mirror of
https://gitlab.com/niansa/libjustlm.git
synced 2025-03-06 20:49:17 +01:00
Compare commits
32 commits
Author | SHA1 | Date | |
---|---|---|---|
449a25c360 | |||
90e54d66d0 | |||
|
1a04a0e6d9 | ||
ef5df1dc31 | |||
|
fc5e4f5aa1 | ||
215db6b9b7 | |||
f5314a0dde | |||
|
79cf49faae | ||
|
3a953ed13a | ||
|
907cea7f9d | ||
|
7cd3899dd0 | ||
|
cb683aa8fc | ||
|
5d818e31aa | ||
|
e3d52c42b7 | ||
|
d8f4efb0c9 | ||
|
08ff1e72e7 | ||
|
01b0d059ed | ||
|
bcacfc3d54 | ||
|
0199db02b7 | ||
|
e2f7da65e4 | ||
|
94953cd174 | ||
|
24849804b6 | ||
|
b3bd78b350 | ||
|
a03558ae89 | ||
|
38b229dab5 | ||
|
09e59a9536 | ||
|
0142db3f7c | ||
|
2d57ade1b8 | ||
4b19bc49a5 | |||
|
53a4623aef | ||
ad0b7e3c71 | |||
|
24ff52919f |
16 changed files with 571 additions and 394 deletions
|
@ -8,26 +8,16 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
|||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR})
|
||||
|
||||
set(LM_PYBIND No CACHE BOOL "If justlm Python bindings should be build")
|
||||
set(LM_COSCHED No CACHE BOOL "If justlm should make use of CoSched")
|
||||
set(LM_NOEXCEPT No CACHE BOOL "If justlm exceptions should be disabled")
|
||||
set(LM_LLAMA Yes CACHE BOOL "If LLaMa model support should be built into justlm")
|
||||
set(LM_LLAMA_OLD Yes CACHE BOOL "If old LLaMa model support should be built into justlm")
|
||||
set(LM_GPTJ Yes CACHE BOOL "If GPT-J model support should be built into justlm")
|
||||
set(LM_MPT Yes CACHE BOOL "If MPT model support should be built into justlm")
|
||||
|
||||
if (LM_COSCHED)
|
||||
set(CMAKE_CXX_STANDARD 20)
|
||||
endif()
|
||||
option(LM_PYBIND "If justlm Python bindings should be build" OFF)
|
||||
option(LM_NOEXCEPT "If justlm exceptions should be disabled" OFF)
|
||||
option(LM_LLAMA "If LLaMa model support should be built into justlm" ON)
|
||||
option(LM_GPTJ "If GPT-J model support should be built into justlm" ON)
|
||||
option(LM_MPT "If MPT model support should be built into justlm" ON)
|
||||
|
||||
|
||||
function(target_justlm_setup TARGET_NAME)
|
||||
message(STATUS "Configuring model implementation target ${TARGET_NAME}")
|
||||
target_include_directories(${TARGET_NAME} PUBLIC include/)
|
||||
if (LM_COSCHED)
|
||||
target_compile_definitions(${TARGET_NAME} PUBLIC LM_COSCHED)
|
||||
target_link_libraries(${TARGET_NAME} PRIVATE cosched)
|
||||
endif()
|
||||
if (LM_NOEXCEPT)
|
||||
target_compile_definitions(${TARGET_NAME} PUBLIC LM_NOEXCEPT)
|
||||
endif()
|
||||
|
@ -37,8 +27,6 @@ endfunction()
|
|||
include(llama.cpp.cmake)
|
||||
|
||||
include_ggml(llama.cpp-mainline _mainline Yes)
|
||||
include_ggml(llama.cpp-230511 _230511 Yes)
|
||||
include_ggml(llama.cpp-230519 _230519 Yes)
|
||||
include_ggml(llama.cpp-alibi _alibi No)
|
||||
|
||||
|
||||
|
@ -53,32 +41,17 @@ endif()
|
|||
|
||||
if (LM_GPTJ)
|
||||
add_library(justlm_gptj SHARED gptj.cpp justlm_gptj.hpp gptj/gptj.cpp gptj/gptj.hpp)
|
||||
target_link_libraries(justlm_gptj PRIVATE ggml_230511 justlm_g4a_common)
|
||||
target_link_libraries(justlm_gptj PRIVATE ggml_alibi justlm_g4a_common)
|
||||
target_justlm_setup(justlm_gptj)
|
||||
endif()
|
||||
|
||||
if (LM_LLAMA)
|
||||
add_library(justlm_llama SHARED llama.cpp justlm_llama.hpp)
|
||||
target_link_libraries(justlm_llama PRIVATE ggml_mainline llama_mainline)
|
||||
target_compile_definitions(justlm_llama PRIVATE
|
||||
LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
|
||||
target_compile_definitions(justlm_llama PRIVATE LLAMA_DATE=999999)
|
||||
target_justlm_setup(justlm_llama)
|
||||
endif()
|
||||
|
||||
if (LM_LLAMA_OLD)
|
||||
add_library(justlm_llama_old SHARED llama.cpp justlm_llama.hpp)
|
||||
target_link_libraries(justlm_llama_old PRIVATE ggml_230511 llama_230511)
|
||||
target_compile_definitions(justlm_llama_old PRIVATE
|
||||
LLAMA_VERSIONS=<=1 LLAMA_DATE=230511)
|
||||
target_justlm_setup(justlm_llama_old)
|
||||
|
||||
add_library(justlm_llama_230519 SHARED llama.cpp justlm_llama.hpp)
|
||||
target_link_libraries(justlm_llama_230519 PRIVATE ggml_230519 llama_230519)
|
||||
target_compile_definitions(justlm_llama_230519 PRIVATE
|
||||
LLAMA_VERSIONS===2 LLAMA_DATE=230519)
|
||||
target_justlm_setup(justlm_llama_230519)
|
||||
endif()
|
||||
|
||||
|
||||
add_library(justlm STATIC
|
||||
include/justlm.hpp justlm.cpp
|
||||
|
|
|
@ -11,13 +11,13 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <unistd.h>
|
||||
#include "../msvc_compat_unistd.h"
|
||||
#include <sstream>
|
||||
#include <unordered_set>
|
||||
#include <ggml.h>
|
||||
|
||||
constexpr inline
|
||||
unsigned long long operator ""_MB(unsigned long long bytes) {
|
||||
unsigned long long operator ""_MiB(unsigned long long bytes) {
|
||||
return bytes*1024*1024;
|
||||
}
|
||||
|
||||
|
@ -32,7 +32,7 @@ static bool kv_cache_init(
|
|||
const int64_t n_mem = (int64_t)n_layer*n_ctx;
|
||||
const int64_t n_elements = n_embd*n_mem;
|
||||
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MB);
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = cache.buf.size;
|
||||
|
@ -394,7 +394,7 @@ bool gptj_eval(
|
|||
const int n_vocab = hparams.n_vocab;
|
||||
const int n_rot = hparams.n_rot;
|
||||
|
||||
static size_t buf_size = 1024_MB;
|
||||
static size_t buf_size = 1024_MiB;
|
||||
if (!model.buf.addr || model.buf.size < buf_size)
|
||||
model.buf.resize(buf_size);
|
||||
|
||||
|
|
|
@ -7,45 +7,28 @@
|
|||
#include <memory>
|
||||
#include <thread>
|
||||
|
||||
#ifdef LM_COSCHED
|
||||
# include <scheduler.hpp>
|
||||
# define LM_SCHEDULABLE(type) ::CoSched::AwaitableTask<type>
|
||||
# define LM_CORETURN co_return
|
||||
# define LM_COAWAIT co_await
|
||||
# define LM_TASKYIELD (co_await ::CoSched::Task::get_current().yield())
|
||||
#else
|
||||
# define LM_SCHEDULABLE(type) type
|
||||
# define LM_CORETURN return
|
||||
# define LM_COAWAIT
|
||||
# define LM_TASKYIELD (true)
|
||||
#endif
|
||||
|
||||
#ifdef LM_NOEXCEPT
|
||||
# define LM_NOEXCEPTDECL noexcept
|
||||
# define LM_THROW(t, r) this->last_error = (t); return r;
|
||||
# define LM_COTHROW(t, r) this->last_error = (t); LM_CORETURN r;
|
||||
# define LM_THROW(t, r) do {this->last_error = (t); return r;} while (0)
|
||||
# define LM_LAST_ERROR_STORAGE mutable std::string last_error;
|
||||
# define LM_LAST_ERROR_GETTER const std::string& get_last_error() const {return last_error;}
|
||||
# define LM_ERRBOOL bool
|
||||
# define LM_BOOL_ERROR false
|
||||
# define LM_BOOL_SUCCESS true
|
||||
# define LM_ERROR_FORWARD(x) {auto v = x; if (!v) LM_CORETURN x;} 0
|
||||
# define LM_RETHROW(x) return x
|
||||
# define LM_ERROR_CATCH(x, errval, ...) {auto v = x; if (v == (errval)) __VA_ARGS__}
|
||||
# define LM_ERROR_FORWARD(x, errval) do {auto v = x; if (v == (errval)) return x;} while (0)
|
||||
#else
|
||||
# define LM_NOEXCEPTDECL
|
||||
# define LM_THROW(t, r) throw Exception(t)
|
||||
# define LM_COTHROW(t, r) throw Exception(t)
|
||||
# define LM_LAST_ERROR_STORAGE
|
||||
# define LM_LAST_ERROR_GETTER
|
||||
# define LM_ERRBOOL void
|
||||
# define LM_BOOL_ERROR
|
||||
# define LM_BOOL_SUCCESS
|
||||
# define LM_ERROR_FORWARD(x) {x;}
|
||||
#endif
|
||||
|
||||
#ifdef LM_COSCHED
|
||||
#ifndef LM_NOEXCEPT
|
||||
#warning Exceptions should not be enabled in combination with CoSched. Any exceptions thrown will lead to a std::terminate() call
|
||||
#endif
|
||||
# define LM_RETHROW(x) std::rethrow_exception(std::current_exception())
|
||||
# define LM_ERROR_CATCH(x, errval, ...) try {x;} catch (...) __VA_ARGS__
|
||||
# define LM_ERROR_FORWARD(x, errval) {x;}
|
||||
#endif
|
||||
|
||||
#if _MSC_VER
|
||||
|
@ -58,9 +41,12 @@ namespace LM {
|
|||
using ssize_t = SSIZE_T;
|
||||
#endif
|
||||
|
||||
using GenerateCallback = std::function<bool (const char *generated)>;
|
||||
using AppendCallback = std::function<bool (float progress)>;
|
||||
|
||||
class Inference {
|
||||
protected:
|
||||
std::function<bool (float)> on_scroll = nullptr;
|
||||
AppendCallback on_scroll = nullptr;
|
||||
|
||||
void *generic_state = nullptr;
|
||||
|
||||
|
@ -73,21 +59,25 @@ public:
|
|||
|
||||
struct Params {
|
||||
int seed = 0; // RNG seed
|
||||
unsigned n_threads = 0;
|
||||
unsigned n_threads = 0; // Amount of threads to use, immutable after Inference was constructed
|
||||
unsigned n_ctx = 2024; // Context size
|
||||
unsigned n_ctx_window_top_bar = 0; // Top bar of context window. Must be smaller than context size
|
||||
unsigned n_batch = 8; // Batch size
|
||||
unsigned n_repeat_last = 0; // llama.cpp specific
|
||||
unsigned n_repeat_last = 0;
|
||||
unsigned n_eos_ignores = 0;
|
||||
|
||||
float scroll_keep = 0.0f; // 0.4f to keep 40% of context below top bar when scrolling; 0.0f to remove everything after top bar
|
||||
|
||||
unsigned top_k = 40;
|
||||
float top_p = 0.9f;
|
||||
float temp = 0.72f;
|
||||
float repeat_penalty = 1.0f; // llama.cpp specific
|
||||
unsigned eos_ignores = 0; // llama.cpp specific
|
||||
float top_p = 0.9f;
|
||||
float temp = 0.72f;
|
||||
float mirostat_learning_rate = 0.1f; // mirostat specific
|
||||
float mirostat_target_entropy = 5.0f; // mirostat specific
|
||||
float repeat_penalty = 1.0f;
|
||||
|
||||
bool use_mlock = true; // llama.cpp specific
|
||||
unsigned n_gpu_layers = 38;
|
||||
bool use_mlock = true; // llama specific
|
||||
int prefer_mirostat = 0; // Use given mirostat version if available (see is_mirostat_available()); llama specific
|
||||
} params;
|
||||
|
||||
struct Savestate {
|
||||
|
@ -118,26 +108,36 @@ public:
|
|||
static
|
||||
Inference *construct(const std::string& weights_path, const Params& p);
|
||||
|
||||
void set_scroll_callback(const std::function<bool (float)>& scroll_cb) noexcept {
|
||||
void set_scroll_callback(const AppendCallback& scroll_cb) noexcept {
|
||||
on_scroll = scroll_cb;
|
||||
}
|
||||
|
||||
// This must be called with a non-empty prompt!
