1
0
Fork 0
mirror of https://gitlab.com/niansa/libjustlm.git synced 2025-03-06 20:49:17 +01:00

Load implemenations as shared objects

This commit is contained in:
niansa 2023-05-16 19:10:05 +00:00
parent 5b01daa764
commit 60fe6b9c55
17 changed files with 686 additions and 97 deletions

2
.gitmodules vendored
View file

@ -1,5 +1,5 @@
[submodule "llama.cpp"]
path = llama.cpp
path = llama.cpp-mainline
url = https://github.com/ggerganov/llama.cpp.git
[submodule "llama.cpp-alibi"]
path = llama.cpp-alibi

View file

@ -1,52 +1,76 @@
cmake_minimum_required(VERSION 3.14)
cmake_minimum_required(VERSION 3.18)
project(justlm LANGUAGES C CXX)
project(libjustlm LANGUAGES C CXX)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(LM_PYBIND No CACHE BOOL "If Libjustlm Python bindings should be build")
set(LM_COSCHED No CACHE BOOL "If Libjustlm should make use of CoSched")
set(LM_NOEXCEPT No CACHE BOOL "If exceptions should be disabled")
set(LM_MPT No CACHE BOOL "If MPT model support should be built")
set(LM_PYBIND No CACHE BOOL "If justlm Python bindings should be build")
set(LM_COSCHED No CACHE BOOL "If justlm should make use of CoSched")
set(LM_NOEXCEPT No CACHE BOOL "If justlm exceptions should be disabled")
set(LM_LLAMA Yes CACHE BOOL "If LLaMa model support should be built into justlm")
set(LM_GPTJ Yes CACHE BOOL "If GPT-J model support should be built into justlm")
set(LM_MPT Yes CACHE BOOL "If MPT model support should be built into justlm")
if (LM_COSCHED)
set(CMAKE_CXX_STANDARD 20)
endif()
function(target_justlm_setup target)
target_include_directories(${target} PUBLIC include/)
if (LM_COSCHED)
target_compile_definitions(${target} PUBLIC LM_COSCHED)
target_link_libraries(${target} PRIVATE cosched)
endif()
if (LM_NOEXCEPT)
target_compile_definitions(${target} PUBLIC LM_NOEXCEPT)
endif()
endfunction()
include(llama.cpp.cmake)
include_ggml(llama.cpp-mainline _mainline Yes)
include_ggml(llama.cpp-alibi _alibi No)
add_library(justlm_g4a_common SHARED g4a-common.cpp g4a-common.hpp)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR})
if (LM_MPT)
set(LM_MPT_SOURCES justlm_mpt.hpp mpt/mpt.cpp mpt/mpt.hpp)
add_subdirectory(llama.cpp-alibi)
else()
set(LM_MPT_SOURCES )
add_subdirectory(llama.cpp)
add_library(justlm_mpt SHARED mpt.cpp justlm_mpt.hpp mpt/mpt.cpp mpt/mpt.hpp)
target_link_libraries(justlm_mpt PRIVATE ggml_alibi justlm_g4a_common)
target_justlm_setup(justlm_mpt)
endif()
add_library(libjustlm STATIC
if (LM_GPTJ)
add_library(justlm_gptj SHARED gptj.cpp justlm_gptj.hpp gptj/gptj.cpp gptj/gptj.hpp)
target_link_libraries(justlm_gptj PRIVATE ggml_mainline justlm_g4a_common)
target_justlm_setup(justlm_gptj)
endif()
if (LM_LLAMA)
add_library(justlm_llama SHARED llama.cpp justlm_llama.hpp)
target_link_libraries(justlm_llama PRIVATE ggml_mainline llama_mainline)
target_justlm_setup(justlm_llama)
endif()
add_library(justlm STATIC
include/justlm.hpp justlm.cpp
justlm_llama.hpp
g4a-common.cpp g4a-common.hpp
justlm_gptj.hpp gptj/gptj.cpp gptj/gptj.hpp
${LM_MPT_SOURCES}
include/justlm_pool.hpp justlm_pool.cpp
dlhandle.hpp
)
target_link_libraries(libjustlm PRIVATE llama)
if (LM_MPT)
target_compile_definitions(libjustlm PUBLIC LM_MPT)
endif()
if (LM_COSCHED)
target_compile_definitions(libjustlm PUBLIC LM_COSCHED)
target_link_libraries(libjustlm PRIVATE cosched)
set(LM_COSCHED Yes CACHE BOOL "If Libjustlm should make use of CoSched" FORCE)
endif()
if (LM_NOEXCEPT)
target_compile_definitions(libjustlm PUBLIC LM_NOEXCEPT)
endif()
add_library(libjustlm ALIAS justlm)
target_link_libraries(justlm PRIVATE dl)
target_include_directories(justlm PUBLIC include/)
target_compile_definitions(justlm PRIVATE LIB_FILE_EXT="${CMAKE_SHARED_LIBRARY_SUFFIX}")
target_justlm_setup(justlm)
if (LM_PYBIND)
if (LM_COSCHED)
@ -55,8 +79,6 @@ if (LM_PYBIND)
find_package(Python COMPONENTS Interpreter Development)
find_package(pybind11 CONFIG)
pybind11_add_module(libjustlm_py pybind.cpp)
target_link_libraries(libjustlm_py PRIVATE libjustlm)
pybind11_add_module(justlm_py pybind.cpp)
target_link_libraries(justlm_py PRIVATE justlm)
endif()
target_include_directories(libjustlm PUBLIC include/)

