ff-0x3ff-52-1)
|
||||
|
||||
struct num { uint64_t m; int e; int sign; };
|
||||
|
||||
static struct num normalize(double x)
|
||||
{
|
||||
uint64_t ix = ASUINT64(x);
|
||||
int e = ix>>52;
|
||||
int sign = e & 0x800;
|
||||
e &= 0x7ff;
|
||||
if (!e) {
|
||||
ix = ASUINT64(x*0x1p63);
|
||||
e = ix>>52 & 0x7ff;
|
||||
e = e ? e-63 : 0x800;
|
||||
}
|
||||
ix &= (1ull<<52)-1;
|
||||
ix |= 1ull<<52;
|
||||
ix <<= 1;
|
||||
e -= 0x3ff + 52 + 1;
|
||||
return (struct num){ix,e,sign};
|
||||
}
|
||||
|
||||
static void mul(uint64_t *hi, uint64_t *lo, uint64_t x, uint64_t y)
|
||||
{
|
||||
uint64_t t1,t2,t3;
|
||||
uint64_t xlo = (uint32_t)x, xhi = x>>32;
|
||||
uint64_t ylo = (uint32_t)y, yhi = y>>32;
|
||||
|
||||
t1 = xlo*ylo;
|
||||
t2 = xlo*yhi + xhi*ylo;
|
||||
t3 = xhi*yhi;
|
||||
*lo = t1 + (t2<<32);
|
||||
*hi = t3 + (t2>>32) + (t1 > *lo);
|
||||
}
|
||||
|
||||
double __cdecl fma(double x, double y, double z)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
|
||||
/* normalize so top 10bits and last bit are 0 */
|
||||
struct num nx, ny, nz;
|
||||
nx = normalize(x);
|
||||
ny = normalize(y);
|
||||
nz = normalize(z);
|
||||
|
||||
if (nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN)
|
||||
return x*y + z;
|
||||
if (nz.e >= ZEROINFNAN) {
|
||||
if (nz.e > ZEROINFNAN) /* z==0 */
|
||||
return x*y + z;
|
||||
return z;
|
||||
}
|
||||
|
||||
/* mul: r = x*y */
|
||||
uint64_t rhi, rlo, zhi, zlo;
|
||||
mul(&rhi, &rlo, nx.m, ny.m);
|
||||
/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
|
||||
|
||||
/* align exponents */
|
||||
int e = nx.e + ny.e;
|
||||
int d = nz.e - e;
|
||||
/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
|
||||
if (d > 0) {
|
||||
if (d < 64) {
|
||||
zlo = nz.m<<d;
|
||||
zhi = nz.m>>64-d;
|
||||
} else {
|
||||
zlo = 0;
|
||||
zhi = nz.m;
|
||||
e = nz.e - 64;
|
||||
d -= 64;
|
||||
if (d == 0) {
|
||||
} else if (d < 64) {
|
||||
rlo = rhi<<64-d | rlo>>d | !!(rlo<<64-d);
|
||||
rhi = rhi>>d;
|
||||
} else {
|
||||
rlo = 1;
|
||||
rhi = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
zhi = 0;
|
||||
d = -d;
|
||||
if (d == 0) {
|
||||
zlo = nz.m;
|
||||
} else if (d < 64) {
|
||||
zlo = nz.m>>d | !!(nz.m<<64-d);
|
||||
} else {
|
||||
zlo = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* add */
|
||||
int sign = nx.sign^ny.sign;
|
||||
int samesign = !(sign^nz.sign);
|
||||
int nonzero = 1;
|
||||
if (samesign) {
|
||||
/* r += z */
|
||||
rlo += zlo;
|
||||
rhi += zhi + (rlo < zlo);
|
||||
} else {
|
||||
/* r -= z */
|
||||
uint64_t t = rlo;
|
||||
rlo -= zlo;
|
||||
rhi = rhi - zhi - (t < rlo);
|
||||
if (rhi>>63) {
|
||||
rlo = -rlo;
|
||||
rhi = -rhi-!!rlo;
|
||||
sign = !sign;
|
||||
}
|
||||
nonzero = !!rhi;
|
||||
}
|
||||
|
||||
/* set rhi to top 63bit of the result (last bit is sticky) */
|
||||
if (nonzero) {
|
||||
e += 64;
|
||||
d = a_clz_64(rhi)-1;
|
||||
/* note: d > 0 */
|
||||
rhi = rhi<<d | rlo>>64-d | !!(rlo<<d);
|
||||
} else if (rlo) {
|
||||
d = a_clz_64(rlo)-1;
|
||||
if (d < 0)
|
||||
rhi = rlo>>1 | (rlo&1);
|
||||
else
|
||||
rhi = rlo<<d;
|
||||
} else {
|
||||
/* exact +-0 */
|
||||
return x*y + z;
|
||||
}
|
||||
e -= d;
|
||||
|
||||
/* convert to double */
|
||||
int64_t i = rhi; /* i is in [1<<62,(1<<63)-1] */
|
||||
if (sign)
|
||||
i = -i;
|
||||
double r = i; /* |r| is in [0x1p62,0x1p63] */
|
||||
|
||||
if (e < -1022-62) {
|
||||
/* result is subnormal before rounding */
|
||||
if (e == -1022-63) {
|
||||
double c = 0x1p63;
|
||||
if (sign)
|
||||
c = -c;
|
||||
if (r == c) {
|
||||
/* min normal after rounding, underflow depends
|
||||
on arch behaviour which can be imitated by
|
||||
a double to float conversion */
|
||||
float fltmin = 0x0.ffffff8p-63*FLT_MIN * r;
|
||||
return DBL_MIN/FLT_MIN * fltmin;
|
||||
}
|
||||
/* one bit is lost when scaled, add another top bit to
|
||||
only round once at conversion if it is inexact */
|
||||
if (rhi << 53) {
|
||||
i = rhi>>1 | (rhi&1) | 1ull<<62;
|
||||
if (sign)
|
||||
i = -i;
|
||||
r = i;
|
||||
r = 2*r - c; /* remove top bit */
|
||||
|
||||
/* raise underflow portably, such that it
|
||||
cannot be optimized away */
|
||||
{
|
||||
double_t tiny = DBL_MIN/FLT_MIN * r;
|
||||
r += (double)(tiny*tiny) * (r-r);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
/* only round once when scaled */
|
||||
d = 10;
|
||||
i = ( rhi>>d | !!(rhi<<64-d) ) << d;
|
||||
if (sign)
|
||||
i = -i;
|
||||
r = i;
|
||||
}
|
||||
}
|
||||
return scalbn(r, e);
|
||||
}
|
84
libs/musl/src/math/fmaf.c
Normal file
84
libs/musl/src/math/fmaf.c
Normal file
|
@ -0,0 +1,84 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_fmaf.c */
|
||||
/*-
|
||||
* Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <fenv.h>
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
/*
|
||||
* Fused multiply-add: Compute x * y + z with a single rounding error.
|
||||
*
|
||||
* A double has more than twice as much precision than a float, so
|
||||
* direct double-precision arithmetic suffices, except where double
|
||||
* rounding occurs.
|
||||
*/
|
||||
float __cdecl fmaf(float x, float y, float z)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
double xy, result;
|
||||
union {double f; uint64_t i;} u;
|
||||
int e;
|
||||
|
||||
xy = (double)x * y;
|
||||
result = xy + z;
|
||||
u.f = result;
|
||||
e = u.i>>52 & 0x7ff;
|
||||
/* Common case: The double precision result is fine. */
|
||||
if ((u.i & 0x1fffffff) != 0x10000000 || /* not a halfway case */
|
||||
e == 0x7ff || /* NaN */
|
||||
(result - xy == z && result - z == xy) || /* exact */
|
||||
fegetround() != FE_TONEAREST) /* not round-to-nearest */
|
||||
{
|
||||
/*
|
||||
underflow may not be raised correctly, example:
|
||||
fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f)
|
||||
*/
|
||||
if (e < 0x3ff-126 && e >= 0x3ff-149 && fetestexcept(FE_INEXACT)) {
|
||||
fp_barrierf((float)u.f * (float)u.f);
|
||||
}
|
||||
z = result;
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
* If result is inexact, and exactly halfway between two float values,
|
||||
* we need to adjust the low-order bit in the direction of the error.
|
||||
*/
|
||||
double err;
|
||||
int neg = u.i >> 63;
|
||||
if (neg == (z > xy))
|
||||
err = xy - result + z;
|
||||
else
|
||||
err = z - result + xy;
|
||||
if (neg == (err < 0))
|
||||
u.i++;
|
||||
else
|
||||
u.i--;
|
||||
z = u.f;
|
||||
return z;
|
||||
}
|
13
libs/musl/src/math/fmax.c
Normal file
13
libs/musl/src/math/fmax.c
Normal file
|
@ -0,0 +1,13 @@
|
|||
#include <math.h>
|
||||
|
||||
double __cdecl fmax(double x, double y)
|
||||
{
|
||||
if (isnan(x))
|
||||
return y;
|
||||
if (isnan(y))
|
||||
return x;
|
||||
/* handle signed zeros, see C99 Annex F.9.9.2 */
|
||||
if (signbit(x) != signbit(y))
|
||||
return signbit(x) ? y : x;
|
||||
return x < y ? y : x;
|
||||
}
|
13
libs/musl/src/math/fmaxf.c
Normal file
13
libs/musl/src/math/fmaxf.c
Normal file
|
@ -0,0 +1,13 @@
|
|||
#include <math.h>
|
||||
|
||||
float __cdecl fmaxf(float x, float y)
|
||||
{
|
||||
if (isnan(x))
|
||||
return y;
|
||||
if (isnan(y))
|
||||
return x;
|
||||
/* handle signed zeroes, see C99 Annex F.9.9.2 */
|
||||
if (signbit(x) != signbit(y))
|
||||
return signbit(x) ? y : x;
|
||||
return x < y ? y : x;
|
||||
}
|
13
libs/musl/src/math/fmin.c
Normal file
13
libs/musl/src/math/fmin.c
Normal file
|
@ -0,0 +1,13 @@
|
|||
#include <math.h>
|
||||
|
||||
double __cdecl fmin(double x, double y)
|
||||
{
|
||||
if (isnan(x))
|
||||
return y;
|
||||
if (isnan(y))
|
||||
return x;
|
||||
/* handle signed zeros, see C99 Annex F.9.9.2 */
|
||||
if (signbit(x) != signbit(y))
|
||||
return signbit(x) ? x : y;
|
||||
return x < y ? x : y;
|
||||
}
|
13
libs/musl/src/math/fminf.c
Normal file
13
libs/musl/src/math/fminf.c
Normal file
|
@ -0,0 +1,13 @@
|
|||
#include <math.h>
|
||||
|
||||
float __cdecl fminf(float x, float y)
|
||||
{
|
||||
if (isnan(x))
|
||||
return y;
|
||||
if (isnan(y))
|
||||
return x;
|
||||
/* handle signed zeros, see C99 Annex F.9.9.2 */
|
||||
if (signbit(x) != signbit(y))
|
||||
return signbit(x) ? x : y;
|
||||
return x < y ? x : y;
|
||||
}
|
68
libs/musl/src/math/fmod.c
Normal file
68
libs/musl/src/math/fmod.c
Normal file
|
@ -0,0 +1,68 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
double __cdecl fmod(double x, double y)
|
||||
{
|
||||
union {double f; uint64_t i;} ux = {x}, uy = {y};
|
||||
int ex = ux.i>>52 & 0x7ff;
|
||||
int ey = uy.i>>52 & 0x7ff;
|
||||
int sx = ux.i>>63;
|
||||
uint64_t i;
|
||||
|
||||
/* in the followings uxi should be ux.i, but then gcc wrongly adds */
|
||||
/* float load/store to inner loops ruining performance and code size */
|
||||
uint64_t uxi = ux.i;
|
||||
|
||||
if (uy.i<<1 == 0 || isnan(y) || ex == 0x7ff)
|
||||
return (x*y)/(x*y);
|
||||
if (uxi<<1 <= uy.i<<1) {
|
||||
if (uxi<<1 == uy.i<<1)
|
||||
return 0*x;
|
||||
return x;
|
||||
}
|
||||
|
||||
/* normalize x and y */
|
||||
if (!ex) {
|
||||
for (i = uxi<<12; i>>63 == 0; ex--, i <<= 1);
|
||||
uxi <<= -ex + 1;
|
||||
} else {
|
||||
