- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up
a single CPU. This reduces IPIs and interruptions
on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar
fashion.
- Skip IPIs in tick_nohz_kick_task() when trying
to kick a non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags
handling to reduce context switching costs.
- Misc cleanups and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcycRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jItRAAn1/vI0+pWQWjyWQ+CL8AMNNWTbtBpC7W
ZUR+IEtEoYEufYXH9RgcweIgopBExVlC9CWzUX5o7AuVdN2YyzcBuQbza4vlYeIm
azcdIlKCwjdgODJBTgHNH7IR0QKF/Gq+fVCGX3Xc37BlyD389CQ33HXC7X2JZLB3
Mb5wxAJoZ2HQzGGJoz4JyA0rl6lY3jYzLMK7mqxkUqIqT45xLpgw5+imRM2J1ddV
d/73P4TwFY+E8KXSLctUfgmkmCzJYISGSlH49jX3CkwAktwTY17JjWjxT9Z5b2D8
6TTpsDoLtI4tXg0U2KsBxBoDHK/a4hAwo+GnE/RMT6ghqaX5IrANrgtTVPBN9dvh
qUGVAMHVDN3Ed7wwFvCm4tPUz/iXzBsP8xPl28WPHsyV9BE9tcrk2ynzSWy47Twd
z1GVZDNTwCfdvH62WS/HvbPdGl2hHH5/oe3HaF1ROLPHq8UzaxwKEX+A0rwLJrBp
ZU8Lnvu3rPVa5cHc4z1AE7sbX7OkTTNjxY/qQzDhNKwVwfkaPcBiok9VgEIEGS7A
n3U/yuQCn307sr7SlJ6z4yu3YCw3aEJ3pTxUprmNTh3+x4yF5ZaOimqPyvzBaUVM
Hm3LYrxHIScisFJio4FiC2dghZryM37RFonvqrCAOuA+afMU2GOFnaoDruXU27SE
tqxR6c/hw+4=
=18pN
-----END PGP SIGNATURE-----
Merge tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers/nohz updates from Ingo Molnar:
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up a single CPU.
This reduces IPIs and interruptions on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar fashion.
- Skip IPIs in tick_nohz_kick_task() when trying to kick a
non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags handling to
reduce context switching costs.
- Misc cleanups and fixes
* tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Add myself as context tracking maintainer
tick/nohz: Call tick_nohz_task_switch() with interrupts disabled
tick/nohz: Kick only _queued_ task whose tick dependency is updated
tick/nohz: Change signal tick dependency to wake up CPUs of member tasks
tick/nohz: Only wake up a single target cpu when kicking a task
tick/nohz: Update nohz_full Kconfig help
tick/nohz: Update idle_exittime on actual idle exit
tick/nohz: Remove superflous check for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
tick/nohz: Conditionally restart tick on idle exit
tick/nohz: Evaluate the CPU expression after the static key
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow
the flexible utilization of SMT siblings, without exposing
untrusted domains to information leaks & side channels, plus
to ensure more deterministic computing performance on SMT
systems used by heterogenous workloads.
There's new prctls to set core scheduling groups, which
allows more flexible management of workloads that can share
siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve
'memcache'-like workloads.
- "Age" (decay) average idle time, to better track & improve workloads
such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked
via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable
it at runtime if tooling needs it. Use static keys and
other optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
+U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
UmG7bt94Trk=
=3VDr
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaxMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hPgw//f9SnGzFoP1uR5TBqM8j/QHulMewew/iD
dM5lh2emdmqHWYPBeRxUHgag38K2Golr3Y+NxLA3R+RMx+OZQe8Mz/wYvPQcBvsV
k1HHImU3GRMn4GM7GwxH3vPIottDUx3mNS2J6pzlw3kwRUVqrxUdj/0/pSY/4eJ7
ZT4uq4yLV83Jd3qioU7o7e/u6MrdNIIcAXRpVDdE9Mm1+kWXSVN7/h3Vsiz4tj5E
iS+UXEtSc1a2mnmekv63pYkJHHNUb6guD8jgI/wrm1KIFGjDRifM+3TV6R/kB96/
TfD2LhCcTShfSp8KI191pgV7/NQbB/PmLdSYmff3rTBiii4cqXuCygJCHInZ09z0
4fTSSqM6aHg7kfTQyOCp+DUQ+9vNVXWo8mxt9c6B8xA0GyCI3zhjQ4UIiSUWRpjs
Be5ZyF0kNNuPxYrKFnGnBf8+51DURpCz3sDdYRuK4KNkj1+4ZvJo/KzGTMUUIE4B
IDQG6wDP5Kb388eRDtKrG5X7IXg+L5F/kezin60j0QF5MwDgxirT217teN8H1lNn
YgWMjRK8Tw0flUJsbCxa51/nl93UtByB+fIRIc88MSeLxcI6/ORW+TxBBEqkYm5Z
6BLFtmHSuAqAXUuyZXSGLcW7XLJvIaDoHgvbDn6l4g7FMWHqPOIq6nJQY3L8ben2
e+fQrGh4noI=
=20Vc
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix task context PMU for Hetero
perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
perf/x86/intel: Fix fixed counter check warning for some Alder Lake
perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
kprobes: Do not increment probe miss count in the fault handler
x86,kprobes: WARN if kprobes tries to handle a fault
kprobes: Remove kprobe::fault_handler
uprobes: Update uprobe_write_opcode() kernel-doc comment
perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
perf/core: Fix DocBook warnings
perf/core: Make local function perf_pmu_snapshot_aux() static
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
- Core locking & atomics:
- Convert all architectures to ARCH_ATOMIC: move every
architecture to ARCH_ATOMIC, then get rid of ARCH_ATOMIC
and all the transitory facilities and #ifdefs.
