1
0
Fork 0
mirror of https://gitlab.com/niansa/libcrosscoro.git synced 2025-03-06 20:53:32 +01:00
libcrosscoro/inc/coro/io_scheduler.hpp
Josh Baldwin bc3b956ed3
udp_peer! (#33)
* udp_peer!

I hope using the udp peer makes sense on how udp packets are
sent and received now.  Time will tell!

* Fix broken benchmark tcp server listening race condition
2021-01-09 19:18:03 -07:00

654 lines
24 KiB
C++

#pragma once
#include "coro/concepts/awaitable.hpp"
#include "coro/poll.hpp"
#include "coro/shutdown.hpp"
#include "coro/net/socket.hpp"
#include "coro/task.hpp"
#include <atomic>
#include <coroutine>
#include <list>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <queue>
#include <span>
#include <thread>
#include <variant>
#include <vector>
#include <cstring>
#include <sys/epoll.h>
#include <sys/eventfd.h>
#include <sys/socket.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <unistd.h>
namespace coro
{
class io_scheduler;
namespace detail
{
class resume_token_base
{
public:
resume_token_base(io_scheduler* s) noexcept;
virtual ~resume_token_base() = default;
resume_token_base(const resume_token_base&) = delete;
resume_token_base(resume_token_base&& other);
auto operator=(const resume_token_base&) -> resume_token_base& = delete;
auto operator=(resume_token_base&& other) -> resume_token_base&;
bool is_set() const noexcept { return m_state.load(std::memory_order::acquire) == this; }
struct awaiter
{
awaiter(const resume_token_base& token) noexcept : m_token(token) {}
auto await_ready() const noexcept -> bool { return m_token.is_set(); }
auto await_suspend(std::coroutine_handle<> awaiting_coroutine) noexcept -> bool;
auto await_resume() noexcept { /* no-op */ }
const resume_token_base& m_token;
std::coroutine_handle<> m_awaiting_coroutine;
awaiter* m_next{nullptr};
};
auto operator co_await() const noexcept -> awaiter { return awaiter{*this}; }
auto reset() noexcept -> void;
protected:
friend struct awaiter;
io_scheduler* m_scheduler{nullptr};
mutable std::atomic<void*> m_state;
};
} // namespace detail
template<typename return_type>
class resume_token final : public detail::resume_token_base
{
friend io_scheduler;
resume_token() : detail::resume_token_base(nullptr) {}
resume_token(io_scheduler& s) : detail::resume_token_base(&s) {}
public:
~resume_token() override = default;
resume_token(const resume_token&) = delete;
resume_token(resume_token&&) = default;
auto operator=(const resume_token&) -> resume_token& = delete;
auto operator=(resume_token&&) -> resume_token& = default;
auto resume(return_type value) noexcept -> void;
auto return_value() const& -> const return_type& { return m_return_value; }
auto return_value() && -> return_type&& { return std::move(m_return_value); }
private:
return_type m_return_value;
};
template<>
class resume_token<void> final : public detail::resume_token_base
{
friend io_scheduler;
resume_token() : detail::resume_token_base(nullptr) {}
resume_token(io_scheduler& s) : detail::resume_token_base(&s) {}
public:
~resume_token() override = default;
resume_token(const resume_token&) = delete;
resume_token(resume_token&&) = default;
auto operator=(const resume_token&) -> resume_token& = delete;
auto operator=(resume_token&&) -> resume_token& = default;
auto resume() noexcept -> void;
};
class io_scheduler
{
public:
using fd_t = int;
private:
using clock = std::chrono::steady_clock;
using time_point = clock::time_point;
using task_variant = std::variant<coro::task<void>, std::coroutine_handle<>>;
using task_queue = std::deque<task_variant>;
using timer_tokens = std::multimap<time_point, resume_token<poll_status>*>;
/// resume_token<T> needs to be able to call internal scheduler::resume()
template<typename return_type>
friend class resume_token;
class task_manager
{
public:
using task_position = std::list<std::size_t>::iterator;
task_manager(const std::size_t reserve_size, const double growth_factor);
/**
* Stores a users task and sets a continuation coroutine to automatically mark the task
* as deleted upon the coroutines completion.
* @param user_task The scheduled user's task to store since it has suspended after its
* first execution.
