1
0
Fork 0
mirror of https://gitlab.com/niansa/discord_llama.git synced 2025-03-06 20:48:25 +01:00
discord_llama/main.cpp

769 lines
31 KiB
C++

#include "Timer.hpp"
#include "sqlite_modern_cpp/sqlite_modern_cpp.h"
#include <string>
#include <string_view>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include <thread>
#include <chrono>
#include <functional>
#include <array>
#include <vector>
#include <unordered_map>
#include <filesystem>
#include <sstream>
#include <mutex>
#include <memory>
#include <dpp/dpp.h>
#include <fmt/format.h>
#include <justlm.hpp>
#include <justlm_pool.hpp>
#include <anyproc.hpp>
#include <ThreadPool.h>
static
std::vector<std::string_view> str_split(std::string_view s, char delimiter, size_t times = -1) {
std::vector<std::string_view> to_return;
decltype(s.size()) start = 0, finish = 0;
while ((finish = s.find_first_of(delimiter, start)) != std::string_view::npos) {
to_return.emplace_back(s.substr(start, finish - start));
start = finish + 1;
if (to_return.size() == times) { break; }
}
to_return.emplace_back(s.substr(start));
return to_return;
}
static
void str_replace_in_place(std::string& subject, std::string_view search,
const std::string& replace) {
if (search.empty()) return;
size_t pos = 0;
while ((pos = subject.find(search, pos)) != std::string::npos) {
subject.replace(pos, search.length(), replace);
pos += replace.length();
}
}
static
void clean_command_name(std::string& value) {
for (auto& c : value) {
if (c == '.') c = '_';
if (isalpha(c)) c = tolower(c);
}
}
[[nodiscard]] static
std::string clean_command_name(std::string_view input) {
std::string fres(input);
clean_command_name(fres);
return fres;
}
class Bot {
ThreadPool thread_pool{1};
Timer last_message_timer;
std::shared_ptr<bool> stopping;
LM::InferencePool llm_pool;
std::unique_ptr<Translator> translator;
std::vector<dpp::snowflake> my_messages;
std::unordered_map<dpp::snowflake, dpp::user> users;
std::thread::id llm_tid;
sqlite::database db;
std::string_view language;
dpp::cluster bot;
public:
struct ModelConfig {
std::string weight_path,
user_prompt,
bot_prompt;
enum class InstructModePolicy {
Allow = 0b11,
Force = 0b10,
Forbid = 0b01
} instruct_mode_policy = InstructModePolicy::Allow;
bool is_instruct_mode_allowed() const {
return static_cast<unsigned>(instruct_mode_policy) & 0b10;
}
bool is_non_instruct_mode_allowed() const {
return static_cast<unsigned>(instruct_mode_policy) & 0b01;
}
};
struct BotChannelConfig {
const std::string *model_name;
const ModelConfig *model_config;
bool instruct_mode = false;
};
struct Configuration {
std::string token,
language = "EN",
default_inference_model = "13B-vanilla",
translation_model = "none",
prompt_file = "none",
instruct_prompt_file = "none",
models_dir = "models";
unsigned ctx_size = 1012,
pool_size = 2,
threads = 4,
persistance = true;
bool mlock = false,
threads_only = true;
const ModelConfig *default_inference_model_cfg = nullptr,
*translation_model_cfg = nullptr;
};
private:
const Configuration& config;
const std::unordered_map<std::string, ModelConfig>& model_configs;
struct Texts {
std::string please_wait = "Please wait...",
thread_create_fail = "Error: I couldn't create a thread here. Do I have enough permissions?",
model_missing = "Error: The model that was used in this thread could no longer be found.",
timeout = "Error: Timeout";
bool translated = false;
} texts;
inline static
bool show_console_progress(float progress) {
std::cout << ' ' << unsigned(progress) << "% \r" << std::flush;
return true;
}
// Must run in llama thread
# define ENSURE_LLM_THREAD() if (std::this_thread::get_id() != llm_tid) {throw std::runtime_error("LLM execution of '"+std::string(__PRETTY_FUNCTION__)+"' on wrong thread detected");} 0
// Must run in llama thread
std::string_view llm_translate_to_en(std::string_view text) {
ENSURE_LLM_THREAD();
// Skip if there is no translator
if (translator == nullptr) {
std::cout << "(" << language << ") " << text << std::endl;
return text;
}
// I am optimizing heavily for the above case. This function always returns a reference so a trick is needed here
static std::string fres;
fres = text;
// Replace bot username with [43]