|
||||
virtual LM_SCHEDULABLE(LM_ERRBOOL) append(const std::string& prompt, const std::function<bool (float progress)>& on_tick = nullptr) LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_ERRBOOL append(const std::string& prompt, const AppendCallback& on_tick = nullptr) LM_NOEXCEPTDECL = 0;
|
||||
|
||||
// append() must have been called at least once before calling this!
|
||||
virtual LM_SCHEDULABLE(std::string) run(std::string_view end = "", const std::function<bool (const char *generated)>& on_tick = nullptr) LM_NOEXCEPTDECL = 0;
|
||||
virtual std::string run(std::string_view end = "", const GenerateCallback& on_tick = nullptr, const GenerateCallback& pre_tick = nullptr) LM_NOEXCEPTDECL = 0;
|
||||
|
||||
virtual unsigned get_context_size() const noexcept = 0;
|
||||
|
||||
virtual LM_SCHEDULABLE(LM_ERRBOOL) create_savestate(Savestate&) const LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_SCHEDULABLE(LM_ERRBOOL) restore_savestate(const Savestate&) LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_ERRBOOL create_savestate(Savestate&) const LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_ERRBOOL restore_savestate(const Savestate&) LM_NOEXCEPTDECL = 0;
|
||||
|
||||
virtual LM_SCHEDULABLE(LM_ERRBOOL) serialize(std::ostream&) const LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_SCHEDULABLE(LM_ERRBOOL) deserialize(std::istream&) LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_ERRBOOL serialize(std::ostream&) const LM_NOEXCEPTDECL = 0;
|
||||
virtual LM_ERRBOOL deserialize(std::istream&) LM_NOEXCEPTDECL = 0;
|
||||
|
||||
virtual LM_ERRBOOL load_grammar(const std::string&, bool override_temperature [[maybe_unused]] = false) LM_NOEXCEPTDECL {
|
||||
LM_THROW("Grammar is not available for this models backend", LM_BOOL_ERROR);
|
||||
}
|
||||
virtual LM_ERRBOOL unload_grammar() LM_NOEXCEPTDECL {
|
||||
LM_THROW("Grammar is not available for this models backend", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
virtual const std::string& get_prompt() const LM_NOEXCEPTDECL = 0;
|
||||
|
||||
virtual bool is_mirostat_available() const noexcept {return false;}
|
||||
virtual bool is_grammar_available() const noexcept {return false;}
|
||||
|
||||
LM_LAST_ERROR_GETTER
|
||||
};
|
||||
|
||||
|
|
|
@ -63,21 +63,21 @@ class InferencePool {
|
|||
}
|
||||
|
||||
// Returns false on error
|
||||
LM_SCHEDULABLE(bool) store_slot(Slot& slot);
|
||||
bool store_slot(Slot& slot);
|
||||
// Returns nullptr on error
|
||||
LM_SCHEDULABLE(Slot*) load_slot(size_t id, Slot *suggested_slot = nullptr);
|
||||
Slot *load_slot(size_t id, Slot *suggested_slot = nullptr);
|
||||
|
||||
LM_SCHEDULABLE(void) store_and_reset_slot(Slot& slot) {
|
||||
LM_COAWAIT store_slot(slot); //TODO: Should handle errors somehow
|
||||
void store_and_reset_slot(Slot& slot) {
|
||||
store_slot(slot); //TODO: Should handle errors somehow
|
||||
slot.reset();
|
||||
LM_CORETURN;
|
||||
return;
|
||||
}
|
||||
|
||||
// Doesn't fail
|
||||
LM_SCHEDULABLE(Slot*) get_free_slot();
|
||||
Slot *get_free_slot();
|
||||
|
||||
// Returns nullptr if not found
|
||||
LM_SCHEDULABLE(Slot*) find_slot_by_id(size_t id, bool deserialize = true);
|
||||
Slot *find_slot_by_id(size_t id, bool deserialize = true);
|
||||
|
||||
public:
|
||||
// The pool_name must be unique amonst all applications in cwd
|
||||
|
@ -93,14 +93,14 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(std::shared_ptr<Inference>) create_inference(size_t id, const std::string& weights_path, const Inference::Params& p) {
|
||||
auto slot = LM_COAWAIT get_free_slot();
|
||||
LM_CORETURN slot->create_inference(id, weights_path, p);
|
||||
std::shared_ptr<Inference> create_inference(size_t id, const std::string& weights_path, const Inference::Params& p) {
|
||||
auto slot = get_free_slot();
|
||||
return slot->create_inference(id, weights_path, p);
|
||||
}
|
||||
LM_SCHEDULABLE(std::shared_ptr<Inference>) get_inference(size_t id);
|
||||
LM_SCHEDULABLE(std::shared_ptr<Inference>) get_or_create_inference(size_t id, const std::string& weights_path, const Inference::Params& p);
|
||||
LM_SCHEDULABLE(void) delete_inference(size_t id);
|
||||
LM_SCHEDULABLE(void) store_all();
|
||||
std::shared_ptr<Inference> get_inference(size_t id);
|
||||
std::shared_ptr<Inference> get_or_create_inference(size_t id, const std::string& weights_path, const Inference::Params& p);
|
||||
void delete_inference(size_t id);
|
||||
void store_all();
|
||||
std::vector<size_t> get_active_slot_ids() const;
|
||||
|
||||
void cleanup();
|
||||
|
|
|
@ -59,12 +59,12 @@ class GPTJInference final : public Inference {
|
|||
|
||||
// This function reduces the size of our tokens vector according to some parameters
|
||||
// All tokens will be evaluated if scrolling was needed and true will be returned
|
||||
LM_SCHEDULABLE(bool) window_scroll() LM_NOEXCEPTDECL {
|
||||
bool window_scroll() LM_NOEXCEPTDECL {
|
||||
auto &state = get_state();
|
||||
// Check that we actually need to scroll
|
||||
if (state->tokens.size() <= params.n_ctx) {
|
||||
// Nope
|
||||
LM_CORETURN false;
|
||||
return false;
|
||||
}
|
||||
// Start scrolling
|
||||
if (params.scroll_keep > 0.0f) {
|
||||
|
@ -81,11 +81,11 @@ class GPTJInference final : public Inference {
|
|||
state->tokens.resize(params.n_ctx_window_top_bar);
|
||||
}
|
||||
// Evaluate tokens
|
||||
LM_ERROR_FORWARD(LM_COAWAIT evaluate_tokens(0, on_scroll));
|
||||
LM_CORETURN true;
|
||||
LM_ERROR_FORWARD(evaluate_tokens(0, on_scroll), LM_BOOL_ERROR);
|
||||
return true;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) evaluate_tokens(size_t starting_offset, const std::function<bool (float)> &on_tick = nullptr) LM_NOEXCEPTDECL {
|
||||
LM_ERRBOOL evaluate_tokens(size_t starting_offset, const AppendCallback &on_tick = nullptr) LM_NOEXCEPTDECL {
|
||||
auto& state = get_state();
|
||||
|
||||
// Evaluate tokens in batches
|
||||
|
@ -96,7 +96,7 @@ class GPTJInference final : public Inference {
|
|||
// Evaluate
|
||||
std::vector<int> batch(state->tokens.begin()+it, state->tokens.begin()+it+params.n_batch);
|
||||
if (!gptj_eval(state->model, params.n_threads, it, batch, state->logits, state->mem_per_token)) {
|
||||
LM_COTHROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
// Tick
|
||||
|
@ -104,8 +104,7 @@ class GPTJInference final : public Inference {
|
|||
// Calculate progress
|
||||
auto progress = float(it-starting_offset) / (state->tokens.size()-starting_offset) * 100.f;
|
||||
// Tick and yield
|
||||
if (!on_tick(progress)) LM_CORETURN LM_BOOL_SUCCESS;
|
||||
else if (!LM_TASKYIELD) LM_CORETURN LM_BOOL_SUCCESS;
|
||||
if (!on_tick(progress)) return LM_BOOL_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -115,7 +114,7 @@ class GPTJInference final : public Inference {
|
|||
//TODO: This is extremely inefficient! Don't do that...