* @return The task just stored wrapped in the self cleanup task.
*/
auto store(coro::task<void> user_task) -> task<void>&;
/**
* Garbage collects any tasks that are marked as deleted.
* @return The number of tasks that were deleted.
*/
auto gc() -> std::size_t;
/**
* @return The number of tasks that are awaiting deletion.
*/
auto delete_task_size() const -> std::size_t { return m_tasks_to_delete.size(); }
/**
* @return True if there are no tasks awaiting deletion.
*/
auto delete_tasks_empty() const -> bool { return m_tasks_to_delete.empty(); }
/**
* @return The capacity of this task manager before it will need to grow in size.
*/
auto capacity() const -> std::size_t { return m_tasks.size(); }
private:
/**
* Grows each task container by the growth factor.
* @return The position of the free index after growing.
*/
auto grow() -> task_position;
/**
* Encapsulate the users tasks in a cleanup task which marks itself for deletion upon
* completion. Simply co_await the users task until its completed and then mark the given
* position within the task manager as being deletable. The scheduler's next iteration
* in its event loop will then free that position up to be re-used.
*
* This function will also unconditionally catch all unhandled exceptions by the user's
* task to prevent the scheduler from throwing exceptions.
* @param user_task The user's task.
* @param pos The position where the task data will be stored in the task manager.
* @return The user's task wrapped in a self cleanup task.
*/
auto make_cleanup_task(task<void> user_task, task_position pos) -> task<void>;
/// Maintains the lifetime of the tasks until they are completed.
std::vector<task<void>> m_tasks{};
/// The full set of indexes into `m_tasks`.
std::list<std::size_t> m_task_indexes{};
/// The set of tasks that have completed and need to be deleted.
std::vector<task_position> m_tasks_to_delete{};
/// The current free position within the task indexes list. Anything before
/// this point is used, itself and anything after is free.
task_position m_free_pos{};
/// The amount to grow the containers by when all spaces are taken.
double m_growth_factor{};
};
static constexpr const int m_accept_object{0};
static constexpr const void* m_accept_ptr = &m_accept_object;
static constexpr const int m_timer_object{0};
static constexpr const void* m_timer_ptr = &m_timer_object;
/**
* An operation is an awaitable type with a coroutine to resume the task scheduled on one of
* the executor threads.
*/
class operation
{
friend class io_scheduler;
/**
* Only io_schedulers can create operations when a task is being scheduled.
* @param tp The io scheduler that created this operation.
*/
explicit operation(io_scheduler& ios) noexcept : m_io_scheduler(ios) {}
public:
/**
* Operations always pause so the executing thread and be switched.
*/
auto await_ready() noexcept -> bool { return false; }
/**
* Suspending always returns to the caller (using void return of await_suspend()) and
* stores the coroutine internally for the executing thread to resume from.
*/
auto await_suspend(std::coroutine_handle<> awaiting_coroutine) noexcept -> void
{
// m_awaiting_coroutine = awaiting_coroutine;
m_io_scheduler.resume(awaiting_coroutine);
}
/**
* no-op as this is the function called first by the io_scheduler's executing thread.
*/
auto await_resume() noexcept -> void {}
private:
/// The io_scheduler that this operation will execute on.
io_scheduler& m_io_scheduler;
};
/**
* Schedules the currently executing task onto this io_scheduler, effectively placing it at
* the end of the FIFO queue.
* `co_await s.yield()`
*/
auto schedule() -> operation { return operation{*this}; }
public:
enum class thread_strategy_t
{
/// Spawns a background thread for the scheduler to run on.
spawn,
/// Adopts this thread as the scheduler thread.
adopt,
/// Requires the user to call process_events() to drive the scheduler
manual
};
struct options
{
/// The number of tasks to reserve space for upon creating the scheduler.
std::size_t reserve_size{8};
/// The growth factor for task space when capacity is full.
double growth_factor{2};
/// The threading strategy.
thread_strategy_t thread_strategy{thread_strategy_t::spawn};
};
/**
* @param options Various scheduler options to tune how it behaves.