str_replace_in_place(fres, bot.me.username, "[43]");
// Run translation
try {
fres = translator->translate(fres, "EN", show_console_progress);
} catch (const LM::Inference::ContextLengthException&) {
// Handle potential context overflow error
return "(Translation impossible)";
}
// Replace [43] back with bot username
str_replace_in_place(fres, "[43]", bot.me.username);
std::cout << text << " --> (EN) " << fres << std::endl;
return fres;
}
// Must run in llama thread
std::string_view llm_translate_from_en(std::string_view text) {
ENSURE_LLM_THREAD();
// Skip if there is no translator
if (translator == nullptr) {
std::cout << "(" << language << ") " << text << std::endl;
return text;
}
// I am optimizing heavily for the above case. This function always returns a reference so a trick is needed here
static std::string fres;
fres = text;
// Replace bot username with [43]
str_replace_in_place(fres, bot.me.username, "[43]");
// Run translation
try {
fres = translator->translate(fres, language, show_console_progress);
} catch (const LM::Inference::ContextLengthException&) {
// Handle potential context overflow error
return "(Translation impossible)";
}
// Replace [43] back with bot username
str_replace_in_place(fres, "[43]", bot.me.username);
std::cout << text << " --> (" << language << ") " << fres << std::endl;
return fres;
}
LM::Inference::Params llm_get_translation_params() const {
auto fres = translator->get_params();
fres.n_threads = config.threads;
fres.use_mlock = config.mlock;
return fres;
}
LM::Inference::Params llm_get_params() const {
return {
.n_threads = int(config.threads),
.n_ctx = int(config.ctx_size),
.n_repeat_last = 256,
.temp = 0.3f,
.repeat_penalty = 1.372222224f,
.use_mlock = config.mlock
};
}
// Must run in llama thread
void llm_restart(LM::Inference& inference, const BotChannelConfig& channel_cfg) {
ENSURE_LLM_THREAD();
// Deserialize init cache if not instruct mode without prompt file
if (channel_cfg.instruct_mode && config.instruct_prompt_file == "none") return;
std::ifstream f((*channel_cfg.model_name)+(channel_cfg.instruct_mode?"_instruct_init_cache":"_init_cache"), std::ios::binary);
inference.deserialize(f);
}
// Must run in llama thread
LM::Inference &llm_restart(dpp::snowflake id, const BotChannelConfig& channel_cfg) {
ENSURE_LLM_THREAD();
// Get or create inference
auto& inference = llm_pool.get_or_create_inference(id, channel_cfg.model_config->weight_path, llm_get_params());
llm_restart(inference, channel_cfg);
return inference;
}
// Must run in llama thread
LM::Inference &llm_get_inference(dpp::snowflake id, const BotChannelConfig& channel_cfg) {
ENSURE_LLM_THREAD();
auto inference_opt = llm_pool.get_inference(id);
if (!inference_opt.has_value()) {
// Start new inference
inference_opt = llm_restart(id, channel_cfg);
}
return inference_opt.value();
}
// Must run in llama thread
void llm_init() {
// Set LLM thread
llm_tid = std::this_thread::get_id();
// Translate texts
if (!texts.translated) {
texts.please_wait = llm_translate_from_en(texts.please_wait);
texts.model_missing = llm_translate_from_en(texts.model_missing);
texts.thread_create_fail = llm_translate_from_en(texts.thread_create_fail);
texts.timeout = llm_translate_from_en(texts.timeout);
texts.translated = true;
}
// Build init caches
std::string filename;
for (const auto& [model_name, model_config] : model_configs) {
//TODO: Add hashes to regenerate these as needed
// Standard prompt
filename = model_name+"_init_cache";
if (model_config.is_non_instruct_mode_allowed() &&
!std::filesystem::exists(filename) && config.prompt_file != "none") {
std::cout << "Building init_cache for "+model_name+"..." << std::endl;
LM::Inference llm(model_config.weight_path, llm_get_params());
// Add initial context
std::string prompt;
{
// Read whole file
std::ifstream f(config.prompt_file);
if (!f) {
// Clean up and abort on error
std::cerr << "Failed to open prompt file." << std::endl;
abort();
}
std::ostringstream sstr;
sstr << f.rdbuf();
prompt = sstr.str();
}
// Append
using namespace fmt::literals;
if (prompt.back() != '\n') prompt.push_back('\n');
llm.append(fmt::format(fmt::runtime(prompt), "bot_name"_a=bot.me.username), show_console_progress);