|
||||
std::vector<int> batch(state->tokens.begin()+it, state->tokens.begin()+it+1);
|
||||
if (!gptj_eval(state->model, params.n_threads, it, batch, state->logits, state->mem_per_token)) {
|
||||
LM_COTHROW("Failed to evaluate individual tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to evaluate individual tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -123,7 +122,7 @@ class GPTJInference final : public Inference {
|
|||
// Notify about completion
|
||||
if (on_tick) on_tick(100.f);
|
||||
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
public:
|
||||
|
@ -134,7 +133,7 @@ public:
|
|||
deinit();
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) append(const std::string& prompt, const std::function<bool (float)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL append(const std::string& prompt, const AppendCallback &on_tick) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
|
||||
// Append to current prompt
|
||||
|
@ -152,29 +151,31 @@ public:
|
|||
);
|
||||
|
||||
// Make sure token limit isn't being hit
|
||||
if (LM_COAWAIT window_scroll()) {
|
||||
if (window_scroll()) {
|
||||
// That function already has evaluated our tokens since scrolling was needed
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
// Evaluate new tokens
|
||||
LM_CORETURN LM_COAWAIT evaluate_tokens(old_token_count, on_tick);
|
||||
return evaluate_tokens(old_token_count, on_tick);
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(std::string) run(std::string_view end, const std::function<bool (const char *)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
|
||||
std::string run(std::string_view end, const GenerateCallback &on_tick, const GenerateCallback& pre_tick) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
std::string fres;
|
||||
|
||||
// Loop until done
|
||||
bool abort = false;
|
||||
unsigned eos_count = 0;
|
||||
size_t last_size = 0;
|
||||
while (!abort && (end.empty() || fres.find(end) == fres.npos)) {
|
||||
last_size = fres.size();
|
||||
// Sample top p and top k
|
||||
const auto n_repeat_last = std::min<size_t>(state->tokens.size(), params.n_repeat_last);
|
||||
auto id = gpt_sample_top_k_top_p(state->model.hparams.n_vocab, state->tokens.data()+state->tokens.size()-n_repeat_last, n_repeat_last, state->logits, params.top_k, params.top_p, params.temp, params.repeat_penalty, state->rng);
|
||||
|
||||
if (id == 50256) {
|
||||
if (eos_count++ == params.eos_ignores) {
|
||||
if (eos_count++ == params.n_eos_ignores) {
|
||||
abort = true;
|
||||
continue;
|
||||
}
|
||||
|
@ -185,7 +186,7 @@ public:
|
|||
state->tokens.push_back(id);
|
||||
|
||||
// Make sure token limit isn't being hit
|
||||
LM_COAWAIT window_scroll();
|
||||
window_scroll();
|
||||
|
||||
// Get token as string
|
||||
const std::string_view str = state->vocab.id_to_token[id];
|
||||
|
@ -194,77 +195,79 @@ public:
|
|||
state->prompt.append(str);
|
||||
fres.append(str);
|
||||
|
||||
// Evaluate token
|
||||
// TODO: Respect batch size
|
||||
std::vector<int> batch(state->tokens.begin()+state->tokens.size()-1, state->tokens.begin()+state->tokens.size());
|
||||
if (!gptj_eval(state->model, params.n_threads, state->tokens.size()-1, batch, state->logits, state->mem_per_token)) {
|
||||
LM_COTHROW("Failed to evaluate new tokens", "");
|
||||
if (pre_tick && !pre_tick(str.data())) abort = true;
|
||||
else {
|
||||
// Evaluate token
|
||||
// TODO: Respect batch size
|
||||
std::vector<int> batch(state->tokens.begin()+state->tokens.size()-1, state->tokens.begin()+state->tokens.size());
|
||||
if (!gptj_eval(state->model, params.n_threads, state->tokens.size()-1, batch, state->logits, state->mem_per_token)) {
|
||||
LM_THROW("Failed to evaluate new tokens", "");
|
||||
}
|
||||
}
|
||||
|
||||
// Tick
|
||||
if (on_tick && !on_tick(str.data())) abort = true;
|
||||
else if (!LM_TASKYIELD) abort = true;
|
||||
}
|
||||
|
||||
// Create final string TODO: Could be optimized
|
||||
if (!abort) {
|
||||
fres = std::string(fres.data(), fres.size()-end.size());
|
||||
fres = std::string(fres.data(), last_size);
|
||||
}
|
||||
|
||||
// Return final string
|
||||
LM_CORETURN fres;
|
||||
return fres;
|
||||
}
|
||||
|
||||
unsigned get_context_size() const noexcept override {
|
||||
return get_state()->tokens.size();
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
sv.buf.resize(gptj_get_state_size(state->model));
|
||||
gptj_copy_state_data(state->model, state->rng, sv.buf.data());
|
||||
sv.tokens = state->tokens;
|
||||
sv.prompt = state->prompt;
|
||||
sv.ctx = generic_state;
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
if (sv.ctx != generic_state)
|
||||
LM_COTHROW("Savestate does not match context", LM_BOOL_ERROR);
|
||||
LM_THROW("Savestate does not match context", LM_BOOL_ERROR);
|
||||
gptj_set_state_data(&state->model, &state->rng, sv.buf.data());
|
||||
state->tokens = sv.tokens;
|
||||
state->prompt = sv.prompt;
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) serialize(std::ostream &o) const LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL serialize(std::ostream &o) const LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
// Get state size
|
||||
auto state_size = gptj_get_state_size(state->model);
|
||||
// Write sizes
|
||||
for (const uint32_t s : {state->tokens.size(), state->prompt.size(), state_size}) {
|
||||
if (!o.write(reinterpret_cast<const char*>(&s), sizeof(s))) {
|
||||
LM_COTHROW("Failed to serialize data sizes", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize data sizes", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
// Write tokens
|
||||
if (!o.write(reinterpret_cast<const char*>(state->tokens.data()), state->tokens.size()*sizeof(int))) {
|
||||
LM_COTHROW("Failed to serialize tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
// Write prompt
|
||||
if (!o.write(state->prompt.data(), state->prompt.size())) {
|
||||
LM_COTHROW("Failed to serialize prompt", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize prompt", LM_BOOL_ERROR);
|
||||
}
|
||||
// Write state
|
||||
std::vector<uint8_t> state_buf(state_size);
|
||||
gptj_copy_state_data(state->model, state->rng, state_buf.data());
|
||||
if (!o.write(reinterpret_cast<const char*>(state_buf.data()), state_size)) {
|
||||
LM_COTHROW("Failed to serialize state", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize state", LM_BOOL_ERROR);
|
||||
}
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) deserialize(std::istream &i) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL deserialize(std::istream &i) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
uint32_t embd_size, prompt_size, state_size;
|
||||
// Initialization to prevent compiler complaints
|
||||
|
@ -272,26 +275,26 @@ public:
|
|||
// Read sizes
|
||||
for (uint32_t *s : {&embd_size, &prompt_size, &state_size}) {
|
||||
if (!i.read(reinterpret_cast<char*>(s), sizeof(*s))) {
|
||||
LM_COTHROW("Failed to deserialize data sizes", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize data sizes", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
// Read tokens
|
||||
state->tokens.resize(embd_size);
|
||||
if (!i.read(reinterpret_cast<char*>(state->tokens.data()), state->tokens.size()*sizeof(int))) {
|
||||
LM_COTHROW("Failed to deserialize tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
// Read prompt
|
||||
state->prompt.resize(prompt_size);
|
||||
if (!i.read(state->prompt.data(), state->prompt.size())) {
|
||||
LM_COTHROW("Failed to deserialize prompt", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize prompt", LM_BOOL_ERROR);
|
||||
}
|
||||
// Read state
|
||||
std::vector<uint8_t> state_buf(state_size);
|
||||
if (!i.read(reinterpret_cast<char*>(state_buf.data()), state_buf.size())) {
|
||||
LM_COTHROW("Failed to deserialize state", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize state", LM_BOOL_ERROR);
|
||||
}
|
||||
gptj_set_state_data(&state->model, &state->rng, state_buf.data());
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
const std::string &get_prompt() const LM_NOEXCEPTDECL override {
|
||||
return get_state()->prompt;
|
||||
|
|
224
justlm_llama.hpp
224
justlm_llama.hpp
|
@ -3,12 +3,17 @@
|
|||
#include <cstring>
|
||||
#include <ggml.h>
|
||||
#include <llama.h>
|
||||
#include <common/grammar-parser.h>
|
||||
|
||||
|
||||
namespace LM {
|
||||
class LLaMAInference final : public Inference {
|
||||
struct State {
|
||||
llama_context *ctx = nullptr;
|
||||
llama_model *model;
|
||||
llama_grammar *grammar = nullptr;
|
||||
bool grammar_override_temp;
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
std::string prompt; // Mostly here for easy "debugging"
|
||||
std::vector<int> tokens;
|
||||
unsigned n_ctx;
|
||||
|
@ -31,12 +36,24 @@ class LLaMAInference final : public Inference {
|
|||
auto lparams = llama_context_default_params();
|
||||
lparams.seed = params.seed;
|
||||
lparams.n_ctx = params.n_ctx = params.n_ctx>0?params.n_ctx:2024;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.n_threads = params.n_threads;
|
||||
//lparams.n_threads_batch = params.n_threads; TODO: Is this sane?