uxi &= -1ULL >> 12;
|
||||
uxi |= 1ULL << 52;
|
||||
}
|
||||
if (!ey) {
|
||||
for (i = uy.i<<12; i>>63 == 0; ey--, i <<= 1);
|
||||
uy.i <<= -ey + 1;
|
||||
} else {
|
||||
uy.i &= -1ULL >> 12;
|
||||
uy.i |= 1ULL << 52;
|
||||
}
|
||||
|
||||
/* x mod y */
|
||||
for (; ex > ey; ex--) {
|
||||
i = uxi - uy.i;
|
||||
if (i >> 63 == 0) {
|
||||
if (i == 0)
|
||||
return 0*x;
|
||||
uxi = i;
|
||||
}
|
||||
uxi <<= 1;
|
||||
}
|
||||
i = uxi - uy.i;
|
||||
if (i >> 63 == 0) {
|
||||
if (i == 0)
|
||||
return 0*x;
|
||||
uxi = i;
|
||||
}
|
||||
for (; uxi>>52 == 0; uxi <<= 1, ex--);
|
||||
|
||||
/* scale result */
|
||||
if (ex > 0) {
|
||||
uxi -= 1ULL << 52;
|
||||
uxi |= (uint64_t)ex << 52;
|
||||
} else {
|
||||
uxi >>= -ex + 1;
|
||||
}
|
||||
uxi |= (uint64_t)sx << 63;
|
||||
ux.i = uxi;
|
||||
return ux.f;
|
||||
}
|
66
libs/musl/src/math/fmodf.c
Normal file
66
libs/musl/src/math/fmodf.c
Normal file
|
@ -0,0 +1,66 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
float __cdecl fmodf(float x, float y)
|
||||
{
|
||||
union {float f; uint32_t i;} ux = {x}, uy = {y};
|
||||
int ex = ux.i>>23 & 0xff;
|
||||
int ey = uy.i>>23 & 0xff;
|
||||
uint32_t sx = ux.i & 0x80000000;
|
||||
uint32_t i;
|
||||
uint32_t uxi = ux.i;
|
||||
|
||||
if (uy.i<<1 == 0 || isnan(y) || ex == 0xff)
|
||||
return (x*y)/(x*y);
|
||||
if (uxi<<1 <= uy.i<<1) {
|
||||
if (uxi<<1 == uy.i<<1)
|
||||
return 0*x;
|
||||
return x;
|
||||
}
|
||||
|
||||
/* normalize x and y */
|
||||
if (!ex) {
|
||||
for (i = uxi<<9; i>>31 == 0; ex--, i <<= 1);
|
||||
uxi <<= -ex + 1;
|
||||
} else {
|
||||
uxi &= -1U >> 9;
|
||||
uxi |= 1U << 23;
|
||||
}
|
||||
if (!ey) {
|
||||
for (i = uy.i<<9; i>>31 == 0; ey--, i <<= 1);
|
||||
uy.i <<= -ey + 1;
|
||||
} else {
|
||||
uy.i &= -1U >> 9;
|
||||
uy.i |= 1U << 23;
|
||||
}
|
||||
|
||||
/* x mod y */
|
||||
for (; ex > ey; ex--) {
|
||||
i = uxi - uy.i;
|
||||
if (i >> 31 == 0) {
|
||||
if (i == 0)
|
||||
return 0*x;
|
||||
uxi = i;
|
||||
}
|
||||
uxi <<= 1;
|
||||
}
|
||||
i = uxi - uy.i;
|
||||
if (i >> 31 == 0) {
|
||||
if (i == 0)
|
||||
return 0*x;
|
||||
uxi = i;
|
||||
}
|
||||
for (; uxi>>23 == 0; uxi <<= 1, ex--);
|
||||
|
||||
/* scale result up */
|
||||
if (ex > 0) {
|
||||
uxi -= 1U << 23;
|
||||
uxi |= (uint32_t)ex << 23;
|
||||
} else {
|
||||
uxi >>= -ex + 1;
|
||||
}
|
||||
uxi |= sx;
|
||||
ux.i = uxi;
|
||||
return ux.f;
|
||||
}
|
23
libs/musl/src/math/frexp.c
Normal file
23
libs/musl/src/math/frexp.c
Normal file
|
@ -0,0 +1,23 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
|
||||
double __cdecl frexp(double x, int *e)
|
||||
{
|
||||
union { double d; uint64_t i; } y = { x };
|
||||
int ee = y.i>>52 & 0x7ff;
|
||||
|
||||
if (!ee) {
|
||||
if (x) {
|
||||
x = frexp(x*0x1p64, e);
|
||||
*e -= 64;
|
||||
} else *e = 0;
|
||||
return x;
|
||||
} else if (ee == 0x7ff) {
|
||||
return x;
|
||||
}
|
||||
|
||||
*e = ee - 0x3fe;
|
||||
y.i &= 0x800fffffffffffffull;
|
||||
y.i |= 0x3fe0000000000000ull;
|
||||
return y.d;
|
||||
}
|
24
libs/musl/src/math/frexpf.c
Normal file
24
libs/musl/src/math/frexpf.c
Normal file
|
@ -0,0 +1,24 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
float __cdecl frexpf(float x, int *e)
|
||||
{
|
||||
union { float f; uint32_t i; } y = { x };
|
||||
int ee = y.i>>23 & 0xff;
|
||||
|
||||
if (!ee) {
|
||||
if (x) {
|
||||
x = frexpf(x*0x1p64, e);
|
||||
*e -= 64;
|
||||
} else *e = 0;
|
||||
return x;
|
||||
} else if (ee == 0xff) {
|
||||
return x;
|
||||
}
|
||||
|
||||
*e = ee - 0x7e;
|
||||
y.i &= 0x807ffffful;
|
||||
y.i |= 0x3f000000ul;
|
||||
return y.f;
|
||||
}
|
68
libs/musl/src/math/hypot.c
Normal file
68
libs/musl/src/math/hypot.c
Normal file
|
@ -0,0 +1,68 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include <float.h>
|
||||
#include "libm.h"
|
||||
|
||||
#if FLT_EVAL_METHOD > 1U && LDBL_MANT_DIG == 64
|
||||
#define SPLIT (0x1p32 + 1)
|
||||
#else
|
||||
#define SPLIT (0x1p27 + 1)
|
||||
#endif
|
||||
|
||||
static void sq(double_t *hi, double_t *lo, double x)
|
||||
{
|
||||
double_t xh, xl, xc;
|
||||
|
||||
xc = (double_t)x*SPLIT;
|
||||
xh = x - xc + xc;
|
||||
xl = x - xh;
|
||||
*hi = (double_t)x*x;
|
||||
*lo = xh*xh - *hi + 2*xh*xl + xl*xl;
|
||||
}
|
||||
|
||||
double __cdecl _hypot(double x, double y)
|
||||
{
|
||||
union {double f; uint64_t i;} ux = {x}, uy = {y}, ut;
|
||||
int ex, ey;
|
||||
double_t hx, lx, hy, ly, z;
|
||||
|
||||
/* arrange |x| >= |y| */
|
||||
ux.i &= -1ULL>>1;
|
||||
uy.i &= -1ULL>>1;
|
||||
if (ux.i < uy.i) {
|
||||
ut = ux;
|
||||
ux = uy;
|
||||
uy = ut;
|
||||
}
|
||||
|
||||
/* special cases */
|
||||
ex = ux.i>>52;
|
||||
ey = uy.i>>52;
|
||||
x = ux.f;
|
||||
y = uy.f;
|
||||
/* note: hypot(inf,nan) == inf */
|
||||
if (ey == 0x7ff)
|
||||
return y;
|
||||
if (ex == 0x7ff || uy.i == 0)
|
||||
return x;
|
||||
/* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
|
||||
/* 64 difference is enough for ld80 double_t */
|
||||
if (ex - ey > 64)
|
||||
return x + y;
|
||||
|
||||
/* precise sqrt argument in nearest rounding mode without overflow */
|
||||
/* xh*xh must not overflow and xl*xl must not underflow in sq */
|
||||
z = 1;
|
||||
if (ex > 0x3ff+510) {
|
||||
z = 0x1p700;
|
||||
x *= 0x1p-700;
|
||||
y *= 0x1p-700;
|
||||
} else if (ey < 0x3ff-450) {
|
||||
z = 0x1p-700;
|
||||
x *= 0x1p700;
|
||||
y *= 0x1p700;
|
||||
}
|
||||
sq(&hx, &lx, x);
|
||||
sq(&hy, &ly, y);
|
||||
return z*sqrt(ly+lx+hy+hx);
|
||||
}
|
36
libs/musl/src/math/hypotf.c
Normal file
36
libs/musl/src/math/hypotf.c
Normal file
|
@ -0,0 +1,36 @@
|
|||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
float __cdecl _hypotf(float x, float y)
|
||||
{
|
||||
union {float f; uint32_t i;} ux = {x}, uy = {y}, ut;
|
||||
float_t z;
|
||||
|
||||
ux.i &= -1U>>1;
|
||||
uy.i &= -1U>>1;
|
||||
if (ux.i < uy.i) {
|
||||
ut = ux;
|
||||
ux = uy;
|
||||
uy = ut;
|
||||
}
|
||||
|
||||
x = ux.f;
|
||||
y = uy.f;
|
||||
if (uy.i == 0xff<<23)
|
||||
return y;
|
||||
if (ux.i >= 0xff<<23 || uy.i == 0 || ux.i - uy.i >= 25<<23)
|
||||
return x + y;
|
||||
|
||||
z = 1;
|
||||
if (ux.i >= (0x7f+60)<<23) {
|
||||
z = 0x1p90f;
|
||||
x *= 0x1p-90f;
|
||||
y *= 0x1p-90f;
|
||||
} else if (uy.i < (0x7f-60)<<23) {
|
||||
z = 0x1p-90f;
|
||||
x *= 0x1p90f;
|
||||
y *= 0x1p90f;
|
||||
}
|
||||
return z*sqrtf((double)x*x + (double)y*y);
|
||||
}
|
26
libs/musl/src/math/ilogb.c
Normal file
26
libs/musl/src/math/ilogb.c
Normal file
|
@ -0,0 +1,26 @@
|
|||
#include <limits.h>
|
||||
#include "libm.h"
|
||||
|
||||
int __cdecl ilogb(double x)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
uint64_t i = u.i;
|
||||
int e = i>>52 & 0x7ff;
|
||||
|
||||
if (!e) {
|
||||
i <<= 12;
|
||||
if (i == 0) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
for (e = -0x3ff; i>>63 == 0; e--, i<<=1);
|
||||
return e;
|
||||
}
|
||||
if (e == 0x7ff) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return i<<12 ? FP_ILOGBNAN : INT_MAX;
|
||||
}
|
||||
return e - 0x3ff;
|
||||
}
|
26
libs/musl/src/math/ilogbf.c
Normal file
26
libs/musl/src/math/ilogbf.c
Normal file
|
@ -0,0 +1,26 @@
|
|||
#include <limits.h>
|
||||
#include "libm.h"
|
||||
|
||||
int __cdecl ilogbf(float x)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
uint32_t i = u.i;
|
||||
int e = i>>23 & 0xff;
|
||||
|
||||
if (!e) {
|
||||
i <<= 9;
|
||||
if (i == 0) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
for (e = -0x7f; i>>31 == 0; e--, i<<=1);
|
||||
return e;
|
||||
}
|
||||
if (e == 0xff) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return i<<9 ? FP_ILOGBNAN : INT_MAX;
|
||||
}
|
||||
return e - 0x7f;
|
||||
}
|
375
libs/musl/src/math/j0.c
Normal file
375
libs/musl/src/math/j0.c
Normal file
|
@ -0,0 +1,375 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_j0.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* j0(x), y0(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j0(x):
|
||||
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
|
||||
* 2. Reduce x to |x| since j0(x)=j0(-x), and
|
||||
* for x in (0,2)
|
||||
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
|
||||
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
|
||||
* for x in (2,inf)
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* as follow:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (cos(x) + sin(x))
|
||||
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j0(nan)= nan
|
||||
* j0(0) = 1
|
||||
* j0(inf) = 0
|
||||
*
|
||||
* Method -- y0(x):
|
||||
* 1. For x<2.
|
||||
* Since
|
||||
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
|
||||
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
|
||||
* We use the following function to approximate y0,
|
||||
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
|
||||
* where
|
||||
* U(z) = u00 + u01*z + ... + u06*z^6
|
||||
* V(z) = 1 + v01*z + ... + v04*z^4
|
||||
* with absolute approximation error bounded by 2**-72.
|
||||
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
|
||||
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
|
||||
* 2. For x>=2.