// Serialize end result
std::ofstream f(filename, std::ios::binary);
llm.serialize(f);
}
// Instruct prompt
filename = model_name+"_instruct_init_cache";
if (model_config.is_instruct_mode_allowed() &&
!std::filesystem::exists(filename) && config.instruct_prompt_file != "none") {
std::cout << "Building instruct_init_cache for "+model_name+"..." << std::endl;
LM::Inference llm(model_config.weight_path, llm_get_params());
// Add initial context
std::string prompt;
{
// Read whole file
std::ifstream f(config.instruct_prompt_file);
if (!f) {
// Clean up and abort on error
std::cerr << "Failed to open prompt file." << std::endl;
abort();
}
std::ostringstream sstr;
sstr << f.rdbuf();
prompt = sstr.str();
}
// Append
using namespace fmt::literals;
if (prompt.back() != '\n') prompt.push_back('\n');
llm.append(fmt::format(fmt::runtime(prompt+'\n'), "bot_name"_a=bot.me.username), show_console_progress);
// Serialize end result
std::ofstream f(filename, std::ios::binary);
llm.serialize(f);
}
}
// Report complete init
std::cout << "Init done!" << std::endl;
}
// Must run in llama thread
void prompt_add_msg(const dpp::message& msg, const BotChannelConfig& channel_cfg) {
ENSURE_LLM_THREAD();
// Make sure message isn't too long
if (msg.content.size() > 512) {
return;
}
// Get inference
auto& inference = llm_get_inference(msg.channel_id, channel_cfg);
try {
std::string prefix;
// Instruct mode user prompt
if (channel_cfg.instruct_mode) {
inference.append('\n'+channel_cfg.model_config->user_prompt+"\n\n");
} else {
prefix = msg.author.username+": ";
}
// Format and append lines
for (const auto line : str_split(msg.content, '\n')) {
Timer timeout;
bool timeout_exceeded = false;
inference.append(prefix+std::string(llm_translate_to_en(line))+'\n', [&] (float progress) {
if (timeout.get<std::chrono::minutes>() > 1) {
std::cerr << "\nWarning: Timeout exceeded processing message" << std::endl;
timeout_exceeded = true;
return false;
}
return show_console_progress(progress);
});
if (timeout_exceeded) inference.append("\n");
}
} catch (const LM::Inference::ContextLengthException&) {
llm_restart(inference, channel_cfg);
prompt_add_msg(msg, channel_cfg);
}
}
// Must run in llama thread
void prompt_add_trigger(dpp::snowflake id, const BotChannelConfig& channel_cfg) {
ENSURE_LLM_THREAD();
auto& inference = llm_get_inference(id, channel_cfg);
try {
if (channel_cfg.instruct_mode) {
inference.append('\n'+channel_cfg.model_config->bot_prompt+"\n\n");
} else {
inference.append(bot.me.username+':', show_console_progress);
}
} catch (const LM::Inference::ContextLengthException&) {
llm_restart(inference, channel_cfg);
}
}
// Must run in llama thread
void reply(dpp::snowflake id, dpp::message msg, const BotChannelConfig& channel_cfg) {
ENSURE_LLM_THREAD();
try {
// Trigger LLM correctly
prompt_add_trigger(id, channel_cfg);
// Get inference
auto& inference = llm_get_inference(id, channel_cfg);
// Run model
Timer timeout;
bool timeout_exceeded = false;
auto output = inference.run("\n", [&] (std::string_view str) {
std::cout << str << std::flush;
if (timeout.get<std::chrono::minutes>() > 2) {
timeout_exceeded = true;
std::cerr << "\nWarning: Timeout exceeded generating message";
return false;
}
return true;
});
std::cout << std::endl;
inference.append("\n");
if (timeout_exceeded) {
output = texts.timeout;
}
// Send resulting message
msg.content = llm_translate_from_en(output);
bot.message_edit(msg);
} catch (const std::exception& e) {
std::cerr << "Warning: " << e.what() << std::endl;
}
}
bool attempt_reply(const dpp::message& msg, const BotChannelConfig& channel_cfg) {
// Reply if message contains username, mention or ID
if (msg.content.find(bot.me.username) != std::string::npos) {
enqueue_reply(msg.channel_id, channel_cfg);
return true;
}
// Reply if message references user
for (const auto msg_id : my_messages) {
if (msg.message_reference.message_id == msg_id) {
enqueue_reply(msg.channel_id, channel_cfg);
return true;
}
}
// Don't reply otherwise
return false;
}
void enqueue_reply(dpp::snowflake id, const BotChannelConfig& channel_cfg) {
bot.message_create(dpp::message(id, texts.please_wait+" :thinking:"), [=, this] (const dpp::confirmation_callback_t& ccb) {