|
||||
|
||||
// Get model parameters
|
||||
auto mparams = llama_model_default_params();
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
|
||||
// Load model
|
||||
state->model = llama_load_model_from_file(weights_path.c_str(), mparams);
|
||||
if (!state->model) {
|
||||
LM_THROW("Failed to initialize llama model from file", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
// Create context
|
||||
state->ctx = llama_init_from_file(weights_path.c_str(), lparams);
|
||||
state->ctx = llama_new_context_with_model(state->model, lparams);
|
||||
if (!state->ctx) {
|
||||
LM_THROW("Failed to initialize llama from file", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to initialize llama context from model", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
// Initialize some variables
|
||||
|
@ -47,12 +64,12 @@ class LLaMAInference final : public Inference {
|
|||
|
||||
// This function reduces the size of our tokens vector according to some parameters
|
||||
// All tokens will be evaluated if scrolling was needed and true will be returned
|
||||
LM_SCHEDULABLE(bool) window_scroll() LM_NOEXCEPTDECL {
|
||||
bool window_scroll() LM_NOEXCEPTDECL {
|
||||
auto &state = get_state();
|
||||
// Check that we actually need to scroll
|
||||
if (state->tokens.size() <= state->n_ctx) {
|
||||
// Nope
|
||||
LM_CORETURN false;
|
||||
return false;
|
||||
}
|
||||
// Start scrolling
|
||||
if (params.scroll_keep > 0.0f) {
|
||||
|
@ -69,11 +86,11 @@ class LLaMAInference final : public Inference {
|
|||
state->tokens.resize(params.n_ctx_window_top_bar);
|
||||
}
|
||||
// Evaluate tokens
|
||||
LM_ERROR_FORWARD(LM_COAWAIT evaluate_tokens(0, on_scroll));
|
||||
LM_CORETURN true;
|
||||
LM_ERROR_FORWARD(evaluate_tokens(0, on_scroll), LM_BOOL_ERROR);
|
||||
return true;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) evaluate_tokens(size_t starting_offset, const std::function<bool (float)> &on_tick = nullptr) LM_NOEXCEPTDECL {
|
||||
LM_ERRBOOL evaluate_tokens(size_t starting_offset, const AppendCallback &on_tick = nullptr) LM_NOEXCEPTDECL {
|
||||
auto& state = get_state();
|
||||
|
||||
// Evaluate tokens in batches
|
||||
|
@ -82,8 +99,9 @@ class LLaMAInference final : public Inference {
|
|||
if (it + params.n_batch >= ssize_t(state->tokens.size())) break;
|
||||
|
||||
// Evaluate
|
||||
if (llama_eval(state->ctx, state->tokens.data()+it, params.n_batch, it, params.n_threads)) {
|
||||
LM_COTHROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR);
|
||||
const auto batch = llama_batch_get_one(state->tokens.data()+it, params.n_batch, it, 0);
|
||||
if (llama_decode(state->ctx, batch)) {
|
||||
LM_THROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
// Tick
|
||||
|
@ -91,16 +109,16 @@ class LLaMAInference final : public Inference {
|
|||
// Calculate progress
|
||||
auto progress = float(it-starting_offset) / (state->tokens.size()-starting_offset) * 100.f;
|
||||
// Tick and yield
|
||||
if (!on_tick(progress)) LM_CORETURN LM_BOOL_SUCCESS;
|
||||
else if (!LM_TASKYIELD) LM_CORETURN LM_BOOL_SUCCESS;
|
||||
if (!on_tick(progress)) return LM_BOOL_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate remaining tokens
|
||||
if (it < state->tokens.size()) {
|
||||
for (; it != state->tokens.size(); it++) {
|
||||
if (llama_eval(state->ctx, state->tokens.data()+it, 1, it, params.n_threads)) {
|
||||
LM_COTHROW("Failed to evaluate individual tokens", LM_BOOL_ERROR);
|
||||
const auto batch = llama_batch_get_one(state->tokens.data()+it, 1, it, 0);
|
||||
if (llama_decode(state->ctx, batch)) {
|
||||
LM_THROW("Failed to evaluate individual tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -108,14 +126,20 @@ class LLaMAInference final : public Inference {
|
|||
// Notify about completion
|
||||
if (on_tick) on_tick(100.f);
|
||||
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
int accept_token(int t) {
|
||||
auto& state = get_state();
|
||||
if (state->grammar)
|
||||
llama_grammar_accept_token(state->ctx, state->grammar, t);
|
||||
return t;
|
||||
}
|
||||
|
||||
#if LLAMA_DATE >= 230519
|
||||
int llama_sample_top_p_top_k() {
|
||||
auto& state = get_state();
|
||||
auto logits = llama_get_logits(state->ctx);
|
||||
auto n_vocab = llama_n_vocab(state->ctx);
|
||||
auto n_vocab = llama_n_vocab(state->model);
|
||||
// Populate initial list of all candidates
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
@ -125,22 +149,40 @@ class LLaMAInference final : public Inference {
|
|||
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
|
||||
// Sample repeat penalty
|
||||
auto n_repeat_last = std::min<size_t>(state->tokens.size(), params.n_repeat_last);
|
||||
llama_sample_repetition_penalty(state->ctx, &candidates_p, params.n_repeat_last?(state->tokens.data()+state->tokens.size()-n_repeat_last):nullptr, n_repeat_last, params.repeat_penalty);
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(state->ctx, &candidates_p, params.top_k, 1);
|
||||
llama_sample_tail_free(state->ctx, &candidates_p, 1.0f, 1);
|
||||
llama_sample_typical(state->ctx, &candidates_p, 1.0f, 1);
|
||||
llama_sample_top_p(state->ctx, &candidates_p, params.top_p, 1);
|
||||
llama_sample_temperature(state->ctx, &candidates_p, params.temp);
|
||||
return llama_sample_token(state->ctx, &candidates_p);
|
||||
llama_sample_repetition_penalties(state->ctx, &candidates_p, params.n_repeat_last?(state->tokens.data()+state->tokens.size()-n_repeat_last):nullptr, n_repeat_last, params.repeat_penalty, 1.0f, 1.0f); // Might be wrong
|
||||
// Grammar sampling
|
||||
if (state->grammar) {
|
||||
llama_sample_grammar(state->ctx, &candidates_p, state->grammar);
|
||||
}
|
||||
if (!(state->grammar && state->grammar_override_temp) && (params.temp > 0.01f || params.temp < -0.01f)) {
|
||||
// Temperature sampling
|
||||
switch (params.prefer_mirostat) {
|
||||
case 0: {
|
||||
llama_sample_top_k(state->ctx, &candidates_p, params.top_k, 1);
|
||||
llama_sample_tail_free(state->ctx, &candidates_p, 1.0f, 1);
|
||||
llama_sample_typical(state->ctx, &candidates_p, 1.0f, 1);
|
||||
llama_sample_top_p(state->ctx, &candidates_p, params.top_p, 1);
|
||||
llama_sample_temp(state->ctx, &candidates_p, params.temp);
|
||||
return accept_token(llama_sample_token(state->ctx, &candidates_p));
|
||||
}
|
||||
case 1: {
|
||||
float mirostat_mu = 2.0f * params.mirostat_target_entropy;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(state->ctx, &candidates_p, params.temp);
|
||||
return accept_token(llama_sample_token_mirostat(state->ctx, &candidates_p, params.mirostat_target_entropy, params.mirostat_learning_rate, mirostat_m, &mirostat_mu));
|
||||
}
|
||||
case 2: {
|
||||
float mirostat_mu = 2.0f * params.mirostat_target_entropy;
|
||||
llama_sample_temp(state->ctx, &candidates_p, params.temp);
|
||||
return accept_token(llama_sample_token_mirostat_v2(state->ctx, &candidates_p, params.mirostat_target_entropy, params.mirostat_learning_rate, &mirostat_mu));
|
||||
}
|
||||
default: LM_THROW("Invalid mirostat version "+std::to_string(params.prefer_mirostat), LM_BOOL_ERROR);
|
||||
}
|
||||
} else {
|
||||
// Greedy sampling
|
||||
return accept_token(llama_sample_token(state->ctx, &candidates_p));
|
||||
}
|
||||
}
|
||||
#else
|
||||
int llama_sample_top_p_top_k() {
|
||||
auto& state = get_state();
|
||||
auto n_repeat_last = std::min<size_t>(state->tokens.size(), params.n_repeat_last);
|
||||
return ::llama_sample_top_p_top_k(state->ctx, params.n_repeat_last?(state->tokens.data()+state->tokens.size()-n_repeat_last):nullptr, n_repeat_last, params.top_k, params.top_p, params.temp, params.repeat_penalty);
|
||||
}
|
||||
#endif
|
||||
|
||||
public:
|
||||
LLaMAInference(const std::string& weights_path, const Params& p) : Inference(p) {
|
||||
|
@ -155,7 +197,7 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) append(const std::string& prompt, const std::function<bool (float)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL append(const std::string& prompt, const AppendCallback &on_tick) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
|
||||
// Check if prompt was empty
|
||||
|
@ -169,37 +211,44 @@ public:
|
|||
state->tokens.resize(old_token_count+state->prompt.size());
|
||||
|
||||
// Run tokenizer
|
||||
const auto token_count = llama_tokenize(state->ctx, prompt.c_str(), state->tokens.data()+old_token_count, state->tokens.size()-old_token_count, was_empty);
|
||||
const auto token_count = llama_tokenize(state->model, prompt.c_str(), prompt.size(), state->tokens.data()+old_token_count, state->tokens.size()-old_token_count, was_empty, false);
|
||||
state->tokens.resize(old_token_count+token_count);
|
||||
|
||||
// Make sure token limit isn't being hit
|
||||
if (LM_COAWAIT window_scroll()) {
|
||||
if (window_scroll()) {
|
||||
// That function already has evaluated our tokens since scrolling was needed
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
// Evaluate new tokens
|
||||
LM_CORETURN LM_COAWAIT evaluate_tokens(old_token_count, on_tick);
|
||||
return evaluate_tokens(old_token_count, on_tick);
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(std::string) run(std::string_view end, const std::function<bool (const char *)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
|
||||
std::string run(std::string_view end, const GenerateCallback &on_tick, const GenerateCallback& pre_tick) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
std::string fres;
|
||||
|
||||
// Loop until done
|
||||
bool abort = false;
|
||||
unsigned eos_count = 0;
|
||||
size_t last_size = 0;
|
||||
while (!abort && (end.empty() || fres.find(end) == fres.npos)) {
|
||||
last_size = fres.size();
|
||||
// Sample top p and top k
|
||||
auto id = llama_sample_top_p_top_k();
|
||||
int id;
|
||||
try {
|
||||
id = llama_sample_top_p_top_k();
|
||||
} catch (const std::exception& e) {
|
||||
LM_THROW(e.what(), "");