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* by the method mentioned above.
|
||||
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static double pzero(double), qzero(double);
|
||||
|
||||
static const double
|
||||
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
|
||||
|
||||
/* common method when |x|>=2 */
|
||||
static double common(uint32_t ix, double x, int y0)
|
||||
{
|
||||
double s,c,ss,cc,z;
|
||||
|
||||
/*
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
|
||||
*
|
||||
* sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
|
||||
* cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
*/
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
if (y0)
|
||||
c = -c;
|
||||
cc = s+c;
|
||||
/* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
|
||||
if (ix < 0x7fe00000) {
|
||||
ss = s-c;
|
||||
z = -cos(2*x);
|
||||
if (s*c < 0)
|
||||
cc = z/ss;
|
||||
else
|
||||
ss = z/cc;
|
||||
if (ix < 0x48000000) {
|
||||
if (y0)
|
||||
ss = -ss;
|
||||
cc = pzero(x)*cc-qzero(x)*ss;
|
||||
}
|
||||
}
|
||||
return invsqrtpi*cc/sqrt(x);
|
||||
}
|
||||
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
static const double
|
||||
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
|
||||
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
|
||||
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
|
||||
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
|
||||
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
|
||||
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
|
||||
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
|
||||
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
|
||||
|
||||
double __cdecl _j0(double x)
|
||||
{
|
||||
double z,r,s;
|
||||
uint32_t ix;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* j0(+-inf)=0, j0(nan)=nan */
|
||||
if (ix >= 0x7ff00000)
|
||||
return 1/(x*x);
|
||||
x = fabs(x);
|
||||
|
||||
if (ix >= 0x40000000) { /* |x| >= 2 */
|
||||
/* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
|
||||
return common(ix,x,0);
|
||||
}
|
||||
|
||||
/* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
|
||||
if (ix >= 0x3f200000) { /* |x| >= 2**-13 */
|
||||
/* up to 4ulp error close to 2 */
|
||||
z = x*x;
|
||||
r = z*(R02+z*(R03+z*(R04+z*R05)));
|
||||
s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
|
||||
return (1+x/2)*(1-x/2) + z*(r/s);
|
||||
}
|
||||
|
||||
/* 1 - x*x/4 */
|
||||
/* prevent underflow */
|
||||
/* inexact should be raised when x!=0, this is not done correctly */
|
||||
if (ix >= 0x38000000) /* |x| >= 2**-127 */
|
||||
x = 0.25*x*x;
|
||||
return 1 - x;
|
||||
}
|
||||
|
||||
static const double
|
||||
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
|
||||
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
|
||||
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
|
||||
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
|
||||
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
|
||||
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
|
||||
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
|
||||
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
|
||||
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
|
||||
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
|
||||
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
|
||||
|
||||
double __cdecl _y0(double x)
|
||||
{
|
||||
double z,u,v;
|
||||
uint32_t ix,lx;
|
||||
|
||||
EXTRACT_WORDS(ix, lx, x);
|
||||
|
||||
/* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
|
||||
if ((ix<<1 | lx) == 0)
|
||||
return -1/0.0;
|
||||
if (ix>>31)
|
||||
return 0/0.0;
|
||||
if (ix >= 0x7ff00000)
|
||||
return 1/x;
|
||||
|
||||
if (ix >= 0x40000000) { /* x >= 2 */
|
||||
/* large ulp errors near zeros: 3.958, 7.086,.. */
|
||||
return common(ix,x,1);
|
||||
}
|
||||
|
||||
/* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
|
||||
if (ix >= 0x3e400000) { /* x >= 2**-27 */
|
||||
/* large ulp error near the first zero, x ~= 0.89 */
|
||||
z = x*x;
|
||||
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
|
||||
v = 1.0+z*(v01+z*(v02+z*(v03+z*v04)));
|
||||
return u/v + tpi*(j0(x)*log(x));
|
||||
}
|
||||
return u00 + tpi*log(x);
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
|
||||
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
|
||||
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
|
||||
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
|
||||
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
|
||||
};
|
||||
static const double pS8[5] = {
|
||||
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
|
||||
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
|
||||
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
|
||||
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
|
||||
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
|
||||
};
|
||||
|
||||
static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
|
||||
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
|
||||
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
|
||||
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
|
||||
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
|
||||
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
|
||||
};
|
||||
static const double pS5[5] = {
|
||||
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
|
||||
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
|
||||
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
|
||||
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
|
||||
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
|
||||
};
|
||||
|
||||
static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
|
||||
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
|
||||
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
|
||||
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
|
||||
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
|
||||
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
|
||||
};
|
||||
static const double pS3[5] = {
|
||||
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
|
||||
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
|
||||
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
|
||||
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
|
||||
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
|
||||
};
|
||||
|
||||
static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
|
||||
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
|
||||
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
|
||||
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
|
||||
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
|
||||
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
|
||||
};
|
||||
static const double pS2[5] = {
|
||||
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
|
||||
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
|
||||
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
|
||||
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
|
||||
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
|
||||
};
|
||||
|
||||
static double pzero(double x)
|
||||
{
|
||||
const double *p,*q;
|
||||
double_t z,r,s;
|
||||
uint32_t ix;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x40200000){p = pR8; q = pS8;}
|
||||
else if (ix >= 0x40122E8B){p = pR5; q = pS5;}
|
||||
else if (ix >= 0x4006DB6D){p = pR3; q = pS3;}
|
||||
else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
|
||||
z = 1.0/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return 1.0 + r/s;
|
||||
}
|
||||
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
|
||||
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
|
||||
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
|
||||
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
|
||||
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
|
||||
};
|
||||
static const double qS8[6] = {
|
||||
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
|
||||
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
|
||||
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
|
||||
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
|
||||
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
|
||||
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
|
||||
};
|
||||
|
||||
static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
|
||||
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
|
||||
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
|
||||
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
|
||||
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
|
||||
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
|
||||
};
|
||||
static const double qS5[6] = {
|
||||
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
|
||||
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
|
||||
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
|
||||
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
|
||||
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
|
||||
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
|
||||
};
|
||||
|
||||
static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
|
||||
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
|
||||
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
|
||||
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
|
||||
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
|
||||
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
|
||||
};
|
||||
static const double qS3[6] = {
|
||||
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
|
||||
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
|
||||
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
|
||||
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
|
||||
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
|
||||
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
|
||||
};
|
||||
|
||||
static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
|
||||
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
|
||||
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
|
||||
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
|
||||
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
|
||||
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
|
||||
};
|
||||
static const double qS2[6] = {
|
||||
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
|
||||
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
|
||||
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
|
||||
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
|
||||
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
|
||||
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
|
||||
};
|
||||
|
||||
static double qzero(double x)
|
||||
{
|
||||
const double *p,*q;
|
||||
double_t s,r,z;
|
||||
uint32_t ix;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x40200000){p = qR8; q = qS8;}
|
||||
else if (ix >= 0x40122E8B){p = qR5; q = qS5;}
|
||||
else if (ix >= 0x4006DB6D){p = qR3; q = qS3;}
|
||||
else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
|
||||
z = 1.0/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return (-.125 + r/s)/x;
|
||||
}
|
362
libs/musl/src/math/j1.c
Normal file
362
libs/musl/src/math/j1.c
Normal file
|
@ -0,0 +1,362 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_j1.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* j1(x), y1(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j1(x):
|
||||
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
||||
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
||||
* for x in (0,2)
|
||||
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
||||
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
||||
* for x in (2,inf)
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* as follow:
|
||||
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (sin(x) + cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j1(nan)= nan
|
||||
* j1(0) = 0
|
||||
* j1(inf) = 0
|
||||
*
|
||||
* Method -- y1(x):
|
||||
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
||||
* 2. For x<2.
|
||||
* Since
|
||||
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
||||
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
||||
* We use the following function to approximate y1,
|
||||
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
||||
* where for x in [0,2] (abs err less than 2**-65.89)
|
||||
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
||||
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
||||
* Note: For tiny x, 1/x dominate y1 and hence
|
||||
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
||||
* 3. For x>=2.
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* by method mentioned above.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static double pone(double), qone(double);
|
||||
|
||||
static const double
|
||||
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
tpi = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
|
||||
|
||||
static double common(uint32_t ix, double x, int y1, int sign)
|
||||
{
|
||||
double z,s,c,ss,cc;
|
||||
|
||||
/*
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
|
||||
*
|
||||
* sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
|
||||
* cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
*/
|
||||
s = sin(x);
|
||||
if (y1)
|
||||
s = -s;
|
||||
c = cos(x);
|
||||
cc = s-c;
|
||||
if (ix < 0x7fe00000) {
|
||||
/* avoid overflow in 2*x */
|
||||
ss = -s-c;
|
||||
z = cos(2*x);
|
||||
if (s*c > 0)
|
||||
cc = z/ss;
|
||||
else
|
||||
ss = z/cc;
|
||||
if (ix < 0x48000000) {
|
||||
if (y1)
|
||||
ss = -ss;
|
||||
cc = pone(x)*cc-qone(x)*ss;
|
||||
}
|
||||
}
|
||||
if (sign)
|
||||
cc = -cc;
|
||||
return invsqrtpi*cc/sqrt(x);
|
||||
}
|
||||
|
||||
/* R0/S0 on [0,2] */
|
||||
static const double
|
||||
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
|
||||
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
|
||||
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
|
||||
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
|
||||
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
|
||||
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
|
||||
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
|
||||
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
|
||||
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
|
||||
|
||||
double __cdecl _j1(double x)
|
||||
{
|
||||
double z,r,s;
|
||||
uint32_t ix;
|
||||
int sign;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x7ff00000)
|
||||
return 1/(x*x);
|
||||
if (ix >= 0x40000000) /* |x| >= 2 */
|
||||
return common(ix, fabs(x), 0, sign);
|
||||
if (ix >= 0x38000000) { /* |x| >= 2**-127 */
|
||||
z = x*x;
|
||||
r = z*(r00+z*(r01+z*(r02+z*r03)));
|
||||
s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
|
||||
z = r/s;
|
||||
} else
|
||||
/* avoid underflow, raise inexact if x!=0 */
|
||||
z = x;
|
||||
return (0.5 + z)*x;
|
||||
}
|
||||
|
||||
static const double U0[5] = {
|
||||
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
|
||||
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
|
||||
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
|
||||
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
|
||||
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
|
||||
};
|
||||
static const double V0[5] = {
|
||||
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
|
||||
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
|
||||
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
|
||||
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
|
||||
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
|
||||
};
|
||||
|
||||
double __cdecl _y1(double x)
|
||||
{
|
||||
double z,u,v;
|
||||
uint32_t ix,lx;
|
||||
|
||||
EXTRACT_WORDS(ix, lx, x);
|
||||
/* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
|
||||
if ((ix<<1 | lx) == 0)
|
||||
return -1/0.0;
|
||||
if (ix>>31)
|
||||
return 0/0.0;
|
||||
if (ix >= 0x7ff00000)
|
||||
return 1/x;
|
||||
|
||||
if (ix >= 0x40000000) /* x >= 2 */
|
||||
return common(ix, x, 1, 0);
|
||||
if (ix < 0x3c900000) /* x < 2**-54 */
|
||||
return -tpi/x;
|
||||
z = x*x;
|
||||
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
||||
v = 1+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
||||
return x*(u/v) + tpi*(j1(x)*log(x)-1/x);