View file

@ -1,8 +1,8 @@
# JustLM
Super easy to use library for doing LLaMA/GPT-J stuff!
Super easy to use library for doing LLaMA/GPT-J/MPT stuff!
## Overview
This library implements an easy to use interface to both LLaMa and GPT-J, with optional Python bindings.
This library implements an easy to use interface to LLaMa, GPT-J and MPT, with optional Python bindings.
Context scrolling is automatic and supports a top window bar.

108
dlhandle.hpp Normal file
View file

@ -0,0 +1,108 @@
#ifndef __WIN32
#include <string>
#include <exception>
#include <utility>
#include <dlfcn.h>
class Dlhandle {
void *chandle;
public:
class Exception : public std::exception {
std::string errmsg;
public:
Exception(std::string errmsg) {
this->errmsg = errmsg;
}
virtual const char* what() const throw() {
return errmsg.c_str();
}
};
Dlhandle() : chandle(nullptr) {}
Dlhandle(const std::string& fpath, int flags = RTLD_LAZY) {
chandle = dlopen(fpath.c_str(), flags);
if (!chandle) {
throw Exception("dlopen(): "+fpath);
}
}
Dlhandle(const Dlhandle& o) = delete;
Dlhandle(Dlhandle&& o) : chandle(o.chandle) {
o.chandle = nullptr;
}
~Dlhandle() {
if (chandle) dlclose(chandle);
}
auto operator =(Dlhandle&& o) {
chandle = std::exchange(o.chandle, nullptr);
}
bool is_valid() const {
return chandle != nullptr;
}
operator bool() const {
return is_valid();
}
template<typename T>
T* get(const std::string& fname) {
dlerror(); // Clear error
auto fres = reinterpret_cast<T*>(dlsym(chandle, fname.c_str()));
return (dlerror()==NULL)?fres:nullptr;
}
auto get_fnc(const std::string& fname) {
return get<void*(...)>(fname);
}
};
#else
#include <string>
#include <exception>
#include <libloaderapi.h>
class Dlhandle {
HMODULE chandle;
public:
class Exception : public std::exception {
std::string errmsg;
public:
Exception(std::string errmsg) {
this->errmsg = errmsg;
}
virtual const char* what() const throw() {
return errmsg.c_str();
}
};
Dlhandle() : chandle(nullptr) {}
Dlhandle(const std::string& fpath) {
chandle = LoadLibraryA(fpath.c_str());
if (!chandle) {
throw Exception("dlopen(): "+fpath);
}
}
Dlhandle(const Dlhandle& o) = delete;
Dlhandle(Dlhandle&& o) : chandle(o.chandle) {
o.chandle = nullptr;
}
~Dlhandle() {
if (chandle) FreeLibrary(chandle);
}
bool is_valid() const {
return chandle != nullptr;
}
template<typename T>
T* get(const std::string& fname) {
return reinterpret_cast<T*>(GetProcAddress(chandle, fname.c_str()));
}
auto get_fnc(const std::string& fname) {
return get<void*(...)>(fname);
}
};
#endif