Much reduction in complexity from that series:
63 files changed, 756 insertions(+), 4094 deletions(-)
- Self-test enhancements
- Futexes:
- Add the new FUTEX_LOCK_PI2 ABI, which is a variant that
doesn't set FLAGS_CLOCKRT (.e. uses CLOCK_MONOTONIC).
[ The temptation to repurpose FUTEX_LOCK_PI's implicit
setting of FLAGS_CLOCKRT & invert the flag's meaning
to avoid having to introduce a new variant was
resisted successfully. ]
- Enhance futex self-tests
- Lockdep:
- Fix dependency path printouts
- Optimize trace saving
- Broaden & fix wait-context checks
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaEYRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hPdxAAiNCsxL6X1cZ8zqbWsvLefT9Zqhzgs5u6
gdZele7PNibvbYdON26b5RUzuKfOW/hgyX6LKqr+AiNYTT9PGhcY+tycUr2PGk5R
LMyhJWmmX5cUVPU92ky+z5hEHB2gr4XPJcvgpKKUL0XB1tBaSvy2DtgwPuhXOoT1
1sCQfy63t71snt2RfEnibVW6xovwaA2lsqL81lLHJN4iRFWvqO498/m4+PWkylsm
ig/+VT1Oz7t4wqu3NhTqNNZv+4K4W2asniyo53Dg2BnRm/NjhJtgg4jRibrb0ssb
67Xdq6y8+xNBmEAKj+Re8VpMcu4aj346Ctk7d4gst2ah/Rc0TvqfH6mezH7oq7RL
hmOrMBWtwQfKhEE/fDkng30nrVxc/98YXP0n2rCCa0ySsaF6b6T185mTcYDRDxFs
BVNS58ub+zxrF9Zd4nhIHKaEHiL2ZdDimqAicXN0RpywjIzTQ/y11uU7I1WBsKkq
WkPYs+FPHnX7aBv1MsuxHhb8sUXjG924K4JeqnjF45jC3sC1crX+N0jv4wHw+89V
h4k20s2Tw6m5XGXlgGwMJh0PCcD6X22Vd9Uyw8zb+IJfvNTGR9Rp1Ec+1gMRSll+
xsn6G6Uy9bcNU0SqKlBSfelweGKn4ZxbEPn76Jc8KWLiepuZ6vv5PBoOuaujWht9
KAeOC5XdjMk=
=tH//
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Core locking & atomics:
- Convert all architectures to ARCH_ATOMIC: move every architecture
to ARCH_ATOMIC, then get rid of ARCH_ATOMIC and all the
transitory facilities and #ifdefs.
Much reduction in complexity from that series:
63 files changed, 756 insertions(+), 4094 deletions(-)
- Self-test enhancements
- Futexes:
- Add the new FUTEX_LOCK_PI2 ABI, which is a variant that doesn't
set FLAGS_CLOCKRT (.e. uses CLOCK_MONOTONIC).
[ The temptation to repurpose FUTEX_LOCK_PI's implicit setting of
FLAGS_CLOCKRT & invert the flag's meaning to avoid having to
introduce a new variant was resisted successfully. ]
- Enhance futex self-tests
- Lockdep:
- Fix dependency path printouts
- Optimize trace saving
- Broaden & fix wait-context checks
- Misc cleanups and fixes.
* tag 'locking-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
locking/lockdep: Correct the description error for check_redundant()
futex: Provide FUTEX_LOCK_PI2 to support clock selection
futex: Prepare futex_lock_pi() for runtime clock selection
lockdep/selftest: Remove wait-type RCU_CALLBACK tests
lockdep/selftests: Fix selftests vs PROVE_RAW_LOCK_NESTING
lockdep: Fix wait-type for empty stack
locking/selftests: Add a selftest for check_irq_usage()
lockding/lockdep: Avoid to find wrong lock dep path in check_irq_usage()
locking/lockdep: Remove the unnecessary trace saving
locking/lockdep: Fix the dep path printing for backwards BFS
selftests: futex: Add futex compare requeue test
selftests: futex: Add futex wait test
seqlock: Remove trailing semicolon in macros
locking/lockdep: Reduce LOCKDEP dependency list
locking/lockdep,doc: Improve readability of the block matrix
locking/atomics: atomic-instrumented: simplify ifdeffery
locking/atomic: delete !ARCH_ATOMIC remnants
locking/atomic: xtensa: move to ARCH_ATOMIC
locking/atomic: sparc: move to ARCH_ATOMIC
locking/atomic: sh: move to ARCH_ATOMIC
...
kernel tooling such as kpatch-build.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZYv4RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ipeBAAhJPS/kCQ17Y5zGyMB0/6yfCWIifODoS7
9J+6/mqKHPDdV07yzPtOXuTTmpKV4OHPi8Yj8kaXs5L5fOmQ1uAwITwZNF5hU0a5
CiFIsubUCJmglf9b6L9EH5pBEQ72Cq4u8zIhJ9LmZ4t625AHJAm2ikZgascc4U67
RvVoGr5sYTo0YEsc1IDM1wUtnUhXBNjS1VwkXNnCFFTXYHju47MeY1sPHq2hvkzO
iJGC9A+hxfM1eQt9/qC/2L/6F/XECN61gcR9Get8TkWeEGHmPG+FthmPLd4oO9Ho
03J4JfMbmXumWosAeilYBNUkfii/M5Em78Wpv/cB94iSt67rq7Eb+8gm4D5svmfN
l+utsPY/HYB+uWV0hy2cV/ORRiwcJnon54dEWL6912YkKz+OIb3DK/7l9ex5lW+D
r3o8NP0s6S+RgUkOFxz5VaYK1giu6fiaFysWdKeflvwlvY/64owMepQ1QfPBbeB7
3DTzvuYZ4Cb1x/vR6WBbFqGcuJKZ1CsZIBLCblveUs+G0wlu147K5E1qlXg/Wvq7
5Vzznc4fmRng8np5hxAw8ieLkatWg7szyryUV/4H2Ubs/jWGcH628ZYbapaCb7EM
Eson65xzbVfhnz16z8sN13XIF1lGe8sb0+qiFSclEfyDUnZDuhwMn6d9Ubqxrg5J
uTULEzmY/rI=
=MvPd
-----END PGP SIGNATURE-----
mergetag object d33b9035e1
type commit
tag objtool-core-2021-06-28
tagger Ingo Molnar <mingo@kernel.org> 1624859477 +0200
The biggest change in this cycle is the new code to handle
and rewrite variable sized jump labels - which results in
slightly tighter code generation in hot paths, through the
use of short(er) NOPs.