*/
io_scheduler(const options opts = options{8, 2, thread_strategy_t::spawn});
io_scheduler(const io_scheduler&) = delete;
io_scheduler(io_scheduler&&) = delete;
auto operator=(const io_scheduler&) -> io_scheduler& = delete;
auto operator=(io_scheduler&&) -> io_scheduler& = delete;
virtual ~io_scheduler();
/**
* Schedules a task to be run as soon as possible. This pushes the task into a FIFO queue.
* @param task The task to schedule as soon as possible.
* @return True if the task has been scheduled, false if scheduling failed. Currently the only
* way for this to fail is if the scheduler is trying to shutdown.
*/
auto schedule(coro::task<void> task) -> bool;
auto schedule(std::vector<task<void>> tasks) -> bool;
template<concepts::awaitable_void... tasks_type>
auto schedule(tasks_type&&... tasks) -> bool
{
if (is_shutdown())
{
return false;
}
m_size.fetch_add(sizeof...(tasks), std::memory_order::relaxed);
{
std::lock_guard<std::mutex> lk{m_accept_mutex};
((m_accept_queue.emplace_back(std::forward<tasks_type>(tasks))), ...);
}
bool expected{false};
if (m_event_set.compare_exchange_strong(expected, true, std::memory_order::release, std::memory_order::relaxed))
{
uint64_t value{1};
::write(m_accept_fd, &value, sizeof(value));
}
return true;
}
/**
* Schedules a task to be run after waiting for a certain period of time.
* @param task The task to schedule after waiting `after` amount of time.
* @return True if the task has been scheduled, false if scheduling failed. Currently the only
* way for this to fail is if the scheduler is trying to shutdown.
*/
auto schedule_after(coro::task<void> task, std::chrono::milliseconds after) -> bool;
/**
* Schedules a task to be run at a specific time in the future.
* @param task
* @param time
* @return True if the task is scheduled. False if time is in the past or the scheduler is
* trying to shutdown.
*/
auto schedule_at(coro::task<void> task, time_point time) -> bool;
/**
* Polls a specific file descriptor for the given poll operation.
* @param fd The file descriptor to poll.
* @param op The type of poll operation to perform.
* @param timeout The timeout for this poll operation, if timeout <= 0 then poll will block
* indefinitely until the event is triggered.
*/
auto poll(fd_t fd, poll_op op, std::chrono::milliseconds timeout = std::chrono::milliseconds{0})
-> coro::task<poll_status>;
auto poll(
const net::socket& sock,
poll_op op,
std::chrono::milliseconds timeout = std::chrono::milliseconds{0})
-> coro::task<poll_status>;
/**
* This function will first poll the given `fd` to make sure it can be read from. Once notified
* that the `fd` has data available to read the given `buffer` is filled with up to the buffer's
* size of data. The number of bytes read is returned.
* @param fd The file desriptor to read from.
* @param buffer The buffer to place read bytes into.
* @param timeout The timeout for the read operation, if timeout <= 0 then read will block
* indefinitely until the event is triggered.
* @return The number of bytes read or an error code if negative.
*/
auto read(fd_t fd, std::span<char> buffer, std::chrono::milliseconds timeout = std::chrono::milliseconds{0})
-> coro::task<std::pair<poll_status, ssize_t>>;
auto read(
const net::socket& sock,
std::span<char> buffer,
std::chrono::milliseconds timeout = std::chrono::milliseconds{0}) -> coro::task<std::pair<poll_status, ssize_t>>;
/**
* This function will first poll the given `fd` to make sure it can be written to. Once notified
* that the `fd` can be written to the given buffer's contents are written to the `fd`.
* @param fd The file descriptor to write the contents of `buffer` to.
* @param buffer The data to write to `fd`.
* @param timeout The timeout for the write operation, if timeout <= 0 then write will block
* indefinitely until the event is triggered.
* @return The number of bytes written or an error code if negative.
*/
auto write(
fd_t fd, const std::span<const char> buffer, std::chrono::milliseconds timeout = std::chrono::milliseconds{0})
-> coro::task<std::pair<poll_status, ssize_t>>;
auto write(
const net::socket& sock,
const std::span<const char> buffer,
std::chrono::milliseconds timeout = std::chrono::milliseconds{0}) -> coro::task<std::pair<poll_status, ssize_t>>;
/**
* Immediately yields the current task and places it at the end of the queue of tasks waiting
* to be processed. This will immediately be picked up again once it naturally goes through the
* FIFO task queue. This function is useful to yielding long processing tasks to let other tasks
* get processing time.