24
gptj.cpp Normal file
View file

@ -0,0 +1,24 @@
#include "justlm_gptj.hpp"
#include "justlm.hpp"
#include <string>
#include <string_view>
#include <fstream>
#include <cstdint>
extern "C" {
const LM::Implementation *get_justlm_implementation() {
static LM::Implementation fres{false};
return &fres;
}
bool magic_match(uint32_t magic) {
return magic == 0x67676d6c;
}
LM::Inference *construct(const std::string &weights_path, std::ifstream& f, const LM::Inference::Params &p) {
return new LM::GPTJInference(weights_path, f, p);
}
}

View file

@ -146,5 +146,10 @@ public:
LM_LAST_ERROR_GETTER
};
struct Implementation {
bool is_fallback = false;
};
}
#endif // JUSTLM_HPP

View file

@ -1,30 +1,66 @@
#include "justlm.hpp"
#include "justlm_llama.hpp"
#include "justlm_gptj.hpp"
#ifdef LM_MPT
# include "justlm_mpt.hpp"
#endif
#include "dlhandle.hpp"
#include <string>
#include <vector>
#include <fstream>
#include <filesystem>
static
Dlhandle get_implementation(uint32_t magic) {
Dlhandle matching;
Dlhandle fallback;
// Iterate over all libraries
for (const auto& f : std::filesystem::directory_iterator(".")) {
// Get path
const auto& p = f.path();
// Check extension
if (p.extension() != LIB_FILE_EXT) continue;
// Load library
try {
Dlhandle dl(p);
// Get implementation info getter
auto implementation_getter = dl.get<const LM::Implementation *()>("get_justlm_implementation");
if (!implementation_getter) continue;
// Get implementation info
const auto *implementation_info = implementation_getter();
// Set if fallback
if (implementation_info->is_fallback) {
fallback = std::move(dl);
continue;
}
// Set if matching magic
auto magic_match = dl.get<bool(uint32_t)>("magic_match");
if (magic_match && magic_match(magic)) {
matching = std::move(dl);
continue;
}
} catch (...) {}
}
// Return matching if any, fallback otherwise
if (matching) return matching;
return fallback;
}
LM::Inference *LM::Inference::construct(const std::string &weights_path, const Params &p) {
static std::vector<Dlhandle> dls;
// Read magic
std::ifstream f(weights_path, std::ios::binary);
uint32_t magic;
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
// Create inference instance
if (magic == 0x67676d6c) {
f.seekg(0);
return new GPTJInference(weights_path, f, p);
# ifdef LM_MPT
} else if (magic == 0x67676d6d) {
f.seekg(0);
return new MPTInference(weights_path, f, p);
# endif
} else {
f.close();
return new LLaMaInference(weights_path, p);
if (!f.read(reinterpret_cast<char*>(&magic), sizeof(magic))) {
throw Exception("Failed to open weights file for reading at "+weights_path);
}
f.seekg(0);
// Get correct implementation
auto impl = get_implementation(magic);
if (!impl) return nullptr;
// Get inference constructor
auto constructor = impl.get<LM::Inference *(const std::string &, std::ifstream&, const LM::Inference::Params &)>("construct");
if (!constructor) return nullptr;
// Back up Dlhandle
dls.push_back(std::move(impl));
// Construct inference
return constructor(weights_path, f, p);
}