Also a number of cleanups and fixes, and a change to the
generic include/linux/compiler.h to handle a s390 GCC quirk.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZZGcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1goYg/7BxUIJXP0F5wbrMbAvJIDRgR/j3TA+ztk
uNU1yabBGluMxCqJ87HadJ+A5d010G+GRUn/birVr7w1UuwWv8HOda78dnyG7tme
xm78/1FlOnstuOTQxhK6rjbb2cp+QOmdsAQkq1TF4SOxArBQiwtjiOvytHjb5yNx
7LrlbtuZ7Dtc0qd2evkG4ma4QkGoDhBS1dRogrItc27ZLuFIQoNnEd2K2QNMgczw
a/Jx8fgNmdoJSq+vkBn9TnS/cJYUW/PAlPNtO3ac8yE857aDIVnjXFRzveAP/nTh
rwFD6aCGnJAqyqP7A8ElNjySos5O+ebYApxe7rEx0TNLbrc55qSP9lpdIO+vgytV
Xzy4O7z6o+lailQ4EoF8Qf+rlPeue0kLF23SsNbZY1uT0vjX1Uv70xgKbkuyPygp
GNXAy6dOXK0AfaZYL/Wa50yVnJnkYDjes/hHr+HEam5Oad566pqIyQNP8yWSPqaf
KHkL//1pb5C2RKwot4IYv/ftHfZB5QftoFq6bhGBc1GXUd/FiqivvGHPW/6g7rxi
ZIrXs+Fqm/5KP9mssNONfyz5XEvbcUTD1CbeqX9eyVbiYZbLp1oWSgtogiRW9ya+
HR7t0Dt/UFzFWbilb6EZff/Hdr1NZBZLdrfpvVDoMf5tR9J0BIOyjddTu89g/FIO
KcfJ5yyjJBU=
=+HAB
-----END PGP SIGNATURE-----
Merge tags 'objtool-urgent-2021-06-28' and 'objtool-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fix and updates from Ingo Molnar:
"An ELF format fix for a section flags mismatch bug that breaks kernel
tooling such as kpatch-build.
The biggest change in this cycle is the new code to handle and rewrite
variable sized jump labels - which results in slightly tighter code
generation in hot paths, through the use of short(er) NOPs.
Also a number of cleanups and fixes, and a change to the generic
include/linux/compiler.h to handle a s390 GCC quirk"
* tag 'objtool-urgent-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Don't make .altinstructions writable
* tag 'objtool-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Improve reloc hash size guestimate
instrumentation.h: Avoid using inline asm operand modifiers
compiler.h: Avoid using inline asm operand modifiers
kbuild: Fix objtool dependency for 'OBJECT_FILES_NON_STANDARD_<obj> := n'
objtool: Reflow handle_jump_alt()
jump_label/x86: Remove unused JUMP_LABEL_NOP_SIZE
jump_label, x86: Allow short NOPs
objtool: Provide stats for jump_labels
objtool: Rewrite jump_label instructions
objtool: Decode jump_entry::key addend
jump_label, x86: Emit short JMP
jump_label: Free jump_entry::key bit1 for build use
jump_label, x86: Add variable length patching support
jump_label, x86: Introduce jump_entry_size()
jump_label, x86: Improve error when we fail expected text
jump_label, x86: Factor out the __jump_table generation
jump_label, x86: Strip ASM jump_label support
x86, objtool: Dont exclude arch/x86/realmode/
objtool: Rewrite hashtable sizing
kernel test robot reported:
>> kernel/trace/trace_osnoise.c:1584:2: error: void function
'osnoise_init_hotplug_support' should not return a
value [-Wreturn-type]
return 0;
When !CONFIG_HOTPLUG_CPU.
Fix it problem by removing the return value.
Link: https://lkml.kernel.org/r/c7fc67f1a117cc88bab2e508c898634872795341.1624872608.git.bristot@redhat.com
Fixes: c8895e271f ("trace/osnoise: Support hotplug operations")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
kernel test robot reported:
>> kernel/trace/trace_osnoise.c:966:3: warning: comparison of distinct
pointer types ('typeof ((interval)) *' (aka 'long long *') and
'uint64_t *' (aka 'unsigned long long *'))
[-Wcompare-distinct-pointer-types]
do_div(interval, USEC_PER_MSEC);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
include/asm-generic/div64.h:228:28: note: expanded from macro 'do_div'
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~
As interval cannot be negative because sample_period >= sample_runtime,
making interval u64 on osnoise_main() is enough to fix this problem.
Link: https://lkml.kernel.org/r/4ae1e7780563598563de079a3ef6d4d10b5f5546.1624872608.git.bristot@redhat.com
Fixes: bce29ac9ce ("trace: Add osnoise tracer")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
kernel test robot reported some osnoise functions with "no previous
prototype."
Fix these warnings by making local functions static, and by adding:
void osnoise_trace_irq_entry(int id);
void osnoise_trace_irq_exit(int id, const char *desc);
to include/linux/trace.h.