if (ccb.is_error()) return;
thread_pool.submit(std::bind(&Bot::reply, this, id, ccb.get<dpp::message>(), channel_cfg));
});
}
public:
Bot(decltype(config) cfg, decltype(model_configs) model_configs)
: config(cfg), model_configs(model_configs), bot(cfg.token),
language(cfg.language), db("database.sqlite3"),
llm_pool(cfg.pool_size, "discord_llama", !cfg.persistance) {
// Initialize database
db << "CREATE TABLE IF NOT EXISTS threads ("
" id TEXT PRIMARY KEY NOT NULL,"
" model TEXT,"
" instruct_mode INTEGER,"
" UNIQUE(id)"
");";
// Configure llm_pool
llm_pool.set_store_on_destruct(cfg.persistance);
// Initialize thread pool
thread_pool.init();
// Prepare translator
if (language != "EN") {
thread_pool.submit([this] () {
std::cout << "Preparing translator..." << std::endl;
translator = std::make_unique<Translator>(config.translation_model, llm_get_translation_params());
});
}
// Configure bot
bot.on_log(dpp::utility::cout_logger());
bot.intents = dpp::i_guild_messages | dpp::i_message_content;
// Set callbacks
bot.on_ready([=, this] (const dpp::ready_t&) { //TODO: Consider removal
std::cout << "Connected to Discord." << std::endl;
// Register chat command once
if (dpp::run_once<struct register_bot_commands>()) {
for (const auto& [name, model] : model_configs) {
// Create command
dpp::slashcommand command(name, "Start a chat with me", bot.me.id);
// Add instruct mode option
if (model.instruct_mode_policy == ModelConfig::InstructModePolicy::Allow) {
command.add_option(dpp::command_option(dpp::co_boolean, "instruct_mode", "Weather to enable instruct mode", true));
}
// Register command
bot.global_command_edit(command, [this, command] (const dpp::confirmation_callback_t& ccb) {
if (ccb.is_error()) bot.global_command_create(command);
});
}
}
if (dpp::run_once<struct LM::Inference>()) {
// Prepare llm
thread_pool.submit(std::bind(&Bot::llm_init, this));
}
});
bot.on_slashcommand([=, this](const dpp::slashcommand_t& event) {
// Get model by name
auto res = model_configs.find(event.command.get_command_name());
if (res == model_configs.end()) {
// Model does not exit, delete corresponding command
bot.global_command_delete(event.command.id);
return;
}
const auto& [model_name, model_config] = *res;
// Get weather to enable instruct mode
bool instruct_mode;
if (model_config.instruct_mode_policy == ModelConfig::InstructModePolicy::Allow) {
instruct_mode = std::get<bool>(event.get_parameter("instruct_mode"));
} else {
instruct_mode = model_config.instruct_mode_policy == ModelConfig::InstructModePolicy::Force;
}
// Create thread
bot.thread_create("Chat with "+model_name, event.command.channel_id, 1440, dpp::CHANNEL_PUBLIC_THREAD, true, 15,
[this, event, instruct_mode, model_name = res->first] (const dpp::confirmation_callback_t& ccb) {
// Check for error
if (ccb.is_error()) {
std::cout << "Thread creation failed: " << ccb.get_error().message << std::endl;
event.reply(dpp::message(texts.thread_create_fail).set_flags(dpp::message_flags::m_ephemeral));
return;
}
// Get thread
const auto& thread = ccb.get<dpp::thread>();
// Add thread to database
db << "INSERT INTO threads (id, model, instruct_mode) VALUES (?, ?, ?);"
<< std::to_string(thread.id) << model_name << instruct_mode;
// Report success
event.reply(dpp::message("Okay!").set_flags(dpp::message_flags::m_ephemeral));
});
});
bot.on_message_create([=, this] (const dpp::message_create_t& event) {
// Update user cache
users[event.msg.author.id] = event.msg.author;
// Make sure message has content
if (event.msg.content.empty()) return;
// Reset last message timer
last_message_timer.reset();
// Ignore own messages
if (event.msg.author.id == bot.me.id) {
// Add message to list of own messages
my_messages.push_back(event.msg.id);
return;
}
// Move on in another thread
try {
dpp::message msg = event.msg;
// Replace bot mentions with bot username
str_replace_in_place(msg.content, "<@"+std::to_string(bot.me.id)+'>', bot.me.username);
// Replace all other known users
for (const auto& [user_id, user] : users) {
str_replace_in_place(msg.content, "<@"+std::to_string(user_id)+'>', user.username);
}
// Get channel config
BotChannelConfig channel_cfg;
// Attempt to find thread first...