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
|
||||
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
|
||||
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
|
||||
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
|
||||
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
|
||||
};
|
||||
static const double ps8[5] = {
|
||||
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
|
||||
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
|
||||
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
|
||||
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
|
||||
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
|
||||
};
|
||||
|
||||
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
|
||||
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
|
||||
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
|
||||
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
|
||||
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
|
||||
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
|
||||
};
|
||||
static const double ps5[5] = {
|
||||
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
|
||||
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
|
||||
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
|
||||
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
|
||||
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
|
||||
};
|
||||
|
||||
static const double pr3[6] = {
|
||||
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
|
||||
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
|
||||
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
|
||||
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
|
||||
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
|
||||
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
|
||||
};
|
||||
static const double ps3[5] = {
|
||||
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
|
||||
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
|
||||
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
|
||||
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
|
||||
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
|
||||
};
|
||||
|
||||
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
|
||||
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
|
||||
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
|
||||
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
|
||||
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
|
||||
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
|
||||
};
|
||||
static const double ps2[5] = {
|
||||
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
|
||||
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
|
||||
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
|
||||
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
|
||||
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
|
||||
};
|
||||
|
||||
static double pone(double x)
|
||||
{
|
||||
const double *p,*q;
|
||||
double_t z,r,s;
|
||||
uint32_t ix;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x40200000){p = pr8; q = ps8;}
|
||||
else if (ix >= 0x40122E8B){p = pr5; q = ps5;}
|
||||
else if (ix >= 0x4006DB6D){p = pr3; q = ps3;}
|
||||
else /*ix >= 0x40000000*/ {p = pr2; q = ps2;}
|
||||
z = 1.0/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
||||
return 1.0+ r/s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
|
||||
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
|
||||
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
|
||||
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
|
||||
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
|
||||
};
|
||||
static const double qs8[6] = {
|
||||
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
|
||||
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
|
||||
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
|
||||
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
|
||||
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
|
||||
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
|
||||
};
|
||||
|
||||
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
|
||||
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
|
||||
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
|
||||
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
|
||||
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
|
||||
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
|
||||
};
|
||||
static const double qs5[6] = {
|
||||
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
|
||||
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
|
||||
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
|
||||
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
|
||||
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
|
||||
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
|
||||
};
|
||||
|
||||
static const double qr3[6] = {
|
||||
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
|
||||
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
|
||||
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
|
||||
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
|
||||
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
|
||||
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
|
||||
};
|
||||
static const double qs3[6] = {
|
||||
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
|
||||
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
|
||||
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
|
||||
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
|
||||
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
|
||||
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
|
||||
};
|
||||
|
||||
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
|
||||
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
|
||||
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
|
||||
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
|
||||
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
|
||||
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
|
||||
};
|
||||
static const double qs2[6] = {
|
||||
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
|
||||
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
|
||||
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
|
||||
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
|
||||
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
|
||||
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
|
||||
};
|
||||
|
||||
static double qone(double x)
|
||||
{
|
||||
const double *p,*q;
|
||||
double_t s,r,z;
|
||||
uint32_t ix;
|
||||
|
||||
GET_HIGH_WORD(ix, x);
|
||||
ix &= 0x7fffffff;
|
||||
if (ix >= 0x40200000){p = qr8; q = qs8;}
|
||||
else if (ix >= 0x40122E8B){p = qr5; q = qs5;}
|
||||
else if (ix >= 0x4006DB6D){p = qr3; q = qs3;}
|
||||
else /*ix >= 0x40000000*/ {p = qr2; q = qs2;}
|
||||
z = 1.0/(x*x);
|
||||
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
||||
s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
||||
return (.375 + r/s)/x;
|
||||
}
|
280
libs/musl/src/math/jn.c
Normal file
280
libs/musl/src/math/jn.c
Normal file
|
@ -0,0 +1,280 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* jn(n, x), yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<=x, forward recursion is used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
|
||||
|
||||
double __cdecl _jn(int n, double x)
|
||||
{
|
||||
uint32_t ix, lx;
|
||||
int nm1, i, sign;
|
||||
double a, b, temp;
|
||||
|
||||
EXTRACT_WORDS(ix, lx, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
|
||||
return x;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
|
||||
if (n == 0)
|
||||
return j0(x);
|
||||
if (n < 0) {
|
||||
nm1 = -(n+1);
|
||||
x = -x;
|
||||
sign ^= 1;
|
||||
} else
|
||||
nm1 = n-1;
|
||||
if (nm1 == 0)
|
||||
return j1(x);
|
||||
|
||||
sign &= n; /* even n: 0, odd n: signbit(x) */
|
||||
x = fabs(x);
|
||||
if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
|
||||
b = 0.0;
|
||||
else if (nm1 < x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if (ix >= 0x52d00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(nm1&3) {
|
||||
case 0: temp = -cos(x)+sin(x); break;
|
||||
case 1: temp = -cos(x)-sin(x); break;
|
||||
case 2: temp = cos(x)-sin(x); break;
|
||||
default:
|
||||
case 3: temp = cos(x)+sin(x); break;
|
||||
}
|
||||
b = invsqrtpi*temp/sqrt(x);
|
||||
} else {
|
||||
a = j0(x);
|
||||
b = j1(x);
|
||||
for (i=0; i<nm1; ) {
|
||||
i++;
|
||||
temp = b;
|
||||
b = b*(2.0*i/x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (ix < 0x3e100000) { /* x < 2**-29 */
|
||||
/* x is tiny, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if (nm1 > 32) /* underflow */
|
||||
b = 0.0;
|
||||
else {
|
||||
temp = x*0.5;
|
||||
b = temp;
|
||||
a = 1.0;
|
||||
for (i=2; i<=nm1+1; i++) {
|
||||
a *= (double)i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b/a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t,q0,q1,w,h,z,tmp,nf;
|
||||
int k;
|
||||
|
||||
nf = nm1 + 1.0;
|
||||
w = 2*nf/x;
|
||||
h = 2/x;
|
||||
z = w+h;
|
||||
q0 = w;
|
||||
q1 = w*z - 1.0;
|
||||
k = 1;
|
||||
while (q1 < 1.0e9) {
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z*q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
for (t=0.0, i=k; i>=0; i--)
|
||||
t = 1/(2*(i+nf)/x - t);
|
||||
a = t;
|
||||
b = 1.0;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = nf*log(fabs(w));
|
||||
if (tmp < 7.09782712893383973096e+02) {
|
||||
for (i=nm1; i>0; i--) {
|
||||
temp = b;
|
||||
b = b*(2.0*i)/x - a;
|
||||
a = temp;
|
||||
}
|
||||
} else {
|
||||
for (i=nm1; i>0; i--) {
|
||||
temp = b;
|
||||
b = b*(2.0*i)/x - a;
|
||||
a = temp;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if (b > 0x1p500) {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
z = j0(x);
|
||||
w = j1(x);
|
||||
if (fabs(z) >= fabs(w))
|
||||
b = t*z/b;
|
||||
else
|
||||
b = t*w/a;
|
||||
}
|
||||
}
|
||||
return sign ? -b : b;
|
||||
}
|
||||
|
||||
|
||||
double __cdecl _yn(int n, double x)
|
||||
{
|
||||
uint32_t ix, lx, ib;
|
||||
int nm1, sign, i;
|
||||
double a, b, temp;
|
||||
|
||||
EXTRACT_WORDS(ix, lx, x);
|
||||
sign = ix>>31;
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
|
||||
return x;
|
||||
if (sign && (ix|lx)!=0) /* x < 0 */
|
||||
return 0/0.0;
|
||||
if (ix == 0x7ff00000)
|
||||
return 0.0;
|
||||
|
||||
if (n == 0)
|
||||
return y0(x);
|
||||
if (n < 0) {
|
||||
nm1 = -(n+1);
|
||||
sign = n&1;
|
||||
} else {
|
||||
nm1 = n-1;
|
||||
sign = 0;
|
||||
}
|
||||
if (nm1 == 0)
|
||||
return sign ? -y1(x) : y1(x);
|
||||
|
||||
if (ix >= 0x52d00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(nm1&3) {
|
||||
case 0: temp = -sin(x)-cos(x); break;
|
||||
case 1: temp = -sin(x)+cos(x); break;
|
||||
case 2: temp = sin(x)+cos(x); break;
|
||||
default:
|
||||
case 3: temp = sin(x)-cos(x); break;
|
||||
}
|
||||
b = invsqrtpi*temp/sqrt(x);
|
||||
} else {
|
||||
a = y0(x);
|
||||
b = y1(x);
|
||||
/* quit if b is -inf */
|
||||
GET_HIGH_WORD(ib, b);
|
||||
for (i=0; i<nm1 && ib!=0xfff00000; ){
|
||||
i++;
|
||||
temp = b;
|
||||
b = (2.0*i/x)*b - a;
|
||||
GET_HIGH_WORD(ib, b);
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
return sign ? -b : b;
|
||||
}
|
6
libs/musl/src/math/ldexp.c
Normal file
6
libs/musl/src/math/ldexp.c
Normal file
|
@ -0,0 +1,6 @@
|
|||
#include <math.h>
|
||||
|
||||
double __cdecl ldexp(double x, int n)
|
||||
{
|
||||
return scalbn(x, n);
|
||||
}
|
7
libs/musl/src/math/lgamma.c
Normal file
7
libs/musl/src/math/lgamma.c
Normal file
|
@ -0,0 +1,7 @@
|
|||
#include <math.h>
|
||||
#include "libm.h"
|
||||
|
||||
double __cdecl lgamma(double x)
|
||||
{
|
||||
return __lgamma_r(x, &__signgam);
|
||||
}
|
283
libs/musl/src/math/lgamma_r.c
Normal file
283
libs/musl/src/math/lgamma_r.c
Normal file
|
@ -0,0 +1,283 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
/* lgamma_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method:
|
||||
* 1. Argument Reduction for 0 < x <= 8
|
||||
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
||||
* reduce x to a number in [1.5,2.5] by
|
||||
* lgamma(1+s) = log(s) + lgamma(s)
|
||||
* for example,
|
||||
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
||||
* = log(6.3*5.3) + lgamma(5.3)
|
||||
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
||||
* 2. Polynomial approximation of lgamma around its
|
||||
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
||||
* Let z = x-ymin;
|
||||
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
||||
* where
|
||||
* poly(z) is a 14 degree polynomial.
|
||||
* 2. Rational approximation in the primary interval [2,3]
|
||||
* We use the following approximation:
|
||||
* s = x-2.0;
|
||||
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
||||
* with accuracy
|
||||
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
||||
* Our algorithms are based on the following observation
|
||||
*
|
||||
* zeta(2)-1 2 zeta(3)-1 3
|
||||
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
||||
* 2 3
|
||||
*
|
||||
* where Euler = 0.5771... is the Euler constant, which is very
|
||||
* close to 0.5.
|
||||
*
|
||||
* 3. For x>=8, we have
|
||||
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
||||
* (better formula:
|
||||
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
||||
* Let z = 1/x, then we approximation
|
||||
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
||||
* by
|
||||
* 3 5 11
|
||||
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
||||
* where
|
||||
* |w - f(z)| < 2**-58.74
|
||||
*
|
||||
* 4. For negative x, since (G is gamma function)
|
||||
* -x*G(-x)*G(x) = pi/sin(pi*x),
|
||||
* we have
|
||||
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
||||
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
||||
* Hence, for x<0, signgam = sign(sin(pi*x)) and
|
||||
* lgamma(x) = log(|Gamma(x)|)
|
||||
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
||||
* Note: one should avoid compute pi*(-x) directly in the
|
||||
* computation of sin(pi*(-x)).
|
||||
*
|
||||
* 5. Special Cases
|
||||
* lgamma(2+s) ~ s*(1-Euler) for tiny s
|
||||
* lgamma(1) = lgamma(2) = 0
|
||||
* lgamma(x) ~ -log(|x|) for tiny x
|
||||
* lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
|
||||
* lgamma(inf) = inf
|
||||
* lgamma(-inf) = inf (bug for bug compatible with C99!?)
|
||||
*
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
|
||||
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
|
||||
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
|
||||
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
|
||||
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
|
||||
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
|
||||
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
|
||||
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
|
||||
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
|
||||
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
|
||||
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
|
||||
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
|
||||
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
|
||||
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
|
||||
/* tt = -(tail of tf) */
|
||||
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
|
||||
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
|
||||
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
|
||||
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
|
||||
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
|
||||
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
|
||||
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
|
||||
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
|
||||
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
|
||||
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
|
||||
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
|
||||
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
|
||||
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
|
||||
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
|
||||
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
|
||||
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
|
||||
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
|
||||