Link: https://lkml.kernel.org/r/e40d3cb4be8bde921f4b40fa6a095cf85ab807bd.1624872608.git.bristot@redhat.com
Fixes: bce29ac9ce ("trace: Add osnoise tracer")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
ftracetest triggered:
INFO: rcu_tasks detected stalls on tasks:
00000000b92b832d: .. nvcsw: 1/1 holdout: 1 idle_cpu: -1/7
task:osnoise/7 state:R running task stack: 0 pid: 2133 ppid: 2 flags:0x00004000
Call Trace:
? asm_sysvec_apic_timer_interrupt+0x12/0x20
? asm_sysvec_apic_timer_interrupt+0x12/0x20
? trace_hardirqs_on+0x2b/0xe0
? asm_sysvec_apic_timer_interrupt+0x12/0x20
? trace_clock_local+0xc/0x20
? osnoise_main+0x10e/0x450
? trace_softirq_entry_callback+0x50/0x50
? kthread+0x153/0x170
? __kthread_bind_mask+0x60/0x60
? ret_from_fork+0x22/0x30
While running osnoise tracer with other tracers that rely on
synchronize_rcu_tasks(), where that just hung.
The reason is that osnoise_main() never schedules out if the interval
is less than 1, and this will cause synchronize_rcu_tasks() to never
return.
Link: https://lkml.kernel.org/r/20210628114953.6dc06a91@oasis.local.home
Fixes: bce29ac9ce ("trace: Add osnoise tracer")
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The main core change this release is generic support for handling of
hardware errors from Matti Vaittinen, including some small updates to
the reboot and thermal code so we can share support for powering off the
system if things are going wrong enough. Otherwise this release we've
mainly seen the addition of new drivers, including MT6359 which has
pulled in some small changes from the MFD tree for build dependencies.
- Support for controlling the trigger points for hardware error
detection, and shared handlers for this.
- Support for Maxim MAX8993, Mediatek MT6359 and MT6359P, Qualcomm
PM8226 and SA8115P-ADP, and Sylergy TCS4526.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmDZ0awACgkQJNaLcl1U
h9CQ4QgAgF9bejmNcBDIDBoGd1OlO2HIZeamVyvVEbzy1eG0vU1dxmatrS09ccfZ
1r4uHYjSwoWoggvOhdlIglqOTsTxM5zHEtz00lXR1iOd9Y6nPkCztT9HGV/bjn3E
It42MNnbStIZ+XuQDzGxzEaFr9O2AKyA6u54iSSaiIIjUA7Ndg6SEcw3BqOMTk2J
pueebhbznawYUkwxT8mKJY3eJG6rh3+cy/Vpm1yL97x4C0435Fm/xfjrVcELSsaF
e+I+XZZsaGQwOouQl05nbHpcU1agsH33e6rgsThReNRLRKl116Zz+GIZvmawlE7T
AZaZeI3cQZu0oVRT4iA3nV8MY0LlnA==
=XB/O
-----END PGP SIGNATURE-----
Merge tag 'regulator-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator
Pull regulator updates from Mark Brown:
"The main core change this release is generic support for handling of
hardware errors from Matti Vaittinen, including some small updates to
the reboot and thermal code so we can share support for powering off
the system if things are going wrong enough.
Otherwise this release we've mainly seen the addition of new drivers,
including MT6359 which has pulled in some small changes from the MFD
tree for build dependencies.
- Support for controlling the trigger points for hardware error
detection, and shared handlers for this.
- Support for Maxim MAX8993, Mediatek MT6359 and MT6359P, Qualcomm
PM8226 and SA8115P-ADP, and Sylergy TCS4526"
* tag 'regulator-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator: (91 commits)
regulator: bd9576: Fix uninitializes variable may_have_irqs
regulator: max8893: Select REGMAP_I2C to fix build error
regulator: da9052: Ensure enough delay time for .set_voltage_time_sel
regulator: mt6358: Fix vdram2 .vsel_mask
regulator: hi6421v600: Fix setting wrong driver_data
MAINTAINERS: Add reviewer for regulator irq_helpers
regulator: bd9576: Fix the driver name in id table
regulator: bd9576: Support error reporting
regulator: bd9576 add FET ON-resistance for OCW
regulator: add property parsing and callbacks to set protection limits
regulator: IRQ based event/error notification helpers
regulator: move rdev_print helpers to internal.h
regulator: add warning flags
thermal: Use generic HW-protection shutdown API
reboot: Add hardware protection power-off
regulator: Add protection limit properties
regulator: hi6421v600: Fix setting idle mode
regulator: Add MAX8893 bindings
regulator: max8893: add regulator driver
regulator: hi6421: Use correct variable type for regmap api val argument
...
kmemleak scans struct page, but it does not scan the page content. If we
allocate some memory with kmalloc(), then allocate page with alloc_page(),
and if we put kmalloc pointer somewhere inside that page, kmemleak will
report kmalloc pointer as a false positive.
We can instruct kmemleak to scan the memory area by calling kmemleak_alloc()
and kmemleak_free(), but part of struct bpf_ringbuf is mmaped to user space,
and if struct bpf_ringbuf changes we would have to revisit and review size
argument in kmemleak_alloc(), because we do not want kmemleak to scan the
user space memory. Let's simplify things and use kmemleak_not_leak() here.
For posterity, also adding additional prior analysis from Andrii:
I think either kmemleak or syzbot are misreporting this. I've added a
bunch of printks around all allocations performed by BPF ringbuf. [...]
On repro side I get these two warnings:
[vmuser@archvm bpf]$ sudo ./repro
BUG: memory leak
unreferenced object 0xffff88810d538c00 (size 64):
comm "repro", pid 2140, jiffies 4294692933 (age 14.540s)
hex dump (first 32 bytes):
00 af 19 04 00 ea ff ff c0 ae 19 04 00 ea ff ff ................