|
||||
}
|
||||
|
||||
if (id == llama_token_eos()) {
|
||||
if (eos_count++ == params.eos_ignores) {
|
||||
if (id == llama_token_eos(state->model)) {
|
||||
if (eos_count++ == params.n_eos_ignores) {
|
||||
abort = true;
|
||||
continue;
|
||||
}
|
||||
state->tokens.push_back(0);
|
||||
llama_tokenize(state->ctx, "\n", &state->tokens.back(), 1, false);
|
||||
llama_tokenize(state->model, "\n", 1, &state->tokens.back(), 1, false, false);
|
||||
id = state->tokens.back();
|
||||
} else {
|
||||
// Add token
|
||||
|
@ -207,85 +256,90 @@ public:
|
|||
}
|
||||
|
||||
// Make sure token limit isn't hit
|
||||
LM_COAWAIT window_scroll();
|
||||
window_scroll();
|
||||
|
||||
// Get token as string
|
||||
const std::string_view str = llama_token_to_str(state->ctx, id);
|
||||
std::string str(14, ' ');
|
||||
str.resize(llama_token_to_piece(state->model, id, str.data(), 14));
|
||||
|
||||
// Append string to function result
|
||||
state->prompt.append(str);
|
||||
fres.append(str);
|
||||
|
||||
// Evaluate token
|
||||
// TODO: Respect batch size
|
||||
if (llama_eval(state->ctx, state->tokens.data()+state->tokens.size()-1, 1, state->tokens.size()-1, params.n_threads)) {
|
||||
LM_COTHROW("Failed to evaluate new tokens", "");
|
||||
// Tick
|
||||
if (pre_tick && !pre_tick(str.data())) abort = true;
|
||||
else {
|
||||
// Evaluate token
|
||||
// TODO: Respect batch size
|
||||
const auto batch = llama_batch_get_one(state->tokens.data()+state->tokens.size()-1, 1, state->tokens.size()-1, 0);
|
||||
if (llama_decode(state->ctx, batch)) {
|
||||
LM_THROW("Failed to evaluate new tokens", "");
|
||||
}
|
||||
}
|
||||
|
||||
// Tick and yield
|
||||
if (on_tick && !on_tick(str.data())) abort = true;
|
||||
else if (!LM_TASKYIELD) abort = true;
|
||||
}
|
||||
|
||||
// Create final string TODO: Could be optimized
|
||||
if (!abort && fres.size() > end.size()) {
|
||||
fres = std::string(fres.data(), fres.size()-end.size());
|
||||
fres = std::string(fres.data(), last_size);
|
||||
}
|
||||
|
||||
// Return final string
|
||||
LM_CORETURN fres;
|
||||
return fres;
|
||||
}
|
||||
|
||||
unsigned get_context_size() const noexcept override {
|
||||
return get_state()->tokens.size();
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
sv.buf.resize(llama_get_state_size(state->ctx));
|
||||
llama_copy_state_data(state->ctx, sv.buf.data());
|
||||
sv.tokens = state->tokens;
|
||||
sv.prompt = state->prompt;
|
||||
sv.ctx = generic_state;
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
if (sv.ctx != generic_state)
|
||||
LM_COTHROW("Savestate does not match context", LM_BOOL_ERROR);
|
||||
LM_THROW("Savestate does not match context", LM_BOOL_ERROR);
|
||||
llama_set_state_data(state->ctx, const_cast<uint8_t*>(sv.buf.data()));
|
||||
state->tokens = sv.tokens;
|
||||
state->prompt = sv.prompt;
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) serialize(std::ostream &o) const LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL serialize(std::ostream &o) const LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
// Get state size
|
||||
auto state_size = llama_get_state_size(state->ctx);
|
||||
// Write sizes
|
||||
for (const uint32_t s : {static_cast<size_t>(state->n_ctx), state->tokens.size(), state->prompt.size(), state_size}) {
|
||||
if (!o.write(reinterpret_cast<const char*>(&s), sizeof(s))) {
|
||||
LM_COTHROW("Failed to serialize data sizes", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize data sizes", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
// Write tokens
|
||||
if (!o.write(reinterpret_cast<const char*>(state->tokens.data()), state->tokens.size()*sizeof(int))) {
|
||||
LM_COTHROW("Failed to serialize tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
// Write prompt
|
||||
if (!o.write(state->prompt.data(), state->prompt.size())) {
|
||||
LM_COTHROW("Failed to serialize prompt", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize prompt", LM_BOOL_ERROR);
|
||||
}
|
||||
// Write state
|
||||
std::vector<uint8_t> state_buf(state_size);
|
||||
llama_copy_state_data(state->ctx, state_buf.data());
|
||||
if (!o.write(reinterpret_cast<const char*>(state_buf.data()), state_size)) {
|
||||
LM_COTHROW("Failed to serialize state", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize state", LM_BOOL_ERROR);
|
||||
}
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) deserialize(std::istream &i) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL deserialize(std::istream &i) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
uint32_t n_ctx, embd_size, prompt_size, state_size;
|
||||
// Initialization to prevent compiler complaints
|
||||
|
@ -293,33 +347,65 @@ public:
|
|||
// Read sizes
|
||||
for (uint32_t *s : {&n_ctx, &embd_size, &prompt_size, &state_size}) {
|
||||
if (!i.read(reinterpret_cast<char*>(s), sizeof(*s))) {
|
||||
LM_COTHROW("Failed to deserialize data sizes", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize data sizes", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
if (state->n_ctx != n_ctx) {
|
||||
LM_COTHROW("Context length differs (My "+std::to_string(state->n_ctx)+" vs. files "+std::to_string(n_ctx)+')', LM_BOOL_ERROR);
|
||||
LM_THROW("Context length differs (My "+std::to_string(state->n_ctx)+" vs. files "+std::to_string(n_ctx)+')', LM_BOOL_ERROR);
|
||||
}
|
||||
// Read tokens
|
||||
state->tokens.resize(embd_size);
|
||||
if (!i.read(reinterpret_cast<char*>(state->tokens.data()), state->tokens.size()*sizeof(int))) {
|
||||
LM_COTHROW("Failed to deserialize tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
// Read prompt
|
||||
state->prompt.resize(prompt_size);
|
||||
if (!i.read(state->prompt.data(), state->prompt.size())) {
|
||||
LM_COTHROW("Failed to deserialize prompt", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize prompt", LM_BOOL_ERROR);
|
||||
}
|
||||
// Read state
|
||||
std::vector<uint8_t> state_buf(state_size);
|
||||
if (!i.read(reinterpret_cast<char*>(state_buf.data()), state_buf.size())) {
|
||||
LM_COTHROW("Failed to deserialize state", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize state", LM_BOOL_ERROR);
|
||||
}
|
||||
llama_set_state_data(state->ctx, state_buf.data());
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
LM_ERRBOOL load_grammar(const std::string& src, bool override_temperature) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
|
||||
state->parsed_grammar = grammar_parser::parse(src.c_str());
|
||||
if (state->parsed_grammar.rules.empty()) {
|
||||
LM_THROW("Failed to parse grammar (or no rules)", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
auto rules = state->parsed_grammar.c_rules();
|
||||
state->grammar = llama_grammar_init(rules.data(), rules.size(), state->parsed_grammar.symbol_ids.at("root"));
|
||||
if (!state->grammar) {
|
||||
LM_THROW("Failed to generate llama grammar", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
state->grammar_override_temp = override_temperature;
|
||||
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
LM_ERRBOOL unload_grammar() LM_NOEXCEPTDECL override {
|
||||
get_state()->grammar = nullptr;
|
||||
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
const std::string &get_prompt() const LM_NOEXCEPTDECL override {
|
||||
return get_state()->prompt;
|
||||
}
|
||||
|
||||
bool is_mirostat_available() const noexcept override {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool is_grammar_available() const noexcept override {
|
||||
return true;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
|
|
@ -68,12 +68,12 @@ class MPTInference final : public Inference {
|
|||
|
||||
// This function reduces the size of our tokens vector according to some parameters
|
||||
// All tokens will be evaluated if scrolling was needed and true will be returned
|
||||
LM_SCHEDULABLE(bool) window_scroll() LM_NOEXCEPTDECL {
|
||||
bool window_scroll() LM_NOEXCEPTDECL {
|
||||
auto &state = get_state();
|
||||
// Check that we actually need to scroll
|
||||
if (state->tokens.size() <= params.n_ctx) {
|
||||
// Nope
|
||||
LM_CORETURN false;
|
||||
return false;
|
||||
}
|
||||
// Start scrolling
|
||||
if (params.scroll_keep > 0.0f) {
|
||||
|
@ -90,11 +90,11 @@ class MPTInference final : public Inference {
|
|||
state->tokens.resize(params.n_ctx_window_top_bar);
|
||||
}
|
||||
// Evaluate tokens
|
||||
LM_ERROR_FORWARD(LM_COAWAIT evaluate_tokens(0, on_scroll));
|
||||
LM_CORETURN true;
|
||||
LM_ERROR_FORWARD(evaluate_tokens(0, on_scroll), LM_BOOL_ERROR);
|
||||
return true;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) evaluate_tokens(size_t starting_offset, const std::function<bool (float)> &on_tick = nullptr) LM_NOEXCEPTDECL {
|
||||
LM_ERRBOOL evaluate_tokens(size_t starting_offset, const AppendCallback &on_tick) LM_NOEXCEPTDECL {
|
||||
auto& state = get_state();
|
||||
|
||||
// Evaluate tokens in batches
|
||||
|
@ -105,7 +105,7 @@ class MPTInference final : public Inference {
|
|||
// Evaluate
|
||||
std::vector<int> batch(state->tokens.begin()+it, state->tokens.begin()+it+params.n_batch);
|
||||
if (!mpt_eval(state->model, params.n_threads, it, batch, state->logits, state->mem_per_token)) {
|
||||
LM_COTHROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR);
|
||||
}
|
||||
|
||||
// Tick
|
||||
|
@ -113,8 +113,7 @@ class MPTInference final : public Inference {
|
|||
// Calculate progress
|
||||
auto progress = float(it-starting_offset) / (state->tokens.size()-starting_offset) * 100.f;
|
||||
// Tick and yield
|
||||
if (!on_tick(progress)) LM_CORETURN LM_BOOL_SUCCESS;
|
||||
else if (!LM_TASKYIELD) LM_CORETURN LM_BOOL_SUCCESS;
|
||||
if (!on_tick(progress)) return LM_BOOL_SUCCESS;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -124,7 +123,7 @@ class MPTInference final : public Inference {
|
|||
//TODO: This is extremely inefficient! Don't do that...