*/
auto yield() -> coro::task<void>;
/**
* Immediately yields the current task and provides a resume token to resume this yielded
* coroutine when the async operation has completed.
*
* Normal usage of this might look like:
* \code
scheduler.yield([](coro::resume_token<void>& t) {
auto on_service_complete = [&]() {
t.resume(); // This resume call will resume the task on the scheduler thread.
};
service.do_work(on_service_complete);
});
* \endcode
* The above example will yield the current task and then through the 3rd party service's
* on complete callback function let the scheduler know that it should resume execution of the task.
*
* @tparam func Functor to invoke with the yielded coroutine handle to be resumed.
* @param f Immediately invoked functor with the yield point coroutine handle to resume with.
* @return A task to co_await until the manual `scheduler::resume(handle)` is called.
*/
template<typename return_type, std::invocable<resume_token<return_type>&> before_functor>
auto yield(before_functor before) -> coro::task<return_type>
{
resume_token<return_type> token{*this};
before(token);
co_await token;
if constexpr (std::is_same_v<return_type, void>)
{
co_return;
}
else
{
co_return token.return_value();
}
}
/**
* User provided resume token to yield the current coroutine until the token's resume is called.
* Its also possible to co_await a resume token inline without calling this yield function.
* @param token Resume token to await the current task on. Use scheduer::make_resume_token<T>() to
* generate a resume token to use on this scheduer.
*/
template<typename return_type>
auto yield(resume_token<return_type>& token) -> coro::task<void>
{
co_await token;
co_return;
}
/**
* Yields the current coroutine for `amount` of time.
* @param amount The amount of time to wait.
*/
auto yield_for(std::chrono::milliseconds amount) -> coro::task<void>;
/**
* Yields the current coroutine until `time`. If time is in the past this function will
* return immediately.
* @param time The time point in the future to yield until.
*/
auto yield_until(time_point time) -> coro::task<void>;
/**
* Makes a resume token that can be used to resume a suspended task from any thread. On resume
* the task will resume execution on this scheduler thread.
* @tparam The return type of resuming the async operation.
* @return Resume token with the given return type.
*/
template<typename return_type = void>
auto make_resume_token() -> resume_token<return_type>
{
return resume_token<return_type>(*this);
}
/**
* If running in mode thread_strategy_t::manual this function must be called at regular
* intervals to process events on the io_scheduler. This function will do nothing in any
* other thread_strategy_t mode.
* @param timeout The timeout to wait for events, use zero (default) to process only events
* that are currently ready.
* @return The number of executing tasks.
*/
auto process_events(std::chrono::milliseconds timeout = std::chrono::milliseconds{0}) -> std::size_t;
/**
* @return The number of active tasks still executing and unprocessed submitted tasks.
*/
auto size() const -> std::size_t { return m_size.load(std::memory_order::relaxed); }
/**
* @return True if there are no tasks executing or waiting to be executed in this scheduler.
*/
auto empty() const -> bool { return size() == 0; }
/**
* @return The maximum number of tasks this scheduler can process without growing.
*/
auto capacity() const -> std::size_t { return m_task_manager.capacity(); }
/**
* Is there a thread processing this schedulers events?
* If this is in thread strategy spawn or adopt this will always be true until shutdown.
*/
auto is_running() const noexcept -> bool { return m_running.load(std::memory_order::relaxed); }
/**
* @return True if this scheduler has been requested to shutdown.
*/
auto is_shutdown() const noexcept -> bool { return m_shutdown_requested.load(std::memory_order::relaxed); }
/**
* Requests the scheduler to finish processing all of its current tasks and shutdown.
* New tasks submitted via `scheduler::schedule()` will be rejected after this is called.
* @param wait_for_tasks This call will block until all tasks are complete if shutdown_t::sync
* is passed in, if shutdown_t::async is passed this function will tell
* the scheduler to shutdown but not wait for all tasks to complete, it returns
* immediately.