80 ae 19 04 00 ea ff ff c0 29 2e 04 00 ea ff ff .........)......
backtrace:
[<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0
[<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218
[<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90
[<00000000f601d565>] do_syscall_64+0x2d/0x40
[<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae
BUG: memory leak
unreferenced object 0xffff88810d538c80 (size 64):
comm "repro", pid 2143, jiffies 4294699025 (age 8.448s)
hex dump (first 32 bytes):
80 aa 19 04 00 ea ff ff 00 ab 19 04 00 ea ff ff ................
c0 ab 19 04 00 ea ff ff 80 44 28 04 00 ea ff ff .........D(.....
backtrace:
[<0000000077bfbfbd>] __bpf_map_area_alloc+0x31/0xc0
[<00000000587fa522>] ringbuf_map_alloc.cold.4+0x48/0x218
[<0000000044d49e96>] __do_sys_bpf+0x359/0x1d90
[<00000000f601d565>] do_syscall_64+0x2d/0x40
[<0000000043d3112a>] entry_SYSCALL_64_after_hwframe+0x44/0xae
Note that both reported leaks (ffff88810d538c80 and ffff88810d538c00)
correspond to pages array bpf_ringbuf is allocating and tracking properly
internally. Note also that syzbot repro doesn't close FD of created BPF
ringbufs, and even when ./repro itself exits with error, there are still
two forked processes hanging around in my system. So clearly ringbuf maps
are alive at that point. So reporting any memory leak looks weird at that
point, because that memory is being used by active referenced BPF ringbuf.
It's also a question why repro doesn't clean up its forks. But if I do a
`pkill repro`, I do see that all the allocated memory is /properly/ cleaned
up [and the] "leaks" are deallocated properly.
BTW, if I add close() right after bpf() syscall in syzbot repro, I see that
everything is immediately deallocated, like designed. And no memory leak
is reported. So I don't think the problem is anywhere in bpf_ringbuf code,
rather in the leak detection and/or repro itself.
Reported-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com
Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com>
[ Daniel: also included analysis from Andrii to the commit log ]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: syzbot+5d895828587f49e7fe9b@syzkaller.appspotmail.com
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/CAEf4BzYk+dqs+jwu6VKXP-RttcTEGFe+ySTGWT9CRNkagDiJVA@mail.gmail.com
Link: https://lore.kernel.org/lkml/YNTAqiE7CWJhOK2M@nuc10
Link: https://lore.kernel.org/lkml/20210615101515.GC26027@arm.com
Link: https://syzkaller.appspot.com/bug?extid=5d895828587f49e7fe9b
Link: https://lore.kernel.org/bpf/20210626181156.1873604-1-rkovhaev@gmail.com
Allow the helper to be called from tracing programs. This is needed to
handle cgroup hiererachies in the program.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210627153627.824198-1-namhyung@kernel.org
The _sum and _avg values are in general sync together with the PELT
divider. They are however not always completely in perfect sync,
resulting in situations where _sum gets to zero while _avg stays
positive. Such situations are undesirable.
This comes from the fact that PELT will increase period_contrib, also
increasing the PELT divider, without updating _sum and _avg values to
stay in perfect sync where (_sum == _avg * divider). However, such PELT
change will never lower _sum, making it impossible to end up in a
situation where _sum is zero and _avg is not.
Therefore, we need to ensure that when subtracting load outside PELT,
that when _sum is zero, _avg is also set to zero. This occurs when
(_sum < _avg * divider), and the subtracted (_avg * divider) is bigger
or equal to the current _sum, while the subtracted _avg is smaller than
the current _avg.
Reported-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Odin Ugedal <odin@uged.al>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Sachin Sant <sachinp@linux.vnet.ibm.com>
Link: https://lore.kernel.org/r/20210624111815.57937-1-odin@uged.al
- Revamped the irqdomain internals to consistently cache an irqdata
- Expose a new API to simplify IRQ handling involving an irqdomain by
not using the IRQ number
- Convert all the irqchip drivers to this new API
- Allow the Qualcomm PDC driver to be compiled as a module
- Fix HiSi MBIGEN compile warning when CONFIG_ACPI isn't selected
- Remove a bunch of spurious printks on error paths
- The obligatory couple of DT updates
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmDZlaoPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDE8MP/R/D0gTT+eyoepsGpQAS06LMUjCKOTmd/FFY
Tad40XeEU8NiXaV1/7hWF9oxctEHhatZB/v/k2jY/kgXtUmlWojEkOx4bqtZfHfJ
H/35PeUmZCEMGdeP6NsPLvmeiovueDrINx+X0YY0GdEzX1zO6YqWxJvhiu0LnL5R
Rpi2LfOxmch0XcW8OWiqzKYPY8MLgXUfOaPgbLGqpMTandRbxVs/6LyynqjldGYH
v9cXcieYw/HrGdWasExgSpzfNLHNhPsXCvOJR00iIAcu+O9KLzGaEJcbKLy8sjbj
XSt9J216mgdi8tcZ9iZtA9q/8KgOBRsKXX8i4VlN709WA1LC84Us8j1bxc0Zxt21
1s8RqMDTCKKgx+ekXcBoGIf7RjhXjhspOtQujFVlgf/dfyYL9vMhvQvLT8RLNDVQ
UiqfCmWU7zhLc5we/UyAEOITj7Tl6LbtB7qsU4mLmp18RR64Krr6RD4LXZN5x32h
59lUJ+kdnlAfhRP7T9hqPMg4Aq8RGbyzTnhBu4Yqc0aTuaLDoU0dL+6o325yY83G
Qf+K6IL9dMxvCKR3G4fJhWQkZwphz+13EPaZewMtXhTMjDpQ/BYT8FwBCD6dvvsx
iAG6Q1xaQGL6tLmaD60RdJ2BniGkv84k0TvtJqmCpEgXK8RmRm35iliKD+FGXjwk
jFKr51NS
=gCEG
-----END PGP SIGNATURE-----
Merge tag 'irqchip-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/core
Pull irqchip updates from Marc Zyngier:
- Revamped the irqdomain internals to consistently cache irqdata
- Expose a new API to simplify IRQ handling involving an irqdomain by
not using the IRQ number
- Convert all the irqchip drivers to this new API
- Allow the Qualcomm PDC driver to be compiled as a module
- Fix HiSi MBIGEN compile warning when CONFIG_ACPI isn't selected
- Remove a bunch of spurious printks on error paths
- The obligatory couple of DT updates
This reverts commits 4bad58ebc8 (and
399f8dd9a8, which tried to fix it).