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
|
||||
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
|
||||
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
|
||||
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
|
||||
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
|
||||
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
|
||||
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
|
||||
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
|
||||
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
|
||||
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
|
||||
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
|
||||
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
|
||||
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
|
||||
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
|
||||
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
|
||||
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
|
||||
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
|
||||
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
|
||||
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
|
||||
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
|
||||
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
|
||||
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
|
||||
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
|
||||
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
|
||||
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
|
||||
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
|
||||
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
|
||||
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
|
||||
|
||||
/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
|
||||
static double sin_pi(double x)
|
||||
{
|
||||
int n;
|
||||
|
||||
/* spurious inexact if odd int */
|
||||
x = 2.0*(x*0.5 - floor(x*0.5)); /* x mod 2.0 */
|
||||
|
||||
n = (int)(x*4.0);
|
||||
n = (n+1)/2;
|
||||
x -= n*0.5f;
|
||||
x *= pi;
|
||||
|
||||
switch (n) {
|
||||
default: /* case 4: */
|
||||
case 0: return __sin(x, 0.0, 0);
|
||||
case 1: return __cos(x, 0.0);
|
||||
case 2: return __sin(-x, 0.0, 0);
|
||||
case 3: return -__cos(x, 0.0);
|
||||
}
|
||||
}
|
||||
|
||||
double __lgamma_r(double x, int *signgamp)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t t,y,z,nadj,p,p1,p2,p3,q,r,w;
|
||||
uint32_t ix;
|
||||
int sign,i;
|
||||
|
||||
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
||||
*signgamp = 1;
|
||||
sign = u.i>>63;
|
||||
ix = u.i>>32 & 0x7fffffff;
|
||||
if (ix >= 0x7ff00000)
|
||||
return x*x;
|
||||
if (ix < (0x3ff-70)<<20) { /* |x|<2**-70, return -log(|x|) */
|
||||
if(sign) {
|
||||
x = -x;
|
||||
*signgamp = -1;
|
||||
}
|
||||
return -log(x);
|
||||
}
|
||||
if (sign) {
|
||||
x = -x;
|
||||
t = sin_pi(x);
|
||||
if (t == 0.0) /* -integer */
|
||||
return 1.0/(x-x);
|
||||
if (t > 0.0)
|
||||
*signgamp = -1;
|
||||
else
|
||||
t = -t;
|
||||
nadj = log(pi/(t*x));
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
|
||||
r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if (ix < 0x40000000) {
|
||||
if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -log(x);
|
||||
if (ix >= 0x3FE76944) {
|
||||
y = 1.0 - x;
|
||||
i = 0;
|
||||
} else if (ix >= 0x3FCDA661) {
|
||||
y = x - (tc-1.0);
|
||||
i = 1;
|
||||
} else {
|
||||
y = x;
|
||||
i = 2;
|
||||
}
|
||||
} else {
|
||||
r = 0.0;
|
||||
if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */
|
||||
y = 2.0 - x;
|
||||
i = 0;
|
||||
} else if(ix >= 0x3FF3B4C4) { /* [1.23,1.73] */
|
||||
y = x - tc;
|
||||
i = 1;
|
||||
} else {
|
||||
y = x - 1.0;
|
||||
i = 2;
|
||||
}
|
||||
}
|
||||
switch (i) {
|
||||
case 0:
|
||||
z = y*y;
|
||||
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
|
||||
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
|
||||
p = y*p1+p2;
|
||||
r += (p-0.5*y);
|
||||
break;
|
||||
case 1:
|
||||
z = y*y;
|
||||
w = z*y;
|
||||
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
|
||||
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
|
||||
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
|
||||
p = z*p1-(tt-w*(p2+y*p3));
|
||||
r += tf + p;
|
||||
break;
|
||||
case 2:
|
||||
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
|
||||
p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
|
||||
r += -0.5*y + p1/p2;
|
||||
}
|
||||
} else if (ix < 0x40200000) { /* x < 8.0 */
|
||||
i = (int)x;
|
||||
y = x - (double)i;
|
||||
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
||||
q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
|
||||
r = 0.5*y+p/q;
|
||||
z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch (i) {
|
||||
case 7: z *= y + 6.0; /* FALLTHRU */
|
||||
case 6: z *= y + 5.0; /* FALLTHRU */
|
||||
case 5: z *= y + 4.0; /* FALLTHRU */
|
||||
case 4: z *= y + 3.0; /* FALLTHRU */
|
||||
case 3: z *= y + 2.0; /* FALLTHRU */
|
||||
r += log(z);
|
||||
break;
|
||||
}
|
||||
} else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */
|
||||
t = log(x);
|
||||
z = 1.0/x;
|
||||
y = z*z;
|
||||
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
|
||||
r = (x-0.5)*(t-1.0)+w;
|
||||
} else /* 2**58 <= x <= inf */
|
||||
r = x*(log(x)-1.0);
|
||||
if (sign)
|
||||
r = nadj - r;
|
||||
return r;
|
||||
}
|
||||
|
||||
weak_alias(__lgamma_r, lgamma_r);
|
7
libs/musl/src/math/lgammaf.c
Normal file
7
libs/musl/src/math/lgammaf.c
Normal file
|
@ -0,0 +1,7 @@
|
|||
#include <math.h>
|
||||
#include "libm.h"
|
||||
|
||||
float __cdecl lgammaf(float x)
|
||||
{
|
||||
return __lgammaf_r(x, &__signgam);
|
||||
}
|
218
libs/musl/src/math/lgammaf_r.c
Normal file
218
libs/musl/src/math/lgammaf_r.c
Normal file
|
@ -0,0 +1,218 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgammaf_r.c */
|
||||
/*
|
||||
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
||||
*/
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
pi = 3.1415927410e+00, /* 0x40490fdb */
|
||||
a0 = 7.7215664089e-02, /* 0x3d9e233f */
|
||||
a1 = 3.2246702909e-01, /* 0x3ea51a66 */
|
||||
a2 = 6.7352302372e-02, /* 0x3d89f001 */
|
||||
a3 = 2.0580807701e-02, /* 0x3ca89915 */
|
||||
a4 = 7.3855509982e-03, /* 0x3bf2027e */
|
||||
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
|
||||
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
|
||||
a7 = 5.1006977446e-04, /* 0x3a05b634 */
|
||||
a8 = 2.2086278477e-04, /* 0x39679767 */
|
||||
a9 = 1.0801156895e-04, /* 0x38e28445 */
|
||||
a10 = 2.5214456400e-05, /* 0x37d383a2 */
|
||||
a11 = 4.4864096708e-05, /* 0x383c2c75 */
|
||||
tc = 1.4616321325e+00, /* 0x3fbb16c3 */
|
||||
tf = -1.2148628384e-01, /* 0xbdf8cdcd */
|
||||
/* tt = -(tail of tf) */
|
||||
tt = 6.6971006518e-09, /* 0x31e61c52 */
|
||||
t0 = 4.8383611441e-01, /* 0x3ef7b95e */
|
||||
t1 = -1.4758771658e-01, /* 0xbe17213c */
|
||||
t2 = 6.4624942839e-02, /* 0x3d845a15 */
|
||||
t3 = -3.2788541168e-02, /* 0xbd064d47 */
|
||||
t4 = 1.7970675603e-02, /* 0x3c93373d */
|
||||
t5 = -1.0314224288e-02, /* 0xbc28fcfe */
|
||||
t6 = 6.1005386524e-03, /* 0x3bc7e707 */
|
||||
t7 = -3.6845202558e-03, /* 0xbb7177fe */
|
||||
t8 = 2.2596477065e-03, /* 0x3b141699 */
|
||||
t9 = -1.4034647029e-03, /* 0xbab7f476 */
|
||||
t10 = 8.8108185446e-04, /* 0x3a66f867 */
|
||||
t11 = -5.3859531181e-04, /* 0xba0d3085 */
|
||||
t12 = 3.1563205994e-04, /* 0x39a57b6b */
|
||||
t13 = -3.1275415677e-04, /* 0xb9a3f927 */
|
||||
t14 = 3.3552918467e-04, /* 0x39afe9f7 */
|
||||
u0 = -7.7215664089e-02, /* 0xbd9e233f */
|
||||
u1 = 6.3282704353e-01, /* 0x3f2200f4 */
|
||||
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
|
||||
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
|
||||
u4 = 2.2896373272e-01, /* 0x3e6a7578 */
|
||||
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
|
||||
v1 = 2.4559779167e+00, /* 0x401d2ebe */
|
||||
v2 = 2.1284897327e+00, /* 0x4008392d */
|
||||
v3 = 7.6928514242e-01, /* 0x3f44efdf */
|
||||
v4 = 1.0422264785e-01, /* 0x3dd572af */
|
||||
v5 = 3.2170924824e-03, /* 0x3b52d5db */
|
||||
s0 = -7.7215664089e-02, /* 0xbd9e233f */
|
||||
s1 = 2.1498242021e-01, /* 0x3e5c245a */
|
||||
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
|
||||
s3 = 1.4635047317e-01, /* 0x3e15dce6 */
|
||||
s4 = 2.6642270386e-02, /* 0x3cda40e4 */
|
||||
s5 = 1.8402845599e-03, /* 0x3af135b4 */
|
||||
s6 = 3.1947532989e-05, /* 0x3805ff67 */
|
||||
r1 = 1.3920053244e+00, /* 0x3fb22d3b */
|
||||
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
|
||||
r3 = 1.7193385959e-01, /* 0x3e300f6e */
|
||||
r4 = 1.8645919859e-02, /* 0x3c98bf54 */
|
||||
r5 = 7.7794247773e-04, /* 0x3a4beed6 */
|
||||
r6 = 7.3266842264e-06, /* 0x36f5d7bd */
|
||||
w0 = 4.1893854737e-01, /* 0x3ed67f1d */
|
||||
w1 = 8.3333335817e-02, /* 0x3daaaaab */
|
||||
w2 = -2.7777778450e-03, /* 0xbb360b61 */
|
||||
w3 = 7.9365057172e-04, /* 0x3a500cfd */
|
||||
w4 = -5.9518753551e-04, /* 0xba1c065c */
|
||||
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
|
||||
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
|
||||
|
||||
/* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
|
||||
static float sin_pi(float x)
|
||||
{
|
||||
double_t y;
|
||||
int n;
|
||||
|
||||
/* spurious inexact if odd int */
|
||||
x = 2*(x*0.5f - floorf(x*0.5f)); /* x mod 2.0 */
|
||||
|
||||
n = (int)(x*4);
|
||||
n = (n+1)/2;
|
||||
y = x - n*0.5f;
|
||||
y *= 3.14159265358979323846;
|
||||
switch (n) {
|
||||
default: /* case 4: */
|
||||
case 0: return __sindf(y);
|
||||
case 1: return __cosdf(y);
|
||||
case 2: return __sindf(-y);
|
||||
case 3: return -__cosdf(y);
|
||||
}
|
||||
}
|
||||
|
||||
float __lgammaf_r(float x, int *signgamp)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
float t,y,z,nadj,p,p1,p2,p3,q,r,w;
|
||||
uint32_t ix;
|
||||
int i,sign;
|
||||
|
||||
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
|
||||
*signgamp = 1;
|
||||
sign = u.i>>31;
|
||||
ix = u.i & 0x7fffffff;
|
||||
if (ix >= 0x7f800000)
|
||||
return x*x;
|
||||
if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */
|
||||
if (sign) {
|
||||
*signgamp = -1;
|
||||
x = -x;
|
||||
}
|
||||
return -logf(x);
|
||||
}
|
||||
if (sign) {
|
||||
x = -x;
|
||||
t = sin_pi(x);
|
||||
if (t == 0.0f) /* -integer */
|
||||
return 1.0f/(x-x);
|
||||
if (t > 0.0f)
|
||||
*signgamp = -1;
|
||||
else
|
||||
t = -t;
|
||||
nadj = logf(pi/(t*x));
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if (ix == 0x3f800000 || ix == 0x40000000)
|
||||
r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if (ix < 0x40000000) {
|
||||
if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -logf(x);
|
||||
if (ix >= 0x3f3b4a20) {
|
||||
y = 1.0f - x;
|
||||
i = 0;
|
||||
} else if (ix >= 0x3e6d3308) {
|
||||
y = x - (tc-1.0f);
|
||||
i = 1;
|
||||
} else {
|
||||
y = x;
|
||||
i = 2;
|
||||
}
|
||||
} else {
|
||||
r = 0.0f;
|
||||
if (ix >= 0x3fdda618) { /* [1.7316,2] */
|
||||
y = 2.0f - x;
|
||||
i = 0;
|
||||
} else if (ix >= 0x3F9da620) { /* [1.23,1.73] */
|
||||
y = x - tc;
|
||||
i = 1;
|
||||
} else {
|
||||
y = x - 1.0f;
|
||||
i = 2;
|
||||
}
|
||||
}
|
||||
switch(i) {
|
||||
case 0:
|
||||
z = y*y;
|
||||
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
|
||||
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
|
||||
p = y*p1+p2;
|
||||
r += p - 0.5f*y;
|
||||
break;
|
||||
case 1:
|
||||
z = y*y;
|
||||
w = z*y;
|
||||
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
|
||||
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
|
||||
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
|
||||
p = z*p1-(tt-w*(p2+y*p3));
|
||||
r += (tf + p);
|
||||
break;
|
||||
case 2:
|
||||
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
|
||||
p2 = 1.0f+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
|
||||
r += -0.5f*y + p1/p2;
|
||||
}
|
||||
} else if (ix < 0x41000000) { /* x < 8.0 */
|
||||
i = (int)x;
|
||||
y = x - (float)i;
|
||||
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
||||
q = 1.0f+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
|
||||
r = 0.5f*y+p/q;
|
||||
z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch (i) {
|
||||
case 7: z *= y + 6.0f; /* FALLTHRU */
|
||||
case 6: z *= y + 5.0f; /* FALLTHRU */
|
||||
case 5: z *= y + 4.0f; /* FALLTHRU */
|
||||
case 4: z *= y + 3.0f; /* FALLTHRU */
|
||||
case 3: z *= y + 2.0f; /* FALLTHRU */
|
||||
r += logf(z);
|
||||
break;
|
||||
}
|
||||
} else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */
|
||||
t = logf(x);
|
||||
z = 1.0f/x;
|
||||
y = z*z;
|
||||
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
|
||||
r = (x-0.5f)*(t-1.0f)+w;
|
||||
} else /* 2**58 <= x <= inf */
|
||||
r = x*(logf(x)-1.0f);
|
||||
if (sign)
|
||||
r = nadj - r;
|
||||
return r;
|
||||
}
|
||||
|
||||
weak_alias(__lgammaf_r, lgammaf_r);
|
112
libs/musl/src/math/log.c
Normal file
112
libs/musl/src/math/log.c
Normal file
|
@ -0,0 +1,112 @@
|
|||
/*
|
||||
* Double-precision log(x) function.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "log_data.h"
|
||||
|
||||
#define T __log_data.tab
|
||||
#define T2 __log_data.tab2
|
||||
#define B __log_data.poly1
|
||||
#define A __log_data.poly
|
||||
#define Ln2hi __log_data.ln2hi
|
||||
#define Ln2lo __log_data.ln2lo
|
||||
#define N (1 << LOG_TABLE_BITS)
|
||||
#define OFF 0x3fe6000000000000
|
||||
|
||||
/* Top 16 bits of a double. */
|
||||
static inline uint32_t top16(double x)
|
||||
{
|
||||
return asuint64(x) >> 48;
|
||||
}
|
||||
|
||||
double __cdecl log(double x)
|
||||
{
|
||||
double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
|
||||
uint64_t ix, iz, tmp;
|
||||
uint32_t top;
|
||||
int k, i;
|
||||
|
||||
ix = asuint64(x);
|
||||
top = top16(x);
|
||||
#define LO asuint64(1.0 - 0x1p-4)
|
||||
#define HI asuint64(1.0 + 0x1.09p-4)
|
||||
if (predict_false(ix - LO < HI - LO)) {
|
||||
/* Handle close to 1.0 inputs separately. */
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
|
||||
return 0;
|
||||
r = x - 1.0;
|
||||
r2 = r * r;
|
||||
r3 = r * r2;
|
||||
y = r3 *
|
||||
(B[1] + r * B[2] + r2 * B[3] +
|
||||
r3 * (B[4] + r * B[5] + r2 * B[6] +
|
||||
r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
|
||||
/* Worst-case error is around 0.507 ULP. */
|
||||
w = r * 0x1p27;
|
||||
double_t rhi = r + w - w;
|
||||
double_t rlo = r - rhi;
|
||||
w = rhi * rhi * B[0]; /* B[0] == -0.5. */
|
||||
hi = r + w;
|
||||
lo = r - hi + w;
|
||||
lo += B[0] * rlo * (rhi + r);
|
||||
y += lo;
|
||||
y += hi;
|
||||
return eval_as_double(y);
|
||||
}
|
||||
if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
|
||||
/* x < 0x1p-1022 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzero(1);
|
||||
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
|
||||
return x;
|
||||
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
|
||||
return __math_invalid(x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint64(x * 0x1p52);
|
||||
ix -= 52ULL << 52;
|
||||
}
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (52 - LOG_TABLE_BITS)) % N;
|
||||
k = (int64_t)tmp >> 52; /* arithmetic shift */
|
||||
iz = ix - (tmp & 0xfffULL << 52);
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = asdouble(iz);
|
||||
|
||||
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
|
||||
/* r ~= z/c - 1, |r| < 1/(2*N). */
|
||||
#if __FP_FAST_FMA
|
||||
/* rounding error: 0x1p-55/N. */
|
||||
r = __builtin_fma(z, invc, -1.0);
|
||||
#else
|
||||
/* rounding error: 0x1p-55/N + 0x1p-66. */
|
||||
r = (z - T2[i].chi - T2[i].clo) * invc;
|
||||
#endif
|
||||
kd = (double_t)k;
|
||||
|
||||
/* hi + lo = r + log(c) + k*Ln2. */
|
||||
w = kd * Ln2hi + logc;
|
||||
hi = w + r;
|
||||
lo = w - hi + r + kd * Ln2lo;
|
||||
|
||||
/* log(x) = lo + (log1p(r) - r) + hi. */
|
||||
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
|
||||
/* Worst case error if |y| > 0x1p-5:
|
||||
0.5 + 4.13/N + abs-poly-error*2^57 ULP (+ 0.002 ULP without fma)
|
||||
Worst case error if |y| > 0x1p-4:
|
||||
0.5 + 2.06/N + abs-poly-error*2^56 ULP (+ 0.001 ULP without fma). */
|
||||
y = lo + r2 * A[0] +
|
||||
r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
|
||||
return eval_as_double(y);
|
||||
}
|
102
libs/musl/src/math/log10.c
Normal file
102
libs/musl/src/math/log10.c
Normal file
|
@ -0,0 +1,102 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* Return the base 10 logarithm of x. See log.c for most comments.
