#include "justlm.hpp" #include #include #include namespace LM { class LLaMaInference final : public Inference { struct State { llama_context *ctx = nullptr; std::string prompt; // Mostly here for easy "debugging" std::vector tokens; int n_ctx; }; State*& get_state() { return *reinterpret_cast(&generic_state); } State* const& get_state() const { return *reinterpret_cast(&generic_state); } LM_ERRBOOL init(const std::string& weights_path) LM_NOEXCEPTDECL { auto& state = get_state(); // Allocate state state = new State; // Get llama parameters auto lparams = llama_context_default_params(); lparams.seed = params.seed; lparams.n_ctx = params.n_ctx = params.n_ctx>0?params.n_ctx:2024; lparams.use_mlock = params.use_mlock; // Create context state->ctx = llama_init_from_file(weights_path.c_str(), lparams); if (!state->ctx) { LM_THROW("Failed to initialize llama from file", LM_BOOL_ERROR); } // Initialize some variables state->n_ctx = llama_n_ctx(state->ctx); return LM_BOOL_SUCCESS; } // This function reduces the size of our tokens vector according to some parameters // All tokens will be evaluated if scrolling was needed and true will be returned LM_SCHEDULABLE(bool) window_scroll() LM_NOEXCEPTDECL { auto &state = get_state(); // Check that we actually need to scroll if (state->tokens.size() <= state->n_ctx) { // Nope LM_CORETURN false; } // Start scrolling if (params.scroll_keep > 0.0f) { // "Scroll" down the context window... unsigned keep_count = float(state->tokens.size() - params.n_ctx_window_top_bar) * 0.4f; // We keep about 40% // Get vector of tokens to keep std::vector tokens_in_view(state->tokens.end()-keep_count, state->tokens.end()); // Cut down tokens vector size state->tokens.resize(params.n_ctx_window_top_bar+keep_count); // Overwrite tokens after top bar with tokens in view std::memcpy(state->tokens.data()+params.n_ctx_window_top_bar, tokens_in_view.data(), tokens_in_view.size()*sizeof(int)); } else { // Cut down tokens vector size to top bar state->tokens.resize(params.n_ctx_window_top_bar); } // Evaluate tokens LM_ERROR_FORWARD(LM_COAWAIT evaluate_tokens(0, on_scroll)); LM_CORETURN true; } LM_SCHEDULABLE(LM_ERRBOOL) evaluate_tokens(size_t starting_offset, const std::function &on_tick = nullptr) LM_NOEXCEPTDECL { auto& state = get_state(); // Evaluate tokens in batches unsigned it; for (it = starting_offset; ; it += params.n_batch) { if (it + params.n_batch >= ssize_t(state->tokens.size())) break; // Evaluate if (llama_eval(state->ctx, state->tokens.data()+it, params.n_batch, it, params.n_threads)) { LM_COTHROW("Failed to evaluate tokens in batches", LM_BOOL_ERROR); } // Tick if (on_tick) { // Calculate progress auto progress = float(it-starting_offset) / (state->tokens.size()-starting_offset) * 100.f; // Tick and yield if (!on_tick(progress)) LM_BOOL_SUCCESS; else if (!LM_TASKYIELD) LM_BOOL_SUCCESS; } } // Evaluate remaining tokens if (it < state->tokens.size()) { for (; it != state->tokens.size(); it++) { if (llama_eval(state->ctx, state->tokens.data()+it, 1, it, params.n_threads)) { LM_COTHROW("Failed to evaluate individual tokens", LM_BOOL_ERROR); } } } // Notify about completion if (on_tick) on_tick(100.f); LM_CORETURN LM_BOOL_SUCCESS; } public: LLaMaInference(const std::string& weights_path, const Params& p) : Inference(p) { init(weights_path); } ~LLaMaInference() override { auto& state = get_state(); if (state) { if (state->ctx) llama_free(state->ctx); delete state; } } LM_SCHEDULABLE(LM_ERRBOOL) append(const std::string& prompt, const std::function &on_tick = nullptr) LM_NOEXCEPTDECL override { auto& state = get_state(); // Check if prompt was empty const bool was_empty = state->prompt.empty(); // Append to current prompt state->prompt.append(prompt); // Resize buffer for tokens const auto old_token_count = state->tokens.size(); state->tokens.resize(old_token_count+state->prompt.size()); // Run tokenizer const auto token_count = llama_tokenize(state->ctx, prompt.c_str(), state->tokens.data()+old_token_count, state->tokens.size()-old_token_count, was_empty); state->tokens.resize(old_token_count+token_count); // Make sure token limit isn't being hit if (LM_COAWAIT window_scroll()) { // That function already has evaluated our tokens since scrolling was needed LM_CORETURN LM_BOOL_SUCCESS; } // Evaluate new tokens LM_CORETURN LM_COAWAIT evaluate_tokens(old_token_count, on_tick); } LM_SCHEDULABLE(std::string) run(std::string_view end, const std::function &on_tick = nullptr) LM_NOEXCEPTDECL override { auto& state = get_state(); std::string fres; // Loop until done bool abort = false; unsigned eos_count = 0; while (!abort && !ends_with(fres, end)) { // Sample top p and top k auto id = llama_sample_top_p_top_k(state->ctx, params.n_repeat_last?