|
||||
std::vector<int> batch(state->tokens.begin()+it, state->tokens.begin()+it+1);
|
||||
if (!mpt_eval(state->model, params.n_threads, it, batch, state->logits, state->mem_per_token)) {
|
||||
LM_COTHROW("Failed to evaluate individual tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to evaluate individual tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -132,7 +131,7 @@ class MPTInference final : public Inference {
|
|||
// Notify about completion
|
||||
if (on_tick) on_tick(100.f);
|
||||
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
public:
|
||||
|
@ -143,7 +142,7 @@ public:
|
|||
deinit();
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) append(const std::string& prompt, const std::function<bool (float)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL append(const std::string& prompt, const AppendCallback &on_tick) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
|
||||
// Append to current prompt
|
||||
|
@ -161,35 +160,37 @@ public:
|
|||
);
|
||||
|
||||
// Make sure token limit isn't being hit
|
||||
if (LM_COAWAIT window_scroll()) {
|
||||
if (window_scroll()) {
|
||||
// That function already has evaluated our tokens since scrolling was needed
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
// Evaluate new tokens
|
||||
LM_CORETURN LM_COAWAIT evaluate_tokens(old_token_count, on_tick);
|
||||
return evaluate_tokens(old_token_count, on_tick);
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(std::string) run(std::string_view end, const std::function<bool (const char *)> &on_tick = nullptr) LM_NOEXCEPTDECL override {
|
||||
std::string run(std::string_view end, const GenerateCallback &on_tick, const GenerateCallback& pre_tick) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
std::string fres;
|
||||
|
||||
// Loop until done
|
||||
bool abort = false;
|
||||
unsigned eos_count = 0;
|
||||
size_t last_size = 0;
|
||||
while (!abort && (end.empty() || fres.find(end) == fres.npos)) {
|
||||
last_size = fres.size();
|
||||
// Sample top p and top k
|
||||
const auto n_repeat_last = std::min<size_t>(state->tokens.size(), params.n_repeat_last);
|
||||
auto id = gpt_sample_top_k_top_p(state->model.hparams.n_vocab, state->tokens.data()+state->tokens.size()-n_repeat_last, n_repeat_last, state->logits, params.top_k, params.top_p, params.temp, params.repeat_penalty, state->rng);
|
||||
|
||||
if (state->im_end && id == state->im_end) {
|
||||
if (eos_count++ == params.eos_ignores) {
|
||||
if (eos_count++ == params.n_eos_ignores) {
|
||||
abort = true;
|
||||
continue;
|
||||
}
|
||||
id = gpt_tokenize(state->vocab, "\n")[0];
|
||||
} else if (id == 0) {
|
||||
if (eos_count++ == params.eos_ignores) {
|
||||
if (eos_count++ == params.n_eos_ignores) {
|
||||
abort = true;
|
||||
continue;
|
||||
}
|
||||
|
@ -200,7 +201,7 @@ public:
|
|||
state->tokens.push_back(id);
|
||||
|
||||
// Make sure token limit isn't being hit
|
||||
LM_COAWAIT window_scroll();
|
||||
window_scroll();
|
||||
|
||||
// Get token as string
|
||||
const std::string_view str = state->vocab.id_to_token[id];
|
||||
|
@ -209,77 +210,80 @@ public:
|
|||
fres.append(str);
|
||||
state->prompt.append(str);
|
||||
|
||||
// Evaluate token
|
||||
// TODO: Respect batch size
|
||||
std::vector<int> batch(state->tokens.begin()+state->tokens.size()-1, state->tokens.begin()+state->tokens.size());
|
||||
if (!mpt_eval(state->model, params.n_threads, state->tokens.size()-1, batch, state->logits, state->mem_per_token)) {
|
||||
LM_COTHROW("Failed to evaluate new tokens", "");
|
||||
// Tick
|
||||
if (pre_tick && !pre_tick(str.data())) abort = true;
|
||||
else {
|
||||
// Evaluate token
|
||||
// TODO: Respect batch size
|
||||
std::vector<int> batch(state->tokens.begin()+state->tokens.size()-1, state->tokens.begin()+state->tokens.size());
|
||||
if (!mpt_eval(state->model, params.n_threads, state->tokens.size()-1, batch, state->logits, state->mem_per_token)) {
|
||||
LM_THROW("Failed to evaluate new tokens", "");
|
||||
}
|
||||
}
|
||||
|
||||
// Tick
|
||||
if (on_tick && !on_tick(str.data())) abort = true;
|
||||
else if (!LM_TASKYIELD) abort = true;
|
||||
}
|
||||
|
||||
// Create final string TODO: Could be optimized
|
||||
if (!abort) {
|
||||
fres = std::string(fres.data(), fres.size()-end.size());
|
||||
fres = std::string(fres.data(), last_size);
|
||||
}
|
||||
|
||||
// Return final string
|
||||
LM_CORETURN fres;
|
||||
return fres;
|
||||
}
|
||||
|
||||
unsigned get_context_size() const noexcept override {
|
||||
return get_state()->tokens.size();
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
sv.buf.resize(mpt_get_state_size(state->model));
|
||||
mpt_copy_state_data(state->model, state->rng, sv.buf.data());
|
||||
sv.tokens = state->tokens;
|
||||
sv.prompt = state->prompt;
|
||||
sv.ctx = generic_state;
|
||||
LM_CORETURN LM_BOOL_SUCCESS ;
|
||||
return LM_BOOL_SUCCESS ;
|
||||
}
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
if (sv.ctx != generic_state)
|
||||
LM_COTHROW("Savestate does not match context", LM_BOOL_ERROR);
|
||||
LM_THROW("Savestate does not match context", LM_BOOL_ERROR);
|
||||
mpt_set_state_data(&state->model, &state->rng, sv.buf.data());
|
||||
state->tokens = sv.tokens;
|
||||
state->prompt = sv.prompt;
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) serialize(std::ostream &o) const LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL serialize(std::ostream &o) const LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
// Get state size
|
||||
auto state_size = mpt_get_state_size(state->model);
|
||||
// Write sizes
|
||||
for (const uint32_t s : {state->tokens.size(), state->prompt.size(), state_size}) {
|
||||
if (!o.write(reinterpret_cast<const char*>(&s), sizeof(s))) {
|
||||
LM_COTHROW("Failed to serialize data sizes", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize data sizes", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
// Write tokens
|
||||
if (!o.write(reinterpret_cast<const char*>(state->tokens.data()), state->tokens.size()*sizeof(int))) {
|
||||
LM_COTHROW("Failed to serialize tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
// Write prompt
|
||||
if (!o.write(state->prompt.data(), state->prompt.size())) {
|
||||
LM_COTHROW("Failed to serialize prompt", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize prompt", LM_BOOL_ERROR);
|
||||
}
|
||||
// Write state
|
||||
std::vector<uint8_t> state_buf(state_size);
|
||||
mpt_copy_state_data(state->model, state->rng, state_buf.data());
|
||||
if (!o.write(reinterpret_cast<const char*>(state_buf.data()), state_size)) {
|
||||
LM_COTHROW("Failed to serialize state", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to serialize state", LM_BOOL_ERROR);
|
||||
}
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
LM_SCHEDULABLE(LM_ERRBOOL) deserialize(std::istream &i) LM_NOEXCEPTDECL override {
|
||||
LM_ERRBOOL deserialize(std::istream &i) LM_NOEXCEPTDECL override {
|
||||
auto& state = get_state();
|
||||
uint32_t embd_size, promptsize, state_size;
|
||||
// Initialization to prevent compiler complaints
|
||||
|
@ -287,26 +291,26 @@ public:
|
|||
// Read sizes
|
||||
for (uint32_t *s : {&embd_size, &promptsize, &state_size}) {
|
||||
if (!i.read(reinterpret_cast<char*>(s), sizeof(*s))) {
|
||||
LM_COTHROW("Failed to deserialize data sizes", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize data sizes", LM_BOOL_ERROR);
|
||||
}
|
||||
}
|
||||
// Read tokens
|
||||
state->tokens.resize(embd_size);
|
||||
if (!i.read(reinterpret_cast<char*>(state->tokens.data()), state->tokens.size()*sizeof(int))) {
|
||||
LM_COTHROW("Failed to deserialize tokens", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize tokens", LM_BOOL_ERROR);
|
||||
}
|
||||
// Read prompt
|
||||
state->prompt.resize(promptsize);
|
||||
if (!i.read(state->prompt.data(), state->prompt.size())) {
|
||||
LM_COTHROW("Failed to deserialize prompt", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize prompt", LM_BOOL_ERROR);
|
||||
}
|
||||
// Read state
|
||||
std::vector<uint8_t> state_buf(state_size);
|
||||
if (!i.read(reinterpret_cast<char*>(state_buf.data()), state_buf.size())) {
|
||||
LM_COTHROW("Failed to deserialize state", LM_BOOL_ERROR);
|
||||
LM_THROW("Failed to deserialize state", LM_BOOL_ERROR);
|
||||
}
|
||||
mpt_set_state_data(&state->model, &state->rng, state_buf.data());
|
||||
LM_CORETURN LM_BOOL_SUCCESS;
|
||||
return LM_BOOL_SUCCESS;
|
||||
}
|
||||
const std::string &get_prompt() const LM_NOEXCEPTDECL override {
|
||||
return get_state()->prompt;
|
||||
|
|
|
@ -6,7 +6,7 @@
|
|||
|
||||
|
||||
|
||||
LM_SCHEDULABLE(bool) LM::InferencePool::store_slot(Slot &slot) {
|
||||
bool LM::InferencePool::store_slot(Slot &slot) {
|
||||
auto inference = slot.get_inference();
|
||||
// Open output file
|
||||
std::ofstream f(get_slot_filename(slot.get_id()), std::ios::binary);
|
||||
|
@ -17,61 +17,61 @@ LM_SCHEDULABLE(bool) LM::InferencePool::store_slot(Slot &slot) {
|
|||
f.write(weights_path.data(), weights_path.size());
|
||||
// Write params
|
||||
if (!f.write(reinterpret_cast<const char*>(&inference->params), sizeof(inference->params))) {
|
||||
LM_CORETURN false;
|
||||
return false;
|
||||
}
|
||||
// Serialize instance
|
||||
try {
|
||||
LM_COAWAIT inference->serialize(f);
|
||||