|
||||
*
|
||||
* Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
|
||||
* as in log.c, then combine and scale in extra precision:
|
||||
* log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
|
||||
ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
|
||||
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
|
||||
log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
double __cdecl log10(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
|
||||
uint32_t hx;
|
||||
int k;
|
||||
|
||||
hx = u.i>>32;
|
||||
k = 0;
|
||||
if (hx < 0x00100000 || hx>>31) {
|
||||
if (u.i<<1 == 0)
|
||||
return -1/(x*x); /* log(+-0)=-inf */
|
||||
if (hx>>31)
|
||||
return (x-x)/0.0; /* log(-#) = NaN */
|
||||
/* subnormal number, scale x up */
|
||||
k -= 54;
|
||||
x *= 0x1p54;
|
||||
u.f = x;
|
||||
hx = u.i>>32;
|
||||
} else if (hx >= 0x7ff00000) {
|
||||
return x;
|
||||
} else if (hx == 0x3ff00000 && u.i<<32 == 0)
|
||||
return 0;
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
hx += 0x3ff00000 - 0x3fe6a09e;
|
||||
k += (int)(hx>>20) - 0x3ff;
|
||||
hx = (hx&0x000fffff) + 0x3fe6a09e;
|
||||
u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
|
||||
x = u.f;
|
||||
|
||||
f = x - 1.0;
|
||||
hfsq = 0.5*f*f;
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
R = t2 + t1;
|
||||
|
||||
/* See log2.c for details. */
|
||||
/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
|
||||
hi = f - hfsq;
|
||||
u.f = hi;
|
||||
u.i &= (uint64_t)-1<<32;
|
||||
hi = u.f;
|
||||
lo = f - hi - hfsq + s*(hfsq+R);
|
||||
|
||||
/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
|
||||
val_hi = hi*ivln10hi;
|
||||
dk = k;
|
||||
y = dk*log10_2hi;
|
||||
val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
|
||||
|
||||
/*
|
||||
* Extra precision in for adding y is not strictly needed
|
||||
* since there is no very large cancellation near x = sqrt(2) or
|
||||
* x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
|
||||
* with some parallelism and it reduces the error for many args.
|
||||
*/
|
||||
w = y + val_hi;
|
||||
val_lo += (y - w) + val_hi;
|
||||
val_hi = w;
|
||||
|
||||
return val_lo + val_hi;
|
||||
}
|
78
libs/musl/src/math/log10f.c
Normal file
78
libs/musl/src/math/log10f.c
Normal file
|
@ -0,0 +1,78 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/e_log10f.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* See comments in log10.c.
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
ivln10hi = 4.3432617188e-01, /* 0x3ede6000 */
|
||||
ivln10lo = -3.1689971365e-05, /* 0xb804ead9 */
|
||||
log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
|
||||
log10_2lo = 7.9034151668e-07, /* 0x355427db */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
|
||||
Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
|
||||
Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
|
||||
Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
|
||||
|
||||
float __cdecl log10f(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
float_t hfsq,f,s,z,R,w,t1,t2,dk,hi,lo;
|
||||
uint32_t ix;
|
||||
int k;
|
||||
|
||||
ix = u.i;
|
||||
k = 0;
|
||||
if (ix < 0x00800000 || ix>>31) { /* x < 2**-126 */
|
||||
if (ix<<1 == 0)
|
||||
return -1/(x*x); /* log(+-0)=-inf */
|
||||
if (ix>>31)
|
||||
return (x-x)/0.0f; /* log(-#) = NaN */
|
||||
/* subnormal number, scale up x */
|
||||
k -= 25;
|
||||
x *= 0x1p25f;
|
||||
u.f = x;
|
||||
ix = u.i;
|
||||
} else if (ix >= 0x7f800000) {
|
||||
return x;
|
||||
} else if (ix == 0x3f800000)
|
||||
return 0;
|
||||
|
||||
/* reduce x into [sqrt(2)/2, sqrt(2)] */
|
||||
ix += 0x3f800000 - 0x3f3504f3;
|
||||
k += (int)(ix>>23) - 0x7f;
|
||||
ix = (ix&0x007fffff) + 0x3f3504f3;
|
||||
u.i = ix;
|
||||
x = u.f;
|
||||
|
||||
f = x - 1.0f;
|
||||
s = f/(2.0f + f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1= w*(Lg2+w*Lg4);
|
||||
t2= z*(Lg1+w*Lg3);
|
||||
R = t2 + t1;
|
||||
hfsq = 0.5f*f*f;
|
||||
|
||||
hi = f - hfsq;
|
||||
u.f = hi;
|
||||
u.i &= 0xfffff000;
|
||||
hi = u.f;
|
||||
lo = f - hi - hfsq + s*(hfsq+R);
|
||||
dk = k;
|
||||
return dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + hi*ivln10hi + dk*log10_2hi;
|
||||
}
|
122
libs/musl/src/math/log1p.c
Normal file
122
libs/musl/src/math/log1p.c
Normal file
|
@ -0,0 +1,122 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/* double log1p(double x)
|
||||
* Return the natural logarithm of 1+x.
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log(1+f): See log.c
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
double __cdecl log1p(double x)
|
||||
{
|
||||
union {double f; uint64_t i;} u = {x};
|
||||
double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
|
||||
uint32_t hx,hu;
|
||||
int k;
|
||||
|
||||
hx = u.i>>32;
|
||||
k = 1;
|
||||
if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
|
||||
if (hx >= 0xbff00000) { /* x <= -1.0 */
|
||||
if (x == -1)
|
||||
return x/0.0; /* log1p(-1) = -inf */
|
||||
return (x-x)/0.0; /* log1p(x<-1) = NaN */
|
||||
}
|
||||
if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
|
||||
/* underflow if subnormal */
|
||||
if ((hx&0x7ff00000) == 0)
|
||||
FORCE_EVAL((float)x);
|
||||
return x;
|
||||
}
|
||||
if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0;
|
||||
f = x;
|
||||
}
|
||||
} else if (hx >= 0x7ff00000)
|
||||
return x;
|
||||
if (k) {
|
||||
u.f = 1 + x;
|
||||
hu = u.i>>32;
|
||||
hu += 0x3ff00000 - 0x3fe6a09e;
|
||||
k = (int)(hu>>20) - 0x3ff;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if (k < 54) {
|
||||
c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
|
||||
c /= u.f;
|
||||
} else
|
||||
c = 0;
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
hu = (hu&0x000fffff) + 0x3fe6a09e;
|
||||
u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
|
||||
f = u.f - 1;
|
||||
}
|
||||
hfsq = 0.5*f*f;
|
||||
s = f/(2.0+f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1 = w*(Lg2+w*(Lg4+w*Lg6));
|
||||
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
||||
R = t2 + t1;
|
||||
dk = k;
|
||||
return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
|
||||
}
|
77
libs/musl/src/math/log1pf.c
Normal file
77
libs/musl/src/math/log1pf.c
Normal file
|
@ -0,0 +1,77 @@
|
|||
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
|
||||
ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
|
||||
/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
|
||||
Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
|
||||
Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
|
||||
Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
|
||||
Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
|
||||
|
||||
float __cdecl log1pf(float x)
|
||||
{
|
||||
union {float f; uint32_t i;} u = {x};
|
||||
float_t hfsq,f,c,s,z,R,w,t1,t2,dk;
|
||||
uint32_t ix,iu;
|
||||
int k;
|
||||
|
||||
ix = u.i;
|
||||
k = 1;
|
||||
if (ix < 0x3ed413d0 || ix>>31) { /* 1+x < sqrt(2)+ */
|
||||
if (ix >= 0xbf800000) { /* x <= -1.0 */
|
||||
if (x == -1)
|
||||
return x/0.0f; /* log1p(-1)=+inf */
|
||||
return (x-x)/0.0f; /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if (ix<<1 < 0x33800000<<1) { /* |x| < 2**-24 */
|
||||
/* underflow if subnormal */
|
||||
if ((ix&0x7f800000) == 0)
|
||||
FORCE_EVAL(x*x);
|
||||
return x;
|
||||
}
|
||||
if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
|
||||
k = 0;
|
||||
c = 0;
|
||||
f = x;
|
||||
}
|
||||
} else if (ix >= 0x7f800000)
|
||||
return x;
|
||||
if (k) {
|
||||
u.f = 1 + x;
|
||||
iu = u.i;
|
||||
iu += 0x3f800000 - 0x3f3504f3;
|
||||
k = (int)(iu>>23) - 0x7f;
|
||||
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
|
||||
if (k < 25) {
|
||||
c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
|
||||
c /= u.f;
|
||||
} else
|
||||
c = 0;
|
||||
/* reduce u into [sqrt(2)/2, sqrt(2)] */
|
||||
iu = (iu&0x007fffff) + 0x3f3504f3;
|
||||
u.i = iu;
|
||||
f = u.f - 1;
|
||||
}
|
||||
s = f/(2.0f + f);
|
||||
z = s*s;
|
||||
w = z*z;
|
||||
t1= w*(Lg2+w*Lg4);
|
||||
t2= z*(Lg1+w*Lg3);
|
||||
R = t2 + t1;
|
||||
hfsq = 0.5f*f*f;
|
||||
dk = k;
|
||||
return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
|
||||
}
|
122
libs/musl/src/math/log2.c
Normal file
122
libs/musl/src/math/log2.c
Normal file
|
@ -0,0 +1,122 @@
|
|||
/*
|
||||
* Double-precision log2(x) function.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "log2_data.h"
|
||||
|
||||
#define T __log2_data.tab
|
||||
#define T2 __log2_data.tab2
|
||||
#define B __log2_data.poly1
|
||||
#define A __log2_data.poly
|
||||
#define InvLn2hi __log2_data.invln2hi
|
||||
#define InvLn2lo __log2_data.invln2lo
|
||||
#define N (1 << LOG2_TABLE_BITS)
|
||||
#define OFF 0x3fe6000000000000
|
||||
|
||||
/* Top 16 bits of a double. */
|
||||
static inline uint32_t top16(double x)
|
||||
{
|
||||
return asuint64(x) >> 48;
|
||||
}
|
||||
|
||||
double __cdecl log2(double x)
|
||||
{
|
||||
double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
|
||||
uint64_t ix, iz, tmp;
|
||||
uint32_t top;
|
||||
int k, i;
|
||||
|
||||
ix = asuint64(x);
|
||||
top = top16(x);
|
||||
#define LO asuint64(1.0 - 0x1.5b51p-5)
|
||||
#define HI asuint64(1.0 + 0x1.6ab2p-5)
|
||||
if (predict_false(ix - LO < HI - LO)) {
|
||||
/* Handle close to 1.0 inputs separately. */
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
|
||||
return 0;
|
||||
r = x - 1.0;
|
||||
#if __FP_FAST_FMA
|
||||
hi = r * InvLn2hi;
|
||||
lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
|
||||
#else
|
||||
double_t rhi, rlo;
|
||||
rhi = asdouble(asuint64(r) & -1ULL << 32);
|
||||
rlo = r - rhi;
|
||||
hi = rhi * InvLn2hi;
|
||||
lo = rlo * InvLn2hi + r * InvLn2lo;
|
||||
#endif
|
||||
r2 = r * r; /* rounding error: 0x1p-62. */
|
||||
r4 = r2 * r2;
|
||||
/* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */
|
||||
p = r2 * (B[0] + r * B[1]);
|
||||
y = hi + p;
|
||||
lo += hi - y + p;
|
||||
lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
|
||||
r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
|
||||
y += lo;
|
||||
return eval_as_double(y);
|
||||
}
|
||||
if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
|
||||
/* x < 0x1p-1022 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzero(1);
|
||||
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
|
||||
return x;
|
||||
if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
|
||||
return __math_invalid(x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint64(x * 0x1p52);
|
||||
ix -= 52ULL << 52;
|
||||
}
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
|
||||
k = (int64_t)tmp >> 52; /* arithmetic shift */
|
||||
iz = ix - (tmp & 0xfffULL << 52);
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = asdouble(iz);
|
||||
kd = (double_t)k;
|
||||
|
||||
/* log2(x) = log2(z/c) + log2(c) + k. */
|
||||
/* r ~= z/c - 1, |r| < 1/(2*N). */
|
||||
#if __FP_FAST_FMA
|
||||
/* rounding error: 0x1p-55/N. */
|
||||
r = __builtin_fma(z, invc, -1.0);
|
||||
t1 = r * InvLn2hi;
|
||||
t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
|
||||
#else
|
||||
double_t rhi, rlo;
|
||||
/* rounding error: 0x1p-55/N + 0x1p-65. */
|
||||
r = (z - T2[i].chi - T2[i].clo) * invc;
|
||||
rhi = asdouble(asuint64(r) & -1ULL << 32);
|
||||
rlo = r - rhi;
|
||||
t1 = rhi * InvLn2hi;
|
||||
t2 = rlo * InvLn2hi + r * InvLn2lo;
|
||||
#endif
|
||||
|
||||
/* hi + lo = r/ln2 + log2(c) + k. */
|
||||
t3 = kd + logc;
|
||||
hi = t3 + t1;
|
||||
lo = t3 - hi + t1 + t2;
|
||||
|
||||
/* log2(r+1) = r/ln2 + r^2*poly(r). */
|
||||
/* Evaluation is optimized assuming superscalar pipelined execution. */
|
||||
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
|
||||
r4 = r2 * r2;
|
||||
/* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
|
||||
~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */
|
||||
p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
|
||||
y = lo + r2 * p + hi;
|
||||
return eval_as_double(y);
|
||||
}
|
201
libs/musl/src/math/log2_data.c
Normal file
201
libs/musl/src/math/log2_data.c
Normal file
|
@ -0,0 +1,201 @@
|
|||
/*
|
||||
* Data for log2.