I do not believe these are correct, and I'm about to release 5.13, so am
reverting them out of an abundance of caution.
The locking is odd, and appears broken.
On the allocation side (in __sigqueue_alloc()), the locking is somewhat
straightforward: it depends on sighand->siglock. Since one caller
doesn't hold that lock, it further then tests 'sigqueue_flags' to avoid
the case with no locks held.
On the freeing side (in sigqueue_cache_or_free()), there is no locking
at all, and the logic instead depends on 'current' being a single
thread, and not able to race with itself.
To make things more exciting, there's also the data race between freeing
a signal and allocating one, which is handled by using WRITE_ONCE() and
READ_ONCE(), and being mutually exclusive wrt the initial state (ie
freeing will only free if the old state was NULL, while allocating will
obviously only use the value if it was non-NULL, so only one or the
other will actually act on the value).
However, while the free->alloc paths do seem mutually exclusive thanks
to just the data value dependency, it's not clear what the memory
ordering constraints are on it. Could writes from the previous
allocation possibly be delayed and seen by the new allocation later,
causing logical inconsistencies?
So it's all very exciting and unusual.
And in particular, it seems that the freeing side is incorrect in
depending on "current" being single-threaded. Yes, 'current' is a
single thread, but in the presense of asynchronous events even a single
thread can have data races.
And such asynchronous events can and do happen, with interrupts causing
signals to be flushed and thus free'd (for example - sending a
SIGCONT/SIGSTOP can happen from interrupt context, and can flush
previously queued process control signals).
So regardless of all the other questions about the memory ordering and
locking for this new cached allocation, the sigqueue_cache_or_free()
assumptions seem to be fundamentally incorrect.
It may be that people will show me the errors of my ways, and tell me
why this is all safe after all. We can reinstate it if so. But my
current belief is that the WRITE_ONCE() that sets the cached entry needs
to be a smp_store_release(), and the READ_ONCE() that finds a cached
entry needs to be a smp_load_acquire() to handle memory ordering
correctly.
And the sequence in sigqueue_cache_or_free() would need to either use a
lock or at least be interrupt-safe some way (perhaps by using something
like the percpu 'cmpxchg': it doesn't need to be SMP-safe, but like the
percpu operations it needs to be interrupt-safe).
Fixes: 399f8dd9a8 ("signal: Prevent sigqueue caching after task got released")
Fixes: 4bad58ebc8 ("signal: Allow tasks to cache one sigqueue struct")
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enable and disable osnoise/timerlat thread during on CPU hotplug online
and offline operations respectivelly.
Link: https://lore.kernel.org/linux-doc/20210621134636.5b332226@oasis.local.home/
Link: https://lkml.kernel.org/r/39f98590b3caeb3c32f09526214058efe0e9272a.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Enable and disable hwlat thread during cpu hotplug online
and offline operations, respectivelly.
Link: https://lore.kernel.org/linux-doc/20210621134636.5b332226@oasis.local.home/
Link: https://lkml.kernel.org/r/52012d25ea35491a0f8088b947864d8df8e25157.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In preparation to the hotplug support, protect kdata->kthread
with get/put_online_cpus() to avoid concurrency with hotplug
operations.
Link: https://lore.kernel.org/linux-doc/20210621134636.5b332226@oasis.local.home/
Link: https://lkml.kernel.org/r/8bdb2a56f46abfd301d6fffbf43448380c09a6f5.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The timerlat tracer aims to help the preemptive kernel developers to
found souces of wakeup latencies of real-time threads. Like cyclictest,
the tracer sets a periodic timer that wakes up a thread. The thread then
computes a *wakeup latency* value as the difference between the *current
time* and the *absolute time* that the timer was set to expire. The main
goal of timerlat is tracing in such a way to help kernel developers.
Usage
Write the ASCII text "timerlat" into the current_tracer file of the
tracing system (generally mounted at /sys/kernel/tracing).
For example:
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
It is possible to follow the trace by reading the trace trace file:
[root@f32 tracing]# cat trace
# tracer: timerlat
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# || /
# |||| ACTIVATION
# TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY
# | | | |||| | | | |
<idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns
<...>-867 [000] .... 54.029339: #1 context thread timer_latency 11700 ns
<idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns
<...>-868 [001] .... 54.029353: #1 context thread timer_latency 9820 ns
<idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns
<...>-867 [000] .... 54.030330: #2 context thread timer_latency 3070 ns
<idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns
<...>-868 [001] .... 54.030347: #2 context thread timer_latency 4351 ns
The tracer creates a per-cpu kernel thread with real-time priority that
prints two lines at every activation. The first is the *timer latency*
observed at the *hardirq* context before the activation of the thread.
The second is the *timer latency* observed by the thread, which is the
same level that cyclictest reports. The ACTIVATION ID field
serves to relate the *irq* execution to its respective *thread* execution.
The irq/thread splitting is important to clarify at which context
the unexpected high value is coming from. The *irq* context can be
delayed by hardware related actions, such as SMIs, NMIs, IRQs
or by a thread masking interrupts. Once the timer happens, the delay
can also be influenced by blocking caused by threads. For example, by
postponing the scheduler execution via preempt_disable(), by the
scheduler execution, or by masking interrupts. Threads can
also be delayed by the interference from other threads and IRQs.
The timerlat can also take advantage of the osnoise: traceevents.