View file

@ -53,7 +53,6 @@ class GPTJInference final : public Inference {
auto& state = get_state();
if (state) {
if (state->model.ctx) ggml_free(state->model.ctx); //TODO: Is that enough?
delete state;
}
}
@ -192,6 +191,7 @@ public:
const auto str = state->vocab.id_to_token[id];
// Append string to function result
state->prompt.append(str);
fres.append(str);
// Evaluate token
@ -207,7 +207,6 @@ public:
}
// Create final string TODO: Could be optimized
state->prompt.append(fres);
if (!abort) {
fres = std::string(fres.data(), fres.size()-end.size());
}

View file

@ -11,7 +11,7 @@ class LLaMaInference final : public Inference {
llama_context *ctx = nullptr;
std::string prompt; // Mostly here for easy "debugging"
std::vector<int> tokens;
int n_ctx;
unsigned n_ctx;
};
State*& get_state() {
@ -91,8 +91,8 @@ class LLaMaInference final : public Inference {
// Calculate progress
auto progress = float(it-starting_offset) / (state->tokens.size()-starting_offset) * 100.f;
// Tick and yield
if (!on_tick(progress)) LM_BOOL_SUCCESS;
else if (!LM_TASKYIELD) LM_BOOL_SUCCESS;
if (!on_tick(progress)) LM_CORETURN LM_BOOL_SUCCESS;
else if (!LM_TASKYIELD) LM_CORETURN LM_BOOL_SUCCESS;
}
}
@ -182,6 +182,7 @@ public:
const auto str = llama_token_to_str(state->ctx, id);
// Append string to function result
state->prompt.append(str);
fres.append(str);
// Evaluate token
@ -196,7 +197,6 @@ public:
}
// Create final string TODO: Could be optimized
state->prompt.append(fres);
if (!abort) {
fres = std::string(fres.data(), fres.size()-end.size());
}

View file

@ -53,7 +53,6 @@ class MPTInference final : public Inference {
auto& state = get_state();
if (state) {
if (state->model.ctx) ggml_free(state->model.ctx); //TODO: Is that enough?
delete state;
}
}
@ -162,19 +161,6 @@ public:
LM_CORETURN LM_COAWAIT evaluate_tokens(old_token_count, on_tick);
}
/*mpt_vocab::id mpt_sample_top_k_top_p(
const mpt_vocab & vocab,
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,
const std::vector<float> logits,
int top_k,
double top_p,
double temp,
float repeat_penalty,
std::mt19937 & rng)
*/
LM_SCHEDULABLE(std::string) run(std::string_view end, const std::function<bool (const char *)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
auto& state = get_state();
std::string fres;
@ -184,7 +170,7 @@ public:
unsigned eos_count = 0;
while (!abort && !ends_with(fres, end)) {
// Sample top p and top k
auto id = mpt_sample_top_k_top_p(state->vocab, state->model.hparams.n_vocab, state->tokens.data(), state->tokens.size(), state->logits, params.top_k, params.top_p, params.temp, params.repeat_penalty, state->rng);
auto id = mpt_sample_top_k_top_p(state->model.hparams.n_vocab, state->tokens.data(), state->tokens.size(), state->logits, params.top_k, params.top_p, params.temp, params.repeat_penalty, state->rng);
if (id == state->vocab.token_to_id["<|im_end|>"]) {
if (eos_count++ == params.eos_ignores) {
@ -206,6 +192,7 @@ public:
// Append string to function result
fres.append(str);
state->prompt.append(str);
// Evaluate token
// TODO: Respect batch size
@ -220,7 +207,6 @@ public:
}
// Create final string TODO: Could be optimized
state->prompt.append(fres);
if (!abort) {
fres = std::string(fres.data(), fres.size()-end.size());
}