|
||||
*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "log2_data.h"
|
||||
|
||||
#define N (1 << LOG2_TABLE_BITS)
|
||||
|
||||
const struct log2_data __log2_data = {
|
||||
// First coefficient: 0x1.71547652b82fe1777d0ffda0d24p0
|
||||
.invln2hi = 0x1.7154765200000p+0,
|
||||
.invln2lo = 0x1.705fc2eefa200p-33,
|
||||
.poly1 = {
|
||||
// relative error: 0x1.2fad8188p-63
|
||||
// in -0x1.5b51p-5 0x1.6ab2p-5
|
||||
-0x1.71547652b82fep-1,
|
||||
0x1.ec709dc3a03f7p-2,
|
||||
-0x1.71547652b7c3fp-2,
|
||||
0x1.2776c50f05be4p-2,
|
||||
-0x1.ec709dd768fe5p-3,
|
||||
0x1.a61761ec4e736p-3,
|
||||
-0x1.7153fbc64a79bp-3,
|
||||
0x1.484d154f01b4ap-3,
|
||||
-0x1.289e4a72c383cp-3,
|
||||
0x1.0b32f285aee66p-3,
|
||||
},
|
||||
.poly = {
|
||||
// relative error: 0x1.a72c2bf8p-58
|
||||
// abs error: 0x1.67a552c8p-66
|
||||
// in -0x1.f45p-8 0x1.f45p-8
|
||||
-0x1.71547652b8339p-1,
|
||||
0x1.ec709dc3a04bep-2,
|
||||
-0x1.7154764702ffbp-2,
|
||||
0x1.2776c50034c48p-2,
|
||||
-0x1.ec7b328ea92bcp-3,
|
||||
0x1.a6225e117f92ep-3,
|
||||
},
|
||||
/* Algorithm:
|
||||
|
||||
x = 2^k z
|
||||
log2(x) = k + log2(c) + log2(z/c)
|
||||
log2(z/c) = poly(z/c - 1)
|
||||
|
||||
where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls
|
||||
into the ith one, then table entries are computed as
|
||||
|
||||
tab[i].invc = 1/c
|
||||
tab[i].logc = (double)log2(c)
|
||||
tab2[i].chi = (double)c
|
||||
tab2[i].clo = (double)(c - (double)c)
|
||||
|
||||
where c is near the center of the subinterval and is chosen by trying +-2^29
|
||||
floating point invc candidates around 1/center and selecting one for which
|
||||
|
||||
1) the rounding error in 0x1.8p10 + logc is 0,
|
||||
2) the rounding error in z - chi - clo is < 0x1p-64 and
|
||||
3) the rounding error in (double)log2(c) is minimized (< 0x1p-68).
|
||||
|
||||
Note: 1) ensures that k + logc can be computed without rounding error, 2)
|
||||
ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a
|
||||
single rounding error when there is no fast fma for z*invc - 1, 3) ensures
|
||||
that logc + poly(z/c - 1) has small error, however near x == 1 when
|
||||
|log2(x)| < 0x1p-4, this is not enough so that is special cased. */
|
||||
.tab = {
|
||||
{0x1.724286bb1acf8p+0, -0x1.1095feecdb000p-1},
|
||||
{0x1.6e1f766d2cca1p+0, -0x1.08494bd76d000p-1},
|
||||
{0x1.6a13d0e30d48ap+0, -0x1.00143aee8f800p-1},
|
||||
{0x1.661ec32d06c85p+0, -0x1.efec5360b4000p-2},
|
||||
{0x1.623fa951198f8p+0, -0x1.dfdd91ab7e000p-2},
|
||||
{0x1.5e75ba4cf026cp+0, -0x1.cffae0cc79000p-2},
|
||||
{0x1.5ac055a214fb8p+0, -0x1.c043811fda000p-2},
|
||||
{0x1.571ed0f166e1ep+0, -0x1.b0b67323ae000p-2},
|
||||
{0x1.53909590bf835p+0, -0x1.a152f5a2db000p-2},
|
||||
{0x1.5014fed61adddp+0, -0x1.9217f5af86000p-2},
|
||||
{0x1.4cab88e487bd0p+0, -0x1.8304db0719000p-2},
|
||||
{0x1.49539b4334feep+0, -0x1.74189f9a9e000p-2},
|
||||
{0x1.460cbdfafd569p+0, -0x1.6552bb5199000p-2},
|
||||
{0x1.42d664ee4b953p+0, -0x1.56b23a29b1000p-2},
|
||||
{0x1.3fb01111dd8a6p+0, -0x1.483650f5fa000p-2},
|
||||
{0x1.3c995b70c5836p+0, -0x1.39de937f6a000p-2},
|
||||
{0x1.3991c4ab6fd4ap+0, -0x1.2baa1538d6000p-2},
|
||||
{0x1.3698e0ce099b5p+0, -0x1.1d98340ca4000p-2},
|
||||
{0x1.33ae48213e7b2p+0, -0x1.0fa853a40e000p-2},
|
||||
{0x1.30d191985bdb1p+0, -0x1.01d9c32e73000p-2},
|
||||
{0x1.2e025cab271d7p+0, -0x1.e857da2fa6000p-3},
|
||||
{0x1.2b404cf13cd82p+0, -0x1.cd3c8633d8000p-3},
|
||||
{0x1.288b02c7ccb50p+0, -0x1.b26034c14a000p-3},
|
||||
{0x1.25e2263944de5p+0, -0x1.97c1c2f4fe000p-3},
|
||||
{0x1.234563d8615b1p+0, -0x1.7d6023f800000p-3},
|
||||
{0x1.20b46e33eaf38p+0, -0x1.633a71a05e000p-3},
|
||||
{0x1.1e2eefdcda3ddp+0, -0x1.494f5e9570000p-3},
|
||||
{0x1.1bb4a580b3930p+0, -0x1.2f9e424e0a000p-3},
|
||||
{0x1.19453847f2200p+0, -0x1.162595afdc000p-3},
|
||||
{0x1.16e06c0d5d73cp+0, -0x1.f9c9a75bd8000p-4},
|
||||
{0x1.1485f47b7e4c2p+0, -0x1.c7b575bf9c000p-4},
|
||||
{0x1.12358ad0085d1p+0, -0x1.960c60ff48000p-4},
|
||||
{0x1.0fef00f532227p+0, -0x1.64ce247b60000p-4},
|
||||
{0x1.0db2077d03a8fp+0, -0x1.33f78b2014000p-4},
|
||||
{0x1.0b7e6d65980d9p+0, -0x1.0387d1a42c000p-4},
|
||||
{0x1.0953efe7b408dp+0, -0x1.a6f9208b50000p-5},
|
||||
{0x1.07325cac53b83p+0, -0x1.47a954f770000p-5},
|
||||
{0x1.05197e40d1b5cp+0, -0x1.d23a8c50c0000p-6},
|
||||
{0x1.03091c1208ea2p+0, -0x1.16a2629780000p-6},
|
||||
{0x1.0101025b37e21p+0, -0x1.720f8d8e80000p-8},
|
||||
{0x1.fc07ef9caa76bp-1, 0x1.6fe53b1500000p-7},
|
||||
{0x1.f4465d3f6f184p-1, 0x1.11ccce10f8000p-5},
|
||||
{0x1.ecc079f84107fp-1, 0x1.c4dfc8c8b8000p-5},
|
||||
{0x1.e573a99975ae8p-1, 0x1.3aa321e574000p-4},
|
||||
{0x1.de5d6f0bd3de6p-1, 0x1.918a0d08b8000p-4},
|
||||
{0x1.d77b681ff38b3p-1, 0x1.e72e9da044000p-4},
|
||||
{0x1.d0cb5724de943p-1, 0x1.1dcd2507f6000p-3},
|
||||
{0x1.ca4b2dc0e7563p-1, 0x1.476ab03dea000p-3},
|
||||
{0x1.c3f8ee8d6cb51p-1, 0x1.7074377e22000p-3},
|
||||
{0x1.bdd2b4f020c4cp-1, 0x1.98ede8ba94000p-3},
|
||||
{0x1.b7d6c006015cap-1, 0x1.c0db86ad2e000p-3},
|
||||
{0x1.b20366e2e338fp-1, 0x1.e840aafcee000p-3},
|
||||
{0x1.ac57026295039p-1, 0x1.0790ab4678000p-2},
|
||||
{0x1.a6d01bc2731ddp-1, 0x1.1ac056801c000p-2},
|
||||
{0x1.a16d3bc3ff18bp-1, 0x1.2db11d4fee000p-2},
|
||||
{0x1.9c2d14967feadp-1, 0x1.406464ec58000p-2},
|
||||
{0x1.970e4f47c9902p-1, 0x1.52dbe093af000p-2},
|
||||
{0x1.920fb3982bcf2p-1, 0x1.651902050d000p-2},
|
||||
{0x1.8d30187f759f1p-1, 0x1.771d2cdeaf000p-2},
|
||||
{0x1.886e5ebb9f66dp-1, 0x1.88e9c857d9000p-2},
|
||||
{0x1.83c97b658b994p-1, 0x1.9a80155e16000p-2},
|
||||
{0x1.7f405ffc61022p-1, 0x1.abe186ed3d000p-2},
|
||||
{0x1.7ad22181415cap-1, 0x1.bd0f2aea0e000p-2},
|
||||
{0x1.767dcf99eff8cp-1, 0x1.ce0a43dbf4000p-2},
|
||||
},
|
||||
#if !__FP_FAST_FMA
|
||||
.tab2 = {
|
||||
{0x1.6200012b90a8ep-1, 0x1.904ab0644b605p-55},
|
||||
{0x1.66000045734a6p-1, 0x1.1ff9bea62f7a9p-57},
|
||||
{0x1.69fffc325f2c5p-1, 0x1.27ecfcb3c90bap-55},
|
||||
{0x1.6e00038b95a04p-1, 0x1.8ff8856739326p-55},
|
||||
{0x1.71fffe09994e3p-1, 0x1.afd40275f82b1p-55},
|
||||
{0x1.7600015590e1p-1, -0x1.2fd75b4238341p-56},
|
||||
{0x1.7a00012655bd5p-1, 0x1.808e67c242b76p-56},
|
||||
{0x1.7e0003259e9a6p-1, -0x1.208e426f622b7p-57},
|
||||
{0x1.81fffedb4b2d2p-1, -0x1.402461ea5c92fp-55},
|
||||
{0x1.860002dfafcc3p-1, 0x1.df7f4a2f29a1fp-57},
|
||||
{0x1.89ffff78c6b5p-1, -0x1.e0453094995fdp-55},
|
||||
{0x1.8e00039671566p-1, -0x1.a04f3bec77b45p-55},
|
||||
{0x1.91fffe2bf1745p-1, -0x1.7fa34400e203cp-56},
|
||||
{0x1.95fffcc5c9fd1p-1, -0x1.6ff8005a0695dp-56},
|
||||
{0x1.9a0003bba4767p-1, 0x1.0f8c4c4ec7e03p-56},
|
||||
{0x1.9dfffe7b92da5p-1, 0x1.e7fd9478c4602p-55},
|
||||
{0x1.a1fffd72efdafp-1, -0x1.a0c554dcdae7ep-57},
|
||||
{0x1.a5fffde04ff95p-1, 0x1.67da98ce9b26bp-55},
|
||||
{0x1.a9fffca5e8d2bp-1, -0x1.284c9b54c13dep-55},
|
||||
{0x1.adfffddad03eap-1, 0x1.812c8ea602e3cp-58},
|
||||
{0x1.b1ffff10d3d4dp-1, -0x1.efaddad27789cp-55},
|
||||
{0x1.b5fffce21165ap-1, 0x1.3cb1719c61237p-58},
|
||||
{0x1.b9fffd950e674p-1, 0x1.3f7d94194cep-56},
|
||||
{0x1.be000139ca8afp-1, 0x1.50ac4215d9bcp-56},
|
||||
{0x1.c20005b46df99p-1, 0x1.beea653e9c1c9p-57},
|
||||