bool in_bot_thread = false;
db << "SELECT model, instruct_mode FROM threads "
"WHERE id = ?;"
<< std::to_string(msg.channel_id)
>> [&](const std::string& model_name, int instruct_mode) {
in_bot_thread = true;
channel_cfg.instruct_mode = instruct_mode;
// Find model
auto res = model_configs.find(model_name);
if (res == model_configs.end()) {
bot.message_create(dpp::message(msg.channel_id, texts.model_missing));
return;
}
channel_cfg.model_name = &res->first;
channel_cfg.model_config = &res->second;
};
// Otherwise just fall back to the default model config if allowed
if (!in_bot_thread) {
if (config.threads_only) return;
channel_cfg.model_name = &config.default_inference_model;
channel_cfg.model_config = config.default_inference_model_cfg;
}
// Append message
thread_pool.submit([=, this] () {
prompt_add_msg(msg, channel_cfg);
});
// Handle message somehow...
if (msg.content == "!store") {
llm_pool.store_all(); //DEBUG
# warning DEBUG CODE!!!
} else if (in_bot_thread) {
// Send a reply
enqueue_reply(msg.channel_id, channel_cfg);
} else if (msg.content == "!trigger") {
// Delete message
bot.message_delete(msg.id, msg.channel_id);
// Send a reply
enqueue_reply(msg.channel_id, channel_cfg);
} else {
attempt_reply(msg, channel_cfg);
}
} catch (const std::exception& e) {
std::cerr << "Warning: " << e.what() << std::endl;
}
});
}
void start() {
stopping = std::make_shared<bool>(false);
bot.start(dpp::st_wait);
*stopping = true;
}
};
bool parse_bool(const std::string& value) {
if (value == "true")
return true;
if (value == "false")
return false;
std::cerr << "Failed to parse configuration file: Unknown bool (true/false): " << value << std::endl;
exit(-4);
}
Bot::ModelConfig::InstructModePolicy parse_instruct_mode_policy(const std::string& value) {
if (value == "allow")
return Bot::ModelConfig::InstructModePolicy::Allow;
if (value == "force")
return Bot::ModelConfig::InstructModePolicy::Force;
if (value == "forbid")
return Bot::ModelConfig::InstructModePolicy::Forbid;
std::cerr << "Failed to parse model configuration file: Unknown instruct mode policy (allow/force/forbid): " << value << std::endl;
exit(-4);
}
bool file_exists(const auto& p) {
// Make sure we don't respond to some file that is actually called "none"...
if (p == "none") return false;
return std::filesystem::exists(p);
}
int main(int argc, char **argv) {
// Check arguments
if (argc < 2) {
std::cout << "Usage: " << argv[0] << " <config file location>" << std::endl;
return -1;
}
// Parse main configuration
Bot::Configuration cfg;
std::ifstream cfgf(argv[1]);
if (!cfgf) {
std::cerr << "Failed to open configuration file: " << argv[1] << std::endl;
exit(-1);
}
for (std::string key; cfgf >> key;) {
// Read value
std::string value;
std::getline(cfgf, value);
// Erase all leading spaces
while (!value.empty() && (value[0] == ' ' || value[0] == '\t')) value.erase(0, 1);
// Check key and ignore comment lines
if (key == "token") {
cfg.token = std::move(value);
} else if (key == "language") {
cfg.language = std::move(value);
} else if (key == "default_inference_model") {
cfg.default_inference_model = std::move(value);
} else if (key == "translation_model") {
cfg.translation_model = std::move(value);
} else if (key == "prompt_file") {
cfg.prompt_file = std::move(value);
} else if (key == "instruct_prompt_file") {
cfg.instruct_prompt_file = std::move(value);
} else if (key == "models_dir") {
cfg.models_dir = std::move(value);
} else if (key == "pool_size") {
cfg.pool_size = std::stoi(value);
} else if (key == "threads") {
cfg.threads = std::stoi(value);
} else if (key == "ctx_size") {
cfg.ctx_size = std::stoi(value);
} else if (key == "mlock") {
cfg.mlock = parse_bool(value);
} else if (key == "threads_only") {
cfg.threads_only = parse_bool(value);
} else if (key == "persistance") {
cfg.persistance = parse_bool(value);