@ -1 +0,0 @@
Subproject commit 0e018fe008eacebdbcfa2d61b6c988c245c961cd

25
llama.cpp Normal file
View file

@ -0,0 +1,25 @@
#include "justlm_llama.hpp"
#include "justlm.hpp"
#include <string>
#include <string_view>
#include <fstream>
#include <cstdint>
extern "C" {
const LM::Implementation *get_justlm_implementation() {
static LM::Implementation fres{true};
return &fres;
}
bool magic_match(uint32_t magic) {
return magic == 0x67676d6c;
}
LM::Inference *construct(const std::string &weights_path, std::ifstream& f, const LM::Inference::Params &p) {
f.close();
return new LM::LLaMaInference(weights_path, p);
}
}

1
llama.cpp-mainline Submodule

@ -0,0 +1 @@
Subproject commit 0e018fe008eacebdbcfa2d61b6c988c245c961cd

356
llama.cpp.cmake Normal file
View file

@ -0,0 +1,356 @@
cmake_minimum_required(VERSION 3.12) # Don't bump this version for no reason
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
# configure project version
# TODO
else()
set(LLAMA_STANDALONE OFF)
endif()
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
else()
set(BUILD_SHARED_LIBS_DEFAULT ON)
endif()
endif()
#
# Option list
#
# general
option(LLAMA_STATIC "llama: static link libraries" OFF)
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
option(LLAMA_LTO "llama: enable link time optimization" OFF)
# debug
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
option(LLAMA_GPROF "llama: enable gprof" OFF)
# sanitizers
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
# instruction set specific
option(LLAMA_AVX "llama: enable AVX" ON)
option(LLAMA_AVX2 "llama: enable AVX2" ON)
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
option(LLAMA_FMA "llama: enable FMA" ON)
# in MSVC F16C is implied with AVX2/AVX512
if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" ON)
endif()
# 3rd party libs
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF)
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
#
# Compile flags
#
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
add_compile_options(-fsanitize=thread)
link_libraries(-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries(-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
add_compile_options(-fsanitize=undefined)
link_libraries(-fsanitize=undefined)
endif()
endif()
if (APPLE AND LLAMA_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
add_compile_definitions(GGML_USE_ACCELERATE)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (LLAMA_OPENBLAS)
if (LLAMA_STATIC)
set(BLA_STATIC ON)
endif()
set(BLA_VENDOR OpenBLAS)
find_package(BLAS)
if (BLAS_FOUND)
message(STATUS "OpenBLAS found")
add_compile_definitions(GGML_USE_OPENBLAS)
add_link_options(${BLAS_LIBRARIES})
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas)
# find header file
set(OPENBLAS_INCLUDE_SEARCH_PATHS
/usr/include
/usr/include/openblas
/usr/include/openblas-base
/usr/local/include
/usr/local/include/openblas
/usr/local/include/openblas-base
/opt/OpenBLAS/include
$ENV{OpenBLAS_HOME}
$ENV{OpenBLAS_HOME}/include
)
find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
add_compile_options(-I${OPENBLAS_INC})
else()
message(WARNING "OpenBLAS not found")
endif()
endif()
if (LLAMA_ALL_WARNINGS)
if (NOT MSVC)
set(c_flags
-Wall
-Wextra
-Wpedantic
-Wcast-qual
-Wdouble-promotion
-Wshadow
-Wstrict-prototypes
-Wpointer-arith
)
set(cxx_flags
-Wall
-Wextra
-Wpedantic
-Wcast-qual
-Wno-unused-function
-Wno-multichar
)
else()
# todo : msvc
endif()
add_compile_options(
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
)
endif()
if (MSVC)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
if (BUILD_SHARED_LIBS)
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
endif()
endif()
if (LLAMA_LTO)
include(CheckIPOSupported)
check_ipo_supported(RESULT result OUTPUT output)
if (result)
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE)
else()