(state->tokens.data()+state->tokens.size()-params.n_repeat_last):nullptr, params.n_repeat_last, params.top_k, params.top_p, params.temp, params.repeat_penalty); if (id == llama_token_eos()) { if (eos_count++ == params.eos_ignores) { abort = true; continue; } state->tokens.push_back(0); llama_tokenize(state->ctx, "\n", &state->tokens.back(), 1, false); id = state->tokens.back(); } else { // Add token state->tokens.push_back(id); } // Make sure token limit isn't hit LM_COAWAIT window_scroll(); // Get token as string const auto str = llama_token_to_str(state->ctx, id); // Append string to function result fres.append(str); // Evaluate token // TODO: Respect batch size if (llama_eval(state->ctx, state->tokens.data()+state->tokens.size()-1, 1, state->tokens.size()-1, params.n_threads)) { LM_COTHROW("Failed to evaluate new tokens", ""); } // Tick and yield if (on_tick && !on_tick(str)) abort = true; else if (!LM_TASKYIELD) abort = true; } // Create final string TODO: Could be optimized state->prompt.append(fres); if (!abort) { fres = std::string(fres.data(), fres.size()-end.size()); } // Return final string LM_CORETURN fres; } unsigned get_context_size() const noexcept override { return get_state()->tokens.size(); } LM_SCHEDULABLE(LM_ERRBOOL) create_savestate(Savestate &sv) const LM_NOEXCEPTDECL override { auto& state = get_state(); sv.buf.resize(llama_get_state_size(state->ctx)); llama_copy_state_data(state->ctx, sv.buf.data()); sv.tokens = state->tokens; sv.prompt = state->prompt; sv.ctx = generic_state; LM_CORETURN LM_BOOL_SUCCESS; } LM_SCHEDULABLE(LM_ERRBOOL) restore_savestate(const Savestate &sv) LM_NOEXCEPTDECL override { auto& state = get_state(); if (sv.ctx != generic_state) LM_COTHROW("Savestate does not match context", LM_BOOL_ERROR); llama_set_state_data(state->ctx, sv.buf.data()); state->tokens = sv.tokens; state->prompt = sv.prompt; LM_CORETURN LM_BOOL_SUCCESS; } LM_SCHEDULABLE(LM_ERRBOOL) serialize(std::ostream &o) const LM_NOEXCEPTDECL override { auto& state = get_state(); // Get state size auto state_size = llama_get_state_size(state->ctx); // Write sizes for (const uint32_t s : {static_cast(state->n_ctx), state->tokens.size(), state->prompt.size(), state_size}) { if (!o.write(reinterpret_cast(&s), sizeof(s))) { LM_COTHROW("Failed to serialize data sizes", LM_BOOL_ERROR); } } // Write tokens if (!o.write(reinterpret_cast(state->tokens.data()), state->tokens.size()*sizeof(int))) { LM_COTHROW("Failed to serialize tokens", LM_BOOL_ERROR); } // Write prompt if (!o.write(state->prompt.data(), state->prompt.size())) { LM_COTHROW("Failed to serialize prompt", LM_BOOL_ERROR); } // Write state std::vector state_buf(state_size); llama_copy_state_data(state->ctx, state_buf.data()); if (!o.write(reinterpret_cast(state_buf.data()), state_size)) { LM_COTHROW("Failed to serialize state", LM_BOOL_ERROR); } LM_CORETURN LM_BOOL_SUCCESS; } LM_SCHEDULABLE(LM_ERRBOOL) deserialize(std::istream &i) LM_NOEXCEPTDECL override { auto& state = get_state(); uint32_t n_ctx, embd_size, prompt_size, state_size; // Initialization to prevent compiler complaints n_ctx = embd_size = prompt_size = state_size = 0; // Read sizes for (uint32_t *s : {&n_ctx, &embd_size, &prompt_size, &state_size}) { if (!i.read(reinterpret_cast(s), sizeof(*s))) { LM_COTHROW("Failed to deserialize data sizes", LM_BOOL_ERROR); } } if (state->n_ctx != n_ctx) { LM_COTHROW("Context length differs (My "+std::to_string(state->n_ctx)+" vs. files "+std::to_string(n_ctx)+')', LM_BOOL_ERROR); } // Read tokens state->tokens.resize(embd_size); if (!i.read(reinterpret_cast(state->tokens.data()), state->tokens.size()*sizeof(int))) { LM_COTHROW("Failed to deserialize tokens", LM_BOOL_ERROR); } // Read prompt state->prompt.resize(prompt_size); if (!i.read(state->prompt.data(), state->prompt.size())) { LM_COTHROW("Failed to deserialize prompt", LM_BOOL_ERROR); } // Read state std::vector state_buf(state_size); if (!i.read(reinterpret_cast(state_buf.data()), state_buf.size())) { LM_COTHROW("Failed to deserialize state", LM_BOOL_ERROR); } llama_set_state_data(state->ctx, state_buf.data()); LM_CORETURN LM_BOOL_SUCCESS; } const std::string &get_prompt() const LM_NOEXCEPTDECL override { return get_state()->prompt; } }; }