inference->serialize(f);
|
||||
} catch (...) {
|
||||
LM_CORETURN false;
|
||||
return false;
|
||||
}
|
||||
// Return success
|
||||
LM_CORETURN true;
|
||||
return true;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM::InferencePool::Slot*) LM::InferencePool::load_slot(size_t id, Slot *suggested_slot) {
|
||||
LM::InferencePool::Slot *LM::InferencePool::load_slot(size_t id, Slot *suggested_slot) {
|
||||
// Open input file
|
||||
std::ifstream f(get_slot_filename(id), std::ios::binary);
|
||||
if (!f) {
|
||||
// Does not exist
|
||||
LM_CORETURN nullptr;
|
||||
return nullptr;
|
||||
}
|
||||
// Read weights path
|
||||
std::string weights_path;
|
||||
uint32_t weights_path_len;
|
||||
if (!f.read(reinterpret_cast<char*>(&weights_path_len), sizeof(weights_path_len))) {
|
||||
LM_CORETURN nullptr;
|
||||
return nullptr;
|
||||
}
|
||||
weights_path.resize(weights_path_len);
|
||||
if (!f.read(weights_path.data(), weights_path.size())) {
|
||||
LM_CORETURN nullptr;
|
||||
return nullptr;
|
||||
}
|
||||
// Read params
|
||||
LM::Inference::Params p;
|
||||
if (!f.read(reinterpret_cast<char*>(&p), sizeof(p))) {
|
||||
LM_CORETURN nullptr;
|
||||
return nullptr;
|
||||
}
|
||||
// Create instance
|
||||
auto& slot = suggested_slot?*suggested_slot:*(LM_COAWAIT get_free_slot());
|
||||
auto& slot = suggested_slot?*suggested_slot:*(get_free_slot());
|
||||
auto inference = slot.create_inference(id, weights_path, p);
|
||||
// Deserialize instance
|
||||
try {
|
||||
LM_COAWAIT inference->deserialize(f);
|
||||
inference->deserialize(f);
|
||||
} catch (...) {
|
||||
slot.reset();
|
||||
LM_CORETURN nullptr;
|
||||
return nullptr;
|
||||
}
|
||||
// Return final slot
|
||||
LM_CORETURN &slot;
|
||||
return &slot;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM::InferencePool::Slot*) LM::InferencePool::get_free_slot() {
|
||||
LM::InferencePool::Slot *LM::InferencePool::get_free_slot() {
|
||||
// Attempt to find free slot while finding oldest one
|
||||
Slot *oldest = nullptr;
|
||||
for (auto& slot : slots) {
|
||||
// Take free slot
|
||||
if (slot.is_free()) {
|
||||
LM_CORETURN &slot;
|
||||
return &slot;
|
||||
}
|
||||
// Update oldest
|
||||
if (oldest == nullptr || slot.get_last_access() < oldest->get_last_access()) {
|
||||
|
@ -80,17 +80,17 @@ LM_SCHEDULABLE(LM::InferencePool::Slot*) LM::InferencePool::get_free_slot() {
|
|||
}
|
||||
// Free up oldest slot and take that one
|
||||
// Note: Since there has to be at least 1 slot, oldest is never going to be a nullptr
|
||||
LM_COAWAIT store_and_reset_slot(*oldest);
|
||||
LM_CORETURN oldest;
|
||||
store_and_reset_slot(*oldest);
|
||||
return oldest;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(LM::InferencePool::Slot*) LM::InferencePool::find_slot_by_id(size_t id, bool deserialize) {
|
||||
LM::InferencePool::Slot *LM::InferencePool::find_slot_by_id(size_t id, bool deserialize) {
|
||||
// Attempt to find given slot while finding oldest one
|
||||
Slot *oldest = nullptr;
|
||||
for (auto& slot : slots) {
|
||||
// Take slot with ID
|
||||
if (slot.get_id() == id) {
|
||||
LM_CORETURN &slot;
|
||||
return &slot;
|
||||
}
|
||||
// Update oldest
|
||||
if (oldest == nullptr || slot.get_last_access() < oldest->get_last_access()) {
|
||||
|
@ -99,38 +99,38 @@ LM_SCHEDULABLE(LM::InferencePool::Slot*) LM::InferencePool::find_slot_by_id(size
|
|||
}
|
||||
// Slot not found, attempt to load it
|
||||
if (deserialize) {
|
||||
if (!oldest->is_free()) LM_COAWAIT store_slot(*oldest);
|
||||
if (!LM_COAWAIT load_slot(id, oldest)) {
|
||||
if (!oldest->is_free()) store_slot(*oldest);
|
||||
if (!load_slot(id, oldest)) {
|
||||
// In case slot loading failed, still reset slot for later use
|
||||
//TODO: Make this configurable
|
||||
oldest->reset();
|
||||
} else {
|
||||
LM_CORETURN oldest;
|
||||
return oldest;
|
||||
}
|
||||
}
|
||||
// Slot not found
|
||||
LM_CORETURN nullptr;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(std::shared_ptr<LM::Inference>) LM::InferencePool::get_inference(size_t id) {
|
||||
auto slot = LM_COAWAIT find_slot_by_id(id);
|
||||
std::shared_ptr<LM::Inference> LM::InferencePool::get_inference(size_t id) {
|
||||
auto slot = find_slot_by_id(id);
|
||||
if (slot) {
|
||||
LM_CORETURN slot->get_inference(true);
|
||||
return slot->get_inference(true);
|
||||
}
|
||||
LM_CORETURN {};
|
||||
return {};
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(std::shared_ptr<LM::Inference>) LM::InferencePool::get_or_create_inference(size_t id, const std::string &weights_path, const Inference::Params &p) {
|
||||
auto slot = LM_COAWAIT find_slot_by_id(id);
|
||||
std::shared_ptr<LM::Inference> LM::InferencePool::get_or_create_inference(size_t id, const std::string &weights_path, const Inference::Params &p) {
|
||||
auto slot = find_slot_by_id(id);
|
||||
if (slot) {
|
||||
LM_CORETURN slot->get_inference(true);
|
||||
return slot->get_inference(true);
|
||||
}
|
||||
slot = LM_COAWAIT get_free_slot();
|
||||
LM_CORETURN slot->create_inference(id, weights_path, p);
|
||||
slot = get_free_slot();
|
||||
return slot->create_inference(id, weights_path, p);
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(void) LM::InferencePool::delete_inference(size_t id) {
|
||||
auto slot = LM_COAWAIT find_slot_by_id(id, false);
|
||||
void LM::InferencePool::delete_inference(size_t id) {
|
||||
auto slot = find_slot_by_id(id, false);
|
||||
// Reset slot
|
||||
if (slot) {
|
||||
slot->reset();
|
||||
|
@ -140,12 +140,12 @@ LM_SCHEDULABLE(void) LM::InferencePool::delete_inference(size_t id) {
|
|||
std::filesystem::remove(get_slot_filename(id), ec);
|
||||
}
|
||||
|
||||
LM_SCHEDULABLE(void) LM::InferencePool::store_all() {
|
||||
void LM::InferencePool::store_all() {
|
||||
for (auto& slot : slots) {
|
||||
if (slot.is_free()) continue;
|
||||
LM_COAWAIT store_slot(slot);
|
||||
store_slot(slot);
|
||||
}
|
||||
LM_CORETURN;
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<size_t> LM::InferencePool::get_active_slot_ids() const {
|
||||
|
|
17
llama.cpp
17
llama.cpp
|
@ -18,11 +18,7 @@ bool magic_match(std::istream& f) {
|
|||
// Check magic
|
||||
uint32_t magic = 0;
|
||||
f.read(reinterpret_cast<char*>(&magic), sizeof(magic));
|
||||
if (magic != 0x67676a74) return false;
|
||||
// Check version
|
||||
uint32_t version = 0;
|
||||
f.read(reinterpret_cast<char*>(&version), sizeof(version));
|
||||
return version LLAMA_VERSIONS;
|
||||
return magic == 0x46554747;
|
||||
}
|
||||
|
||||
LM::Inference *construct(const std::string &weights_path, std::ifstream& f, const LM::Inference::Params &p) {
|
||||
|
@ -30,3 +26,14 @@ LM::Inference *construct(const std::string &weights_path, std::ifstream& f, cons
|
|||
return new LM::LLaMAInference(weights_path, p);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__attribute__((constructor))
|
||||
static void init() {
|
||||
llama_backend_init(true);
|
||||
}
|
||||
|
||||
__attribute__((destructor))
|
||||
static void deinit() {
|
||||
llama_backend_free();
|
||||
}
|
||||
|
|
|
@ -1 +0,0 @@
|
|||
Subproject commit 0e018fe008eacebdbcfa2d61b6c988c245c961cd
|
|
@ -1 +0,0 @@
|
|||
Subproject commit 5ea43392731040b454c293123839b90e159cbb99
|
|
@ -1 +1 @@
|
|||
Subproject commit 29cf5596fe0c37213f9b74e80d8f631193a93f0f
|
||||
Subproject commit b9f47952ffae4e0d3420905526003c23333f6c98
|
280
llama.cpp.cmake
280
llama.cpp.cmake
|
@ -51,22 +51,27 @@ option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer"
|
|||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||
|
||||
# instruction set specific
|
||||
#option(LLAMA_AVX "llama: enable AVX" ON)
|
||||
#option(LLAMA_AVX2 "llama: enable AVX2" ON)
|
||||
#option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||
#option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||
#option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||
#option(LLAMA_FMA "llama: enable FMA" ON)
|
||||
option(LLAMA_AVX "llama: enable AVX" ON)
|
||||
option(LLAMA_AVX2 "llama: enable AVX2" ON)
|
||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||
option(LLAMA_FMA "llama: enable FMA" ON)
|
||||
# in MSVC F16C is implied with AVX2/AVX512
|
||||
#if (NOT MSVC)
|
||||
# option(LLAMA_F16C "llama: enable F16C" ON)
|
||||
#endif()
|
||||
if (NOT MSVC)
|
||||
option(LLAMA_F16C "llama: enable F16C" ON)
|
||||
endif()
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" OFF)
|
||||
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
||||
set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels")
|
||||
|
||||
#
|
||||
# Compile flags
|
||||
|
@ -207,89 +212,36 @@ if (NOT MSVC)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
function(remove_nonexistent SOURCES)
|
||||
set(SOURCES_BAK ${${SOURCES}})
|
||||
set(${SOURCES} )
|
||||
foreach (FILE ${SOURCES_BAK})
|
||||
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${FILE})
|
||||
set(${SOURCES} ${${SOURCES}} ${FILE})
|
||||
endif()
|
||||
endforeach()
|
||||
set(${SOURCES} ${${SOURCES}} PARENT_SCOPE)
|
||||
endfunction()
|
||||
|
||||
function(include_ggml DIRECTORY SUFFIX WITH_LLAMA)
|
||||
message(STATUS "Configuring ggml implementation target llama${SUFFIX} in ${CMAKE_CURRENT_SOURCE_DIR}/${DIRECTORY}")
|
||||
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
message(STATUS "ARM detected")
|
||||
if (MSVC)