For example:
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 25 > osnoise/stop_tracing_total_us
[root@f32 tracing]# tail -10 trace
cc1-87882 [005] d..h... 548.771078: #402268 context irq timer_latency 1585 ns
cc1-87882 [005] dNLh1.. 548.771082: irq_noise: local_timer:236 start 548.771077442 duration 4597 ns
cc1-87882 [005] dNLh2.. 548.771083: irq_noise: reschedule:253 start 548.771083017 duration 56 ns
cc1-87882 [005] dNLh2.. 548.771086: irq_noise: call_function_single:251 start 548.771083811 duration 2048 ns
cc1-87882 [005] dNLh2.. 548.771088: irq_noise: call_function_single:251 start 548.771086814 duration 1495 ns
cc1-87882 [005] dNLh2.. 548.771091: irq_noise: call_function_single:251 start 548.771089194 duration 1558 ns
cc1-87882 [005] dNLh2.. 548.771094: irq_noise: call_function_single:251 start 548.771091719 duration 1932 ns
cc1-87882 [005] dNLh2.. 548.771096: irq_noise: call_function_single:251 start 548.771094696 duration 1050 ns
cc1-87882 [005] d...3.. 548.771101: thread_noise: cc1:87882 start 548.771078243 duration 10909 ns
timerlat/5-1035 [005] ....... 548.771103: #402268 context thread timer_latency 25960 ns
For further information see: Documentation/trace/timerlat-tracer.rst
Link: https://lkml.kernel.org/r/71f18efc013e1194bcaea1e54db957de2b19ba62.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In the context of high-performance computing (HPC), the Operating System
Noise (*osnoise*) refers to the interference experienced by an application
due to activities inside the operating system. In the context of Linux,
NMIs, IRQs, SoftIRQs, and any other system thread can cause noise to the
system. Moreover, hardware-related jobs can also cause noise, for example,
via SMIs.
The osnoise tracer leverages the hwlat_detector by running a similar
loop with preemption, SoftIRQs and IRQs enabled, thus allowing all
the sources of *osnoise* during its execution. Using the same approach
of hwlat, osnoise takes note of the entry and exit point of any
source of interferences, increasing a per-cpu interference counter. The
osnoise tracer also saves an interference counter for each source of
interference. The interference counter for NMI, IRQs, SoftIRQs, and
threads is increased anytime the tool observes these interferences' entry
events. When a noise happens without any interference from the operating
system level, the hardware noise counter increases, pointing to a
hardware-related noise. In this way, osnoise can account for any
source of interference. At the end of the period, the osnoise tracer
prints the sum of all noise, the max single noise, the percentage of CPU
available for the thread, and the counters for the noise sources.
Usage
Write the ASCII text "osnoise" into the current_tracer file of the
tracing system (generally mounted at /sys/kernel/tracing).
For example::
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
It is possible to follow the trace by reading the trace trace file::
[root@f32 tracing]# cat trace
# tracer: osnoise
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth MAX
# || / SINGLE Interference counters:
# |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
# TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
# | | | |||| | | | | | | | | | |
<...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
<...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
<...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
<...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
<...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
<...>-864 [005] .... 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
<...>-865 [006] .... 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
<...>-866 [007] .... 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19
In addition to the regular trace fields (from TASK-PID to TIMESTAMP), the
tracer prints a message at the end of each period for each CPU that is
running an osnoise/CPU thread. The osnoise specific fields report:
- The RUNTIME IN USE reports the amount of time in microseconds that
the osnoise thread kept looping reading the time.
- The NOISE IN US reports the sum of noise in microseconds observed
by the osnoise tracer during the associated runtime.
- The % OF CPU AVAILABLE reports the percentage of CPU available for
the osnoise thread during the runtime window.
- The MAX SINGLE NOISE IN US reports the maximum single noise observed
during the runtime window.
- The Interference counters display how many each of the respective
interference happened during the runtime window.
Note that the example above shows a high number of HW noise samples.
The reason being is that this sample was taken on a virtual machine,
and the host interference is detected as a hardware interference.
Tracer options
The tracer has a set of options inside the osnoise directory, they are:
- osnoise/cpus: CPUs at which a osnoise thread will execute.
- osnoise/period_us: the period of the osnoise thread.
- osnoise/runtime_us: how long an osnoise thread will look for noise.
- osnoise/stop_tracing_us: stop the system tracing if a single noise
higher than the configured value happens. Writing 0 disables this
option.
- osnoise/stop_tracing_total_us: stop the system tracing if total noise
higher than the configured value happens. Writing 0 disables this
option.
- tracing_threshold: the minimum delta between two time() reads to be
considered as noise, in us. When set to 0, the default value will
be used, which is currently 5 us.
Additional Tracing
In addition to the tracer, a set of tracepoints were added to
facilitate the identification of the osnoise source.
- osnoise:sample_threshold: printed anytime a noise is higher than
the configurable tolerance_ns.
- osnoise:nmi_noise: noise from NMI, including the duration.
- osnoise:irq_noise: noise from an IRQ, including the duration.
- osnoise:softirq_noise: noise from a SoftIRQ, including the
duration.
- osnoise:thread_noise: noise from a thread, including the duration.
Note that all the values are *net values*. For example, if while osnoise
is running, another thread preempts the osnoise thread, it will start a
thread_noise duration at the start. Then, an IRQ takes place, preempting
the thread_noise, starting a irq_noise. When the IRQ ends its execution,
it will compute its duration, and this duration will be subtracted from
the thread_noise, in such a way as to avoid the double accounting of the
IRQ execution. This logic is valid for all sources of noise.
Here is one example of the usage of these tracepoints::
osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
osnoise/8-961 [008] .... 5789.858413: sample_threshold: start 5789.858404555 duration 8723 ns interferences 2
In this example, a noise sample of 8 microseconds was reported in the last
line, pointing to two interferences. Looking backward in the trace, the
two previous entries were about the migration thread running after a
timer IRQ execution. The first event is not part of the noise because
it took place one millisecond before.