message(WARNING "IPO is not supported: ${output}")
endif()
endif()
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
if (NOT MSVC)
if (LLAMA_STATIC)
add_link_options(-static)
if (MINGW)
add_link_options(-static-libgcc -static-libstdc++)
endif()
endif()
if (LLAMA_GPROF)
add_compile_options(-pg)
endif()
if (LLAMA_NATIVE)
add_compile_options(-march=native)
endif()
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
message(STATUS "ARM detected")
if (MSVC)
# TODO: arm msvc?
else()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
add_compile_options(-mcpu=native)
endif()
# TODO: armv6,7,8 version specific flags
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
message(STATUS "x86 detected")
if (MSVC)
if (LLAMA_AVX512)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (LLAMA_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
endif()
if (LLAMA_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
endif()
elseif (LLAMA_AVX2)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX2>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX2>)
elseif (LLAMA_AVX)
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX>)
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
endif()
else()
if (LLAMA_F16C)
add_compile_options(-mf16c)
endif()
if (LLAMA_FMA)
add_compile_options(-mfma)
endif()
if (LLAMA_AVX)
add_compile_options(-mavx)
endif()
if (LLAMA_AVX2)
add_compile_options(-mavx2)
endif()
if (LLAMA_AVX512)
add_compile_options(-mavx512f)
add_compile_options(-mavx512bw)
endif()
if (LLAMA_AVX512_VBMI)
add_compile_options(-mavx512vbmi)
endif()
if (LLAMA_AVX512_VNNI)
add_compile_options(-mavx512vnni)
endif()
endif()
else()
# TODO: support PowerPC
message(STATUS "Unknown architecture")
endif()
#
# Build libraries
#
function(include_ggml DIRECTORY SUFFIX WITH_LLAMA)
if (LLAMA_CUBLAS)
cmake_minimum_required(VERSION 3.17)
find_package(CUDAToolkit)
if (CUDAToolkit_FOUND)
message(STATUS "cuBLAS found")
enable_language(CUDA)
set(GGML_CUDA_SOURCES ${DIRECTORY}ggml-cuda.cu ${DIRECTORY}ggml-cuda.h)
add_compile_definitions(GGML_USE_CUBLAS)
if (LLAMA_STATIC)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
else()
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
endif()
else()
message(WARNING "cuBLAS not found")
endif()
endif()
if (LLAMA_CLBLAST)
find_package(CLBlast)
if (CLBlast_FOUND)
message(STATUS "CLBlast found")
set(GGML_OPENCL_SOURCES ${DIRECTORY}ggml-opencl.c ${DIRECTORY}ggml-opencl.h)
add_compile_definitions(GGML_USE_CLBLAST)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast)
else()
message(WARNING "CLBlast not found")
endif()
endif()
add_library(ggml${SUFFIX} OBJECT
${DIRECTORY}/ggml.c
${DIRECTORY}/ggml.h
${GGML_CUDA_SOURCES}
${GGML_OPENCL_SOURCES})
target_include_directories(ggml${SUFFIX} PUBLIC ${DIRECTORY})
target_compile_features(ggml${SUFFIX} PUBLIC c_std_11) # don't bump
target_link_libraries(ggml${SUFFIX} PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS)
set_target_properties(ggml${SUFFIX} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
if (WITH_LLAMA)
add_library(llama${SUFFIX}
${DIRECTORY}/llama.cpp
${DIRECTORY}/llama.h
${DIRECTORY}/llama_util.h)
target_include_directories(llama${SUFFIX} PUBLIC .)
target_compile_features(llama${SUFFIX} PUBLIC cxx_std_11) # don't bump
target_link_libraries(llama${SUFFIX} PRIVATE ggml${SUFFIX} ${LLAMA_EXTRA_LIBS})
if (BUILD_SHARED_LIBS)
set_target_properties(llama${SUFFIX} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llama${SUFFIX} PRIVATE LLAMA_SHARED LLAMA_BUILD)
endif()
endif()
if (GGML_CUDA_SOURCES)
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
set_property(TARGET ggml${SUFFIX} PROPERTY CUDA_ARCHITECTURES OFF)
set_property(TARGET ggml${SUFFIX} PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
if (WITH_LLAMA)
set_property(TARGET llama${SUFFIX} PROPERTY CUDA_ARCHITECTURES OFF)
endif()
endif()
endfunction()