*/
virtual auto shutdown(shutdown_t wait_for_tasks = shutdown_t::sync) -> void;
private:
/// The event loop epoll file descriptor.
fd_t m_epoll_fd{-1};
/// The event loop accept new tasks and resume tasks file descriptor.
fd_t m_accept_fd{-1};
/// The event loop timer fd for timed events, e.g. yield_for() or scheduler_after().
fd_t m_timer_fd{-1};
/// The map of time point's to resume tokens for tasks that are yielding for a period of time
/// or for tasks that are polling with timeouts.
timer_tokens m_timer_tokens;
/// The threading strategy this scheduler is using.
thread_strategy_t m_thread_strategy;
/// Is this scheduler currently running? Manual mode might not always be running.
std::atomic<bool> m_running{false};
/// Has the scheduler been requested to shutdown?
std::atomic<bool> m_shutdown_requested{false};
/// If running in threading mode spawn the background thread to process events.
std::thread m_scheduler_thread;
/// FIFO queue for new and resumed tasks to execute.
task_queue m_accept_queue{};
std::mutex m_accept_mutex{};
/// Has a thread sent an event? (E.g. avoid a kernel write/read?).
std::atomic<bool> m_event_set{false};
/// The total number of tasks that are being processed or suspended.
std::atomic<std::size_t> m_size{0};
/// The maximum number of tasks to process inline before polling for more tasks.
static constexpr const std::size_t task_inline_process_amount{64};
/// Pre-allocated memory area for tasks to process.
std::array<task_variant, task_inline_process_amount> m_processing_tasks;
task_manager m_task_manager;
auto make_scheduler_after_task(coro::task<void> task, std::chrono::milliseconds wait_time) -> coro::task<void>;
template<typename return_type>
auto unsafe_yield(resume_token<return_type>& token) -> coro::task<return_type>
{
co_await token;
if constexpr (std::is_same_v<return_type, void>)
{
co_return;
}
else
{
co_return token.return_value();
}
}
auto add_timer_token(time_point tp, resume_token<poll_status>* token_ptr) -> timer_tokens::iterator;
auto remove_timer_token(timer_tokens::iterator pos) -> void;
auto resume(std::coroutine_handle<> handle) -> void;
static const constexpr std::chrono::milliseconds m_default_timeout{1000};
static const constexpr std::chrono::milliseconds m_no_timeout{0};
static const constexpr std::size_t m_max_events = 8;
std::array<struct epoll_event, m_max_events> m_events{};
auto process_task_and_start(task<void>& task) -> void;
auto process_task_variant(task_variant& tv) -> void;
auto process_task_queue() -> void;
auto process_events_poll_execute(std::chrono::milliseconds user_timeout) -> void;
auto event_to_poll_status(uint32_t events) -> poll_status;
auto process_events_external_thread(std::chrono::milliseconds user_timeout) -> void;
auto process_events_dedicated_thread() -> void;
auto update_timeout(time_point now) -> void;
};
template<typename return_type>
inline auto resume_token<return_type>::resume(return_type value) noexcept -> void
{
void* old_value = m_state.exchange(this, std::memory_order::acq_rel);
if (old_value != this)
{
m_return_value = std::move(value);
auto* waiters = static_cast<awaiter*>(old_value);
while (waiters != nullptr)
{
// Intentionally not checking if this is running on the scheduler process event thread
// as it can create a stack overflow if it triggers a 'resume chain'. unsafe_yield()
// is guaranteed in this context to never be recursive and thus resuming directly
// on the process event thread should not be able to trigger a stack overflow.
auto* next = waiters->m_next;
// If scheduler is nullptr this is an unsafe_yield()
// If scheduler is present this is a yield()
if (m_scheduler == nullptr) // || m_scheduler->this_thread_is_processing_events())
{
waiters->m_awaiting_coroutine.resume();
}
else
{
m_scheduler->resume(waiters->m_awaiting_coroutine);
}
waiters = next;
}
}
}
inline auto resume_token<void>::resume() noexcept -> void
{
void* old_value = m_state.exchange(this, std::memory_order::acq_rel);
if (old_value != this)
{
auto* waiters = static_cast<awaiter*>(old_value);
while (waiters != nullptr)
{
auto* next = waiters->m_next;
if (m_scheduler == nullptr)
{
waiters->m_awaiting_coroutine.resume();
}
else
{
m_scheduler->resume(waiters->m_awaiting_coroutine);
}
waiters = next;
}
}
}
} // namespace coro