{0x1.c600040b9f7aep-1, -0x1.c079f274a70d6p-56},
|
||||
{0x1.ca0006255fd8ap-1, -0x1.a0b4076e84c1fp-56},
|
||||
{0x1.cdfffd94c095dp-1, 0x1.8f933f99ab5d7p-55},
|
||||
{0x1.d1ffff975d6cfp-1, -0x1.82c08665fe1bep-58},
|
||||
{0x1.d5fffa2561c93p-1, -0x1.b04289bd295f3p-56},
|
||||
{0x1.d9fff9d228b0cp-1, 0x1.70251340fa236p-55},
|
||||
{0x1.de00065bc7e16p-1, -0x1.5011e16a4d80cp-56},
|
||||
{0x1.e200002f64791p-1, 0x1.9802f09ef62ep-55},
|
||||
{0x1.e600057d7a6d8p-1, -0x1.e0b75580cf7fap-56},
|
||||
{0x1.ea00027edc00cp-1, -0x1.c848309459811p-55},
|
||||
{0x1.ee0006cf5cb7cp-1, -0x1.f8027951576f4p-55},
|
||||
{0x1.f2000782b7dccp-1, -0x1.f81d97274538fp-55},
|
||||
{0x1.f6000260c450ap-1, -0x1.071002727ffdcp-59},
|
||||
{0x1.f9fffe88cd533p-1, -0x1.81bdce1fda8bp-58},
|
||||
{0x1.fdfffd50f8689p-1, 0x1.7f91acb918e6ep-55},
|
||||
{0x1.0200004292367p+0, 0x1.b7ff365324681p-54},
|
||||
{0x1.05fffe3e3d668p+0, 0x1.6fa08ddae957bp-55},
|
||||
{0x1.0a0000a85a757p+0, -0x1.7e2de80d3fb91p-58},
|
||||
{0x1.0e0001a5f3fccp+0, -0x1.1823305c5f014p-54},
|
||||
{0x1.11ffff8afbaf5p+0, -0x1.bfabb6680bac2p-55},
|
||||
{0x1.15fffe54d91adp+0, -0x1.d7f121737e7efp-54},
|
||||
{0x1.1a00011ac36e1p+0, 0x1.c000a0516f5ffp-54},
|
||||
{0x1.1e00019c84248p+0, -0x1.082fbe4da5dap-54},
|
||||
{0x1.220000ffe5e6ep+0, -0x1.8fdd04c9cfb43p-55},
|
||||
{0x1.26000269fd891p+0, 0x1.cfe2a7994d182p-55},
|
||||
{0x1.2a00029a6e6dap+0, -0x1.00273715e8bc5p-56},
|
||||
{0x1.2dfffe0293e39p+0, 0x1.b7c39dab2a6f9p-54},
|
||||
{0x1.31ffff7dcf082p+0, 0x1.df1336edc5254p-56},
|
||||
{0x1.35ffff05a8b6p+0, -0x1.e03564ccd31ebp-54},
|
||||
{0x1.3a0002e0eaeccp+0, 0x1.5f0e74bd3a477p-56},
|
||||
{0x1.3e000043bb236p+0, 0x1.c7dcb149d8833p-54},
|
||||
{0x1.4200002d187ffp+0, 0x1.e08afcf2d3d28p-56},
|
||||
{0x1.460000d387cb1p+0, 0x1.20837856599a6p-55},
|
||||
{0x1.4a00004569f89p+0, -0x1.9fa5c904fbcd2p-55},
|
||||
{0x1.4e000043543f3p+0, -0x1.81125ed175329p-56},
|
||||
{0x1.51fffcc027f0fp+0, 0x1.883d8847754dcp-54},
|
||||
{0x1.55ffffd87b36fp+0, -0x1.709e731d02807p-55},
|
||||
{0x1.59ffff21df7bap+0, 0x1.7f79f68727b02p-55},
|
||||
{0x1.5dfffebfc3481p+0, -0x1.180902e30e93ep-54},
|
||||
},
|
||||
#endif
|
||||
};
|
28
libs/musl/src/math/log2_data.h
Normal file
28
libs/musl/src/math/log2_data.h
Normal file
|
@ -0,0 +1,28 @@
|
|||
/*
|
||||
* Copyright (c) 2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _LOG2_DATA_H
|
||||
#define _LOG2_DATA_H
|
||||
|
||||
#include <features.h>
|
||||
|
||||
#define LOG2_TABLE_BITS 6
|
||||
#define LOG2_POLY_ORDER 7
|
||||
#define LOG2_POLY1_ORDER 11
|
||||
extern hidden const struct log2_data {
|
||||
double invln2hi;
|
||||
double invln2lo;
|
||||
double poly[LOG2_POLY_ORDER - 1];
|
||||
double poly1[LOG2_POLY1_ORDER - 1];
|
||||
struct {
|
||||
double invc, logc;
|
||||
} tab[1 << LOG2_TABLE_BITS];
|
||||
#if !__FP_FAST_FMA
|
||||
struct {
|
||||
double chi, clo;
|
||||
} tab2[1 << LOG2_TABLE_BITS];
|
||||
#endif
|
||||
} __log2_data;
|
||||
|
||||
#endif
|
72
libs/musl/src/math/log2f.c
Normal file
72
libs/musl/src/math/log2f.c
Normal file
|
@ -0,0 +1,72 @@
|
|||
/*
|
||||
* Single-precision log2 function.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
#include "log2f_data.h"
|
||||
|
||||
/*
|
||||
LOG2F_TABLE_BITS = 4
|
||||
LOG2F_POLY_ORDER = 4
|
||||
|
||||
ULP error: 0.752 (nearest rounding.)
|
||||
Relative error: 1.9 * 2^-26 (before rounding.)
|
||||
*/
|
||||
|
||||
#define N (1 << LOG2F_TABLE_BITS)
|
||||
#define T __log2f_data.tab
|
||||
#define A __log2f_data.poly
|
||||
#define OFF 0x3f330000
|
||||
|
||||
float __cdecl log2f(float x)
|
||||
{
|
||||
double_t z, r, r2, p, y, y0, invc, logc;
|
||||
uint32_t ix, iz, top, tmp;
|
||||
int k, i;
|
||||
|
||||
ix = asuint(x);
|
||||
/* Fix sign of zero with downward rounding when x==1. */
|
||||
if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
|
||||
return 0;
|
||||
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
|
||||
/* x < 0x1p-126 or inf or nan. */
|
||||
if (ix * 2 == 0)
|
||||
return __math_divzerof(1);
|
||||
if (ix == 0x7f800000) /* log2(inf) == inf. */
|
||||
return x;
|
||||
if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
|
||||
return __math_invalidf(x);
|
||||
/* x is subnormal, normalize it. */
|
||||
ix = asuint(x * 0x1p23f);
|
||||
ix -= 23 << 23;
|
||||
}
|
||||
|
||||
/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
|
||||
The range is split into N subintervals.
|
||||
The ith subinterval contains z and c is near its center. */
|
||||
tmp = ix - OFF;
|
||||
i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
|
||||
top = tmp & 0xff800000;
|
||||
iz = ix - top;
|
||||
k = (int32_t)tmp >> 23; /* arithmetic shift */
|
||||
invc = T[i].invc;
|
||||
logc = T[i].logc;
|
||||
z = (double_t)asfloat(iz);
|
||||
|
||||
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
|
||||
r = z * invc - 1;
|
||||
y0 = logc + (double_t)k;
|
||||
|
||||
/* Pipelined polynomial evaluation to approximate log1p(r)/ln2. */
|
||||
r2 = r * r;
|
||||
y = A[1] * r + A[2];
|
||||
y = A[0] * r2 + y;
|
||||
p = A[3] * r + y0;
|
||||
y = y * r2 + p;
|
||||
return eval_as_float(y);
|
||||
}
|
33
libs/musl/src/math/log2f_data.c
Normal file
33
libs/musl/src/math/log2f_data.c
Normal file
|
@ -0,0 +1,33 @@
|
|||
/*
|
||||
* Data definition for log2f.
|
||||
*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
|
||||
#include "log2f_data.h"
|
||||
|
||||
const struct log2f_data __log2f_data = {
|
||||
.tab = {
|
||||
{ 0x1.661ec79f8f3bep+0, -0x1.efec65b963019p-2 },
|
||||
{ 0x1.571ed4aaf883dp+0, -0x1.b0b6832d4fca4p-2 },
|
||||
{ 0x1.49539f0f010bp+0, -0x1.7418b0a1fb77bp-2 },
|
||||
{ 0x1.3c995b0b80385p+0, -0x1.39de91a6dcf7bp-2 },
|
||||
{ 0x1.30d190c8864a5p+0, -0x1.01d9bf3f2b631p-2 },
|
||||
{ 0x1.25e227b0b8eap+0, -0x1.97c1d1b3b7afp-3 },
|
||||
{ 0x1.1bb4a4a1a343fp+0, -0x1.2f9e393af3c9fp-3 },
|
||||
{ 0x1.12358f08ae5bap+0, -0x1.960cbbf788d5cp-4 },
|
||||
{ 0x1.0953f419900a7p+0, -0x1.a6f9db6475fcep-5 },
|
||||
{ 0x1p+0, 0x0p+0 },
|
||||
{ 0x1.e608cfd9a47acp-1, 0x1.338ca9f24f53dp-4 },
|
||||
{ 0x1.ca4b31f026aap-1, 0x1.476a9543891bap-3 },
|
||||
{ 0x1.b2036576afce6p-1, 0x1.e840b4ac4e4d2p-3 },
|
||||
{ 0x1.9c2d163a1aa2dp-1, 0x1.40645f0c6651cp-2 },
|
||||
{ 0x1.886e6037841edp-1, 0x1.88e9c2c1b9ff8p-2 },
|
||||
{ 0x1.767dcf5534862p-1, 0x1.ce0a44eb17bccp-2 },
|
||||
},
|
||||
.poly = {
|
||||
-0x1.712b6f70a7e4dp-2, 0x1.ecabf496832ep-2, -0x1.715479ffae3dep-1,
|
||||
0x1.715475f35c8b8p0,
|
||||
}
|
||||
};
|
19
libs/musl/src/math/log2f_data.h
Normal file
19
libs/musl/src/math/log2f_data.h
Normal file
|
@ -0,0 +1,19 @@
|
|||
/*
|
||||
* Copyright (c) 2017-2018, Arm Limited.
|
||||
* SPDX-License-Identifier: MIT
|
||||
*/
|
||||
#ifndef _LOG2F_DATA_H
|
||||
#define _LOG2F_DATA_H
|
||||
|
||||
#include <features.h>
|
||||
|
||||
#define LOG2F_TABLE_BITS 4
|
||||
#define LOG2F_POLY_ORDER 4
|
||||
extern hidden const struct log2f_data {
|
||||
struct {
|
||||
double invc, logc;
|
||||
} tab[1 << LOG2F_TABLE_BITS];
|
||||
double poly[LOG2F_POLY_ORDER];
|
||||
} __log2f_data;
|
||||
|
||||
#endif
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Reference in a new issue