24
mpt.cpp Normal file
View file

@ -0,0 +1,24 @@
#include "justlm_mpt.hpp"
#include "justlm.hpp"
#include <string>
#include <string_view>
#include <fstream>
#include <cstdint>
extern "C" {
const LM::Implementation *get_justlm_implementation() {
static LM::Implementation fres{false};
return &fres;
}
bool magic_match(uint32_t magic) {
return magic == 0x67676d6d;
}
LM::Inference *construct(const std::string &weights_path, std::ifstream& f, const LM::Inference::Params &p) {
return new LM::MPTInference(weights_path, f, p);
}
}

View file

@ -187,9 +187,9 @@ bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & mod
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size,
.mem_buffer = NULL,
.no_alloc = false,
ctx_size,
NULL,
false,
};
model.ctx = ggml_init(params);
@ -362,30 +362,29 @@ bool mpt_eval(
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
static size_t buf_size = 256u*1024*1024;
static void * buf = malloc(buf_size);
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
if (mem_per_token > 0 && mem_per_token*N > model.eval_buf_size) {
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
// reallocate
buf_size = buf_size_new;
buf = realloc(buf, buf_size);
if (buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
model.eval_buf_size = buf_size_new;
model.eval_buf = realloc(model.eval_buf, model.eval_buf_size);
if (model.eval_buf == nullptr) {
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf_size);
return false;
}
}
struct ggml_init_params params = {
.mem_size = buf_size,
.mem_buffer = buf,
.no_alloc = false,
model.eval_buf_size,
model.eval_buf,
false
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = { .n_threads = n_threads };
struct ggml_cgraph gf;
gf.n_threads = n_threads;
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
@ -692,7 +691,6 @@ size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937 &rng, uint
}
mpt_vocab::id mpt_sample_top_k_top_p(
const mpt_vocab & vocab,
const size_t actualVocabSize,
const int32_t * last_n_tokens_data,
int last_n_tokens_size,

View file

@ -83,10 +83,16 @@ struct mpt_model {
struct ggml_context * ctx;
std::map<std::string, struct ggml_tensor *> tensors;
size_t eval_buf_size = 256u*1024*1024;
void *eval_buf;
mpt_buffer buf;
mpt_model() {
eval_buf = malloc(eval_buf_size);
}
~mpt_model() {
free(eval_buf);
if (ctx) {
ggml_free(ctx);
}
@ -110,7 +116,7 @@ struct mpt_vocab {
bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & model, mpt_vocab & vocab);
bool mpt_eval(mpt_model& model, const int n_threads, const int n_past, const std::vector<int>& embd_inp, std::vector<float>& embd_w, size_t& mem_per_token);
std::vector<mpt_vocab::id> mpt_tokenize(const mpt_vocab & vocab, const std::string & text);
mpt_vocab::id mpt_sample_top_k_top_p(const mpt_vocab& vocab, const size_t actualVocabSize, const int32_t *last_n_tokens_data, int last_n_tokens_size, const std::vector<float> logits, int top_k, double top_p, double temp, float repeat_penalty, std::mt19937& rng);
mpt_vocab::id mpt_sample_top_k_top_p(const size_t actualVocabSize, const int32_t *last_n_tokens_data, int last_n_tokens_size, const std::vector<float> logits, int top_k, double top_p, double temp, float repeat_penalty, std::mt19937& rng);
size_t mpt_get_state_size(const mpt_model &model);
size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937& rng, uint8_t *dest);
size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src);

View file

@ -9,7 +9,7 @@ namespace py = pybind11;
PYBIND11_MODULE(libjustlm_py, m) {
PYBIND11_MODULE(justlm_py, m) {
using namespace LM;
py::class_<Inference::Params>(m, "Params")
.def(py::init<>())