} else if (!key.empty() && key[0] != '#') {
std::cerr << "Failed to parse configuration file: Unknown key: " << key << std::endl;
exit(-3);
}
}
// Parse model configurations
std::unordered_map<std::string, Bot::ModelConfig> models;
std::filesystem::path models_dir(cfg.models_dir);
bool allow_non_instruct = false;
for (const auto& file : std::filesystem::directory_iterator(models_dir)) {
// Check that file is model config
if (file.is_directory() ||
file.path().filename().extension() != ".txt") continue;
// Get model name
auto model_name = file.path().filename().string();
model_name.erase(model_name.size()-4, 4);
clean_command_name(model_name);
// Parse model config
Bot::ModelConfig model_cfg;
std::ifstream cfgf(file.path());
if (!cfgf) {
std::cerr << "Failed to open model configuration file: " << file << std::endl;
exit(-2);
}
std::string filename;
for (std::string key; cfgf >> key;) {
// Read value
std::string value;
std::getline(cfgf, value);
// Erase all leading spaces
while (!value.empty() && (value[0] == ' ' || value[0] == '\t')) value.erase(0, 1);
// Check key and ignore comment lines
if (key == "filename") {
filename = std::move(value);
} else if (key == "user_prompt") {
model_cfg.user_prompt = std::move(value);
} else if (key == "bot_prompt") {
model_cfg.bot_prompt = std::move(value);
} else if (key == "instruct_mode_policy") {
model_cfg.instruct_mode_policy = parse_instruct_mode_policy(value);
} else if (!key.empty() && key[0] != '#') {
std::cerr << "Failed to parse model configuration file: Unknown key: " << key << std::endl;
exit(-3);
}
}
// Get full path
model_cfg.weight_path = file.path().parent_path()/filename;
// Safety checks
if (filename.empty() || !file_exists(model_cfg.weight_path)) {
std::cerr << "Failed to parse model configuration file: Invalid weight filename: " << model_name << std::endl;
exit(-8);
}
if (model_cfg.instruct_mode_policy != Bot::ModelConfig::InstructModePolicy::Forbid &&
(model_cfg.user_prompt.empty() || model_cfg.bot_prompt.empty())) {
std::cerr << "Failed to parse model configuration file: Instruct mode allowed but user prompt and bot prompt not given: " << model_name << std::endl;
exit(-9);
}
if (model_cfg.instruct_mode_policy != Bot::ModelConfig::InstructModePolicy::Force) {
allow_non_instruct = true;
}
// Add model to list
const auto& [stored_model_name, stored_model_cfg] = *models.emplace(std::move(model_name), std::move(model_cfg)).first;
// Set model pointer in config
if (stored_model_name == cfg.default_inference_model)
cfg.default_inference_model_cfg = &stored_model_cfg;
if (stored_model_name == cfg.translation_model)
cfg.translation_model_cfg = &stored_model_cfg;
}
// Safety checks
if (cfg.language != "EN") {
if (cfg.translation_model_cfg == nullptr) {
std::cerr << "Translation model required for non-english language, but is invalid" << std::endl;
exit(-5);
}
if (cfg.translation_model_cfg->instruct_mode_policy == Bot::ModelConfig::InstructModePolicy::Force) {
std::cerr << "Translation model is required to not have instruct mode forced" << std::endl;
exit(-10);
}
}
if (allow_non_instruct && !file_exists(cfg.prompt_file)) {
std::cerr << "Prompt file required when allowing non-instruct-mode use, but is invalid" << std::endl;
exit(-11);
}
if (!cfg.threads_only) {
if (cfg.default_inference_model_cfg == nullptr) {
std::cerr << "Default model required if not threads only, but is invalid" << std::endl;
exit(-6);
}
if (cfg.default_inference_model_cfg->instruct_mode_policy == Bot::ModelConfig::InstructModePolicy::Force) {
std::cerr << "Default model must not have instruct mode forced if not threads only" << std::endl;
exit(-7);
}
}
// Clean model names in config
clean_command_name(cfg.default_inference_model);
clean_command_name(cfg.translation_model);
// Construct and configure bot
Bot bot(cfg, models);
// Start bot
bot.start();
}