|
||||
# TODO: arm msvc?
|
||||
else()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
add_compile_options(-mcpu=native)
|
||||
endif()
|
||||
# TODO: armv6,7,8 version specific flags
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
if (LLAMA_AVX512)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX512>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
elseif (LLAMA_AVX2)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX2>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX2>)
|
||||
elseif (LLAMA_AVX)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:C>:/arch:AVX>)
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
||||
endif()
|
||||
else()
|
||||
if (LLAMA_F16C)
|
||||
add_compile_options(-mf16c)
|
||||
endif()
|
||||
if (LLAMA_FMA)
|
||||
add_compile_options(-mfma)
|
||||
endif()
|
||||
if (LLAMA_AVX)
|
||||
add_compile_options(-mavx)
|
||||
endif()
|
||||
if (LLAMA_AVX2)
|
||||
add_compile_options(-mavx2)
|
||||
endif()
|
||||
if (LLAMA_AVX512)
|
||||
add_compile_options(-mavx512f)
|
||||
add_compile_options(-mavx512bw)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
add_compile_options(-mavx512vbmi)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
add_compile_options(-mavx512vnni)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
# TODO: support PowerPC
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Build libraries
|
||||
#
|
||||
|
||||
set(GGML_CUBLAS_USE NO)
|
||||
if (LLAMA_CUBLAS)
|
||||
cmake_minimum_required(VERSION 3.17)
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
if (CUDAToolkit_FOUND)
|
||||
set(GGML_CUBLAS_USE YES)
|
||||
message(STATUS "cuBLAS found")
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ${DIRECTORY}ggml-cuda.cu ${DIRECTORY}ggml-cuda.h)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
set(GGML_SOURCES_CUDA ${DIRECTORY}/ggml-cuda.cu ${DIRECTORY}/ggml-cuda.h)
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
|
@ -302,14 +254,19 @@ function(include_ggml DIRECTORY SUFFIX WITH_LLAMA)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
set(GGML_CLBLAST_USE NO)
|
||||
if (LLAMA_CLBLAST)
|
||||
find_package(CLBlast)
|
||||
if (CLBlast_FOUND)
|
||||
set(GGML_CLBLAST_USE YES)
|
||||
message(STATUS "CLBlast found")
|
||||
|
||||
set(GGML_OPENCL_SOURCES ${DIRECTORY}ggml-opencl.c ${DIRECTORY}ggml-opencl.h)
|
||||
set(GGML_OPENCL_SOURCE_FILE ggml-opencl.cpp)
|
||||
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${DIRECTORY}/${GGML_OPENCL_SOURCE_FILE})
|
||||
set(GGML_OPENCL_SOURCE_FILE ggml-opencl.c)
|
||||
endif()
|
||||
|
||||
add_compile_definitions(GGML_USE_CLBLAST)
|
||||
set(GGML_OPENCL_SOURCES ${DIRECTORY}/${GGML_OPENCL_SOURCE_FILE} ${DIRECTORY}/ggml-opencl.h)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} clblast)
|
||||
else()
|
||||
|
@ -317,35 +274,73 @@ function(include_ggml DIRECTORY SUFFIX WITH_LLAMA)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
add_library(ggml${SUFFIX} OBJECT
|
||||
${DIRECTORY}/ggml.c
|
||||
${DIRECTORY}/ggml.h
|
||||
${GGML_CUDA_SOURCES}
|
||||
${GGML_OPENCL_SOURCES})
|
||||
set(GGML_METAL_SOURCES )
|
||||
|
||||
if (LLAMA_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
find_library(METALPERFORMANCE_FRAMEWORK MetalPerformanceShaders REQUIRED)
|
||||
|
||||
set(GGML_METAL_SOURCES ${DIRECTORY}/ggml-metal.m ${DIRECTORY}/ggml-metal.h)
|
||||
# get full path to the file
|
||||
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
||||
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(${DIRECTORY}/ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
${METALPERFORMANCE_FRAMEWORK}
|
||||
)
|
||||
endif()
|
||||
|
||||
set(GGML_SOURCES
|
||||
${DIRECTORY}/ggml.c
|
||||
${DIRECTORY}/ggml.h
|
||||
${DIRECTORY}/ggml-alloc.c
|
||||
${DIRECTORY}/ggml-alloc.h
|
||||
${DIRECTORY}/ggml-quants.c
|
||||
${DIRECTORY}/ggml-quants.h
|
||||
${DIRECTORY}/ggml-backend.c
|
||||
${DIRECTORY}/ggml-backend.h}
|
||||
${GGML_SOURCES_CUDA}
|
||||
${GGML_METAL_SOURCES}
|
||||
${GGML_OPENCL_SOURCES})
|
||||
remove_nonexistent(GGML_SOURCES)
|
||||
add_library(ggml${SUFFIX} OBJECT ${GGML_SOURCES})
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE _GNU_SOURCE)
|
||||
|
||||
if (LLAMA_K_QUANTS)
|
||||
target_compile_definitions(ggml${SUFFIX} PUBLIC GGML_USE_K_QUANTS)
|
||||
endif()
|
||||
|
||||
if (LLAMA_METAL AND GGML_METAL_SOURCES)
|
||||
target_compile_definitions(ggml${SUFFIX} PUBLIC GGML_USE_METAL GGML_METAL_NDEBUG)
|
||||
endif()
|
||||
target_include_directories(ggml${SUFFIX} PUBLIC ${DIRECTORY})
|
||||
target_compile_features(ggml${SUFFIX} PUBLIC c_std_11) # don't bump
|
||||
target_link_libraries(ggml${SUFFIX} PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml${SUFFIX} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
if (WITH_LLAMA)
|
||||
# Backwards compatibility with old llama.cpp versions
|
||||
set(LLAMA_UTIL_SOURCE_FILE llama-util.h)
|
||||
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${DIRECTORY}/${LLAMA_UTIL_SOURCE_FILE})
|
||||
set(LLAMA_UTIL_SOURCE_FILE llama_util.h)
|
||||
SET(LLAMA_SOURCES
|
||||
${DIRECTORY}/llama.cpp
|
||||
${DIRECTORY}/llama.h
|
||||
${DIRECTORY}/common/grammar-parser.h
|
||||
${DIRECTORY}/common/grammar-parser.cpp)
|
||||
remove_nonexistent(LLAMA_SOURCES)
|
||||
add_library(llama${SUFFIX} ${LLAMA_SOURCES})
|
||||
|
||||
if (LLAMA_METAL AND GGML_METAL_SOURCES)
|
||||
target_compile_definitions(llama${SUFFIX} PUBLIC GGML_USE_METAL GGML_METAL_NDEBUG)
|
||||
endif()
|
||||
|
||||
add_library(llama${SUFFIX}
|
||||
${DIRECTORY}/llama.cpp
|
||||
${DIRECTORY}/llama.h
|
||||
${DIRECTORY}/${LLAMA_UTIL_SOURCE_FILE})
|
||||
|
||||
target_include_directories(llama${SUFFIX} PUBLIC ${DIRECTORY})
|
||||
target_compile_features(llama${SUFFIX} PUBLIC cxx_std_11) # don't bump
|
||||
target_link_libraries(llama${SUFFIX} PRIVATE ggml${SUFFIX} ${LLAMA_EXTRA_LIBS})
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(llama${SUFFIX} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
|
@ -353,7 +348,7 @@ function(include_ggml DIRECTORY SUFFIX WITH_LLAMA)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_SOURCES)
|
||||
if (GGML_SOURCES_CUDA)
|
||||
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
||||
set_property(TARGET ggml${SUFFIX} PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
set_property(TARGET ggml${SUFFIX} PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
||||
|
@ -361,4 +356,97 @@ function(include_ggml DIRECTORY SUFFIX WITH_LLAMA)
|
|||
set_property(TARGET llama${SUFFIX} PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CUBLAS_USE)
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE
|
||||
GGML_USE_CUBLAS
|
||||
GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}
|
||||
GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y})
|
||||
if (WITH_LLAMA)
|
||||
target_compile_definitions(llama${SUFFIX} PRIVATE
|
||||
GGML_USE_CUBLAS
|
||||
GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}
|
||||
GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y})
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_CLBLAST_USE)
|
||||
if (WITH_LLAMA)
|
||||
target_compile_definitions(llama${SUFFIX} PRIVATE GGML_USE_CLBLAST)
|
||||
endif()
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE GGML_USE_CLBLAST)
|
||||
endif()
|
||||
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
message(STATUS "ARM detected")
|
||||
if (MSVC)
|
||||
# TODO: arm msvc?
|
||||
else()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mcpu=native)
|
||||
endif()
|
||||
# TODO: armv6,7,8 version specific flags
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
if (LLAMA_AVX512)
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:C>:/arch:AVX512>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:/arch:AVX512>)
|
||||
# MSVC has no compile-time flags enabling specific
|
||||
# AVX512 extensions, neither it defines the
|
||||
# macros corresponding to the extensions.
|
||||
# Do it manually.
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||
endif()
|
||||
elseif (LLAMA_AVX2)
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:C>:/arch:AVX2>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:/arch:AVX2>)
|
||||
elseif (LLAMA_AVX)
|
||||
target_compile_definitions(ggml${SUFFIX} PRIVATE
|
||||
$<$<COMPILE_LANGUAGE:C>:/arch:AVX>
|
||||
$<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
||||
endif()
|
||||
else()
|
||||
if (LLAMA_F16C)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mf16c)
|
||||
endif()
|
||||
if (LLAMA_FMA)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mfma)
|
||||
endif()
|
||||
if (LLAMA_AVX)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mavx)
|
||||
endif()
|
||||
if (LLAMA_AVX2)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mavx2)
|
||||
endif()
|
||||
if (LLAMA_AVX512)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mavx512f)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mavx512bw)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VBMI)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mavx512vbmi)
|
||||
endif()
|
||||
if (LLAMA_AVX512_VNNI)
|
||||
target_compile_options(ggml${SUFFIX} PRIVATE -mavx512vnni)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
# TODO: support PowerPC
|
||||
message(STATUS "Unknown architecture")
|
||||
endif()
|
||||
|
||||
target_link_libraries(ggml${SUFFIX} PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||
if (WITH_LLAMA)
|
||||
target_link_libraries(llama${SUFFIX} PRIVATE ggml${SUFFIX} ${LLAMA_EXTRA_LIBS})
|
||||
endif()
|
||||
endfunction()
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <unistd.h>
|
||||
#include "../msvc_compat_unistd.h"
|
||||
#include <sstream>
|
||||
#include <thread>
|
||||
#include <unordered_set>
|
||||
|
@ -19,7 +19,7 @@
|
|||
#include <ggml.h>
|
||||
|
||||
inline
|
||||
unsigned long long operator ""_MB(unsigned long long bytes) {
|
||||
unsigned long long operator ""_MiB(unsigned long long bytes) {
|
||||
return bytes*1024*1024;
|
||||
}
|
||||
|
||||
|
@ -34,7 +34,7 @@ static bool kv_cache_init(
|
|||
const int64_t n_mem = (int64_t)n_layer*n_ctx;
|
||||
const int64_t n_elements = n_embd*n_mem;
|
||||
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MB);
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = cache.buf.size;
|
||||
|
@ -356,7 +356,7 @@ bool mpt_eval(
|
|||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
const size_t init_buf_size = 1024_MB;
|
||||
const size_t init_buf_size = 1024_MiB;
|
||||
if (!model.buf.addr || model.buf.size < init_buf_size)
|
||||
model.buf.resize(init_buf_size);
|
||||
|
||||
|
|
11
msvc_compat_unistd.h
Normal file
11
msvc_compat_unistd.h
Normal file
|
@ -0,0 +1,11 @@
|
|||
#if defined(_WIN32) && defined(_MSC_VER)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <io.h>
|
||||
#include <stdio.h> // for _fseeki64
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#endif
|
13
pybind.cpp
13
pybind.cpp
|
@ -24,16 +24,23 @@ PYBIND11_MODULE(justlm_py, m) {
|
|||
.def_readwrite("top_p", &Inference::Params::top_p)
|
||||
.def_readwrite("temp", &Inference::Params::temp)
|
||||
.def_readwrite("repeat_penalty", &Inference::Params::repeat_penalty)
|
||||
.def_readwrite("eos_ignores", &Inference::Params::eos_ignores)
|
||||
.def_readwrite("use_mlock", &Inference::Params::use_mlock);
|
||||
.def_readwrite("eos_ignores", &Inference::Params::n_eos_ignores)
|
||||
.def_readwrite("use_mlock", &Inference::Params::use_mlock)
|
||||
.def_readwrite("prefer_mirostat", &Inference::Params::prefer_mirostat)
|
||||
.def_readwrite("mirostat_learning_rate", &Inference::Params::mirostat_learning_rate)
|
||||
.def_readwrite("mirostat_target_entropy", &Inference::Params::mirostat_target_entropy);
|
||||
py::class_<Inference>(m, "Inference")
|
||||
.def_static("construct", &Inference::construct, py::arg("weights_path"), py::arg("params") = Inference::Params())
|
||||
.def("append", &Inference::append, py::arg("prompt"), py::arg("on_tick") = nullptr)
|
||||
.def("run", &Inference::run, py::arg("end") = "", py::arg("on_tick") = nullptr)
|
||||
.def("run", &Inference::run, py::arg("end") = "", py::arg("on_tick") = nullptr, py::arg("pre_tick") = nullptr)
|
||||
.def("create_savestate", &Inference::create_savestate)
|
||||
.def("restore_savestate", &Inference::restore_savestate)
|
||||
.def("get_prompt", &Inference::get_prompt)
|
||||
.def("get_context_size", &Inference::get_context_size)
|
||||
.def("is_mirostat_available", &Inference::is_mirostat_available)
|
||||
.def("is_grammar_available", &Inference::is_grammar_available)
|
||||
.def("load_grammar", &Inference::load_grammar)
|
||||
.def("unload_grammar", &Inference::unload_grammar)
|
||||
.def_readwrite("params", &Inference::params);
|
||||
py::class_<Inference::Savestate>(m, "Savestate")
|
||||
.def(py::init<>());
|
||||
|
|
Loading…
Add table
Reference in a new issue