It is worth noticing that the sum of the duration reported in the
tracepoints is smaller than eight us reported in the sample_threshold.
The reason roots in the overhead of the entry and exit code that happens
before and after any interference execution. This justifies the dual
approach: measuring thread and tracing.
Link: https://lkml.kernel.org/r/e649467042d60e7b62714c9c6751a56299d15119.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
[
Made the following functions static:
trace_irqentry_callback()
trace_irqexit_callback()
trace_intel_irqentry_callback()
trace_intel_irqexit_callback()
Added to include/trace.h:
osnoise_arch_register()
osnoise_arch_unregister()
Fixed define logic for LATENCY_FS_NOTIFY
Reported-by: kernel test robot <lkp@intel.com>
]
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
With the coming addition of the osnoise tracer, the configs needed to
include the latency_fsnotify() has become more complex, and to keep the
declaration in the header file the same as in the C file, just have the
logic needed to define it in one place, and that defines LATENCY_FS_NOTIFY
which will be used in the C code.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
hwlat has some time operation checks on the sample loop, and it is
currently using pr_err (printk) to report them. The problem is that
this can lead the system to an unresponsible state due to an overflow of
printk messages. This problem can be mitigated by writing the error
message to the trace buffer.
Remove the printk messages from the sampling loop, switching the to
messages in the trace buffer.
No functional change.
Link: https://lkml.kernel.org/r/9d77c34869748aa105e965c769d24642914eea3a.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Use the trace_min_max_param to reduce code duplication.
No functional change.
Link: https://lkml.kernel.org/r/b91accd5a7c6c14ea02d3379aae974ba22b47dd6.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The hwlat detector and (in preparation for) the osnoise/timerlat tracers
have a set of u64 parameters that the user can read/write via tracefs.
For instance, we have hwlat_detector's window and width.
To reduce the code duplication, hwlat's window and width share the same
read function. However, they do not share the write functions because
they do different parameter checks. For instance, the width needs to
be smaller than the window, while the window needs to be larger
than the window. The same pattern repeats on osnoise/timerlat, and
a large portion of the code was devoted to the write function.
Despite having different checks, the write functions have the same
structure:
read a user-space buffer
take the lock that protects the value
check for minimum and maximum acceptable values
save the value
release the lock
return success or error
To reduce the code duplication also in the write functions, this patch
provides a generic read and write implementation for u64 values that
need to be within some minimum and/or maximum parameters, while
(potentially) being protected by a lock.
To use this interface, the structure trace_min_max_param needs to be
filled:
struct trace_min_max_param {
struct mutex *lock;
u64 *val;
u64 *min;
u64 *max;
};
The desired value is stored on the variable pointed by *val. If *min
points to a minimum acceptable value, it will be checked during the
write operation. Likewise, if *max points to a maximum allowable value,
it will be checked during the write operation. Finally, if *lock points
to a mutex, it will be taken at the beginning of the operation and
released at the end.
The definition of a trace_min_max_param needs to passed as the
(private) *data for tracefs_create_file(), and the trace_min_max_fops
(added by this patch) as the *fops file_operations.
Link: https://lkml.kernel.org/r/3e35760a7c8b5c55f16ae5ad5fc54a0e71cbe647.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Implements the per-cpu mode in which a sampling thread is created for
each cpu in the "cpus" (and tracing_mask).
The per-cpu mode has the potention to speed up the hwlat detection by
running on multiple CPUs at the same time, at the cost of higher cpu
usage with irqs disabled. Use with care.
[
Changed get_cpu_data() to static.
Reported-by: kernel test robot <lkp@intel.com>
]
Link: https://lkml.kernel.org/r/ec06d0ab340e8460d293772faba19ad8a5c371aa.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
If more than one futex is placed on a shmem huge page, it can happen
that waking the second wakes the first instead, and leaves the second
waiting: the key's shared.pgoff is wrong.
When 3.11 commit 13d60f4b6a ("futex: Take hugepages into account when
generating futex_key"), the only shared huge pages came from hugetlbfs,
and the code added to deal with its exceptional page->index was put into
hugetlb source. Then that was missed when 4.8 added shmem huge pages.
page_to_pgoff() is what others use for this nowadays: except that, as
currently written, it gives the right answer on hugetlbfs head, but
nonsense on hugetlbfs tails. Fix that by calling hugetlbfs-specific
hugetlb_basepage_index() on PageHuge tails as well as on head.
Yes, it's unconventional to declare hugetlb_basepage_index() there in
pagemap.h, rather than in hugetlb.h; but I do not expect anything but
page_to_pgoff() ever to need it.
[akpm@linux-foundation.org: give hugetlb_basepage_index() prototype the correct scope]
Link: https://lkml.kernel.org/r/b17d946b-d09-326e-b42a-52884c36df32@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Reported-by: Neel Natu <neelnatu@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Zhang Yi <wetpzy@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The system might hang with the following backtrace:
schedule+0x80/0x100
schedule_timeout+0x48/0x138
wait_for_common+0xa4/0x134
wait_for_completion+0x1c/0x2c
kthread_flush_work+0x114/0x1cc
kthread_cancel_work_sync.llvm.16514401384283632983+0xe8/0x144
kthread_cancel_delayed_work_sync+0x18/0x2c
xxxx_pm_notify+0xb0/0xd8
blocking_notifier_call_chain_robust+0x80/0x194
pm_notifier_call_chain_robust+0x28/0x4c
suspend_prepare+0x40/0x260
enter_state+0x80/0x3f4
pm_suspend+0x60/0xdc
state_store+0x108/0x144
kobj_attr_store+0x38/0x88
sysfs_kf_write+0x64/0xc0
kernfs_fop_write_iter+0x108/0x1d0
vfs_write+0x2f4/0x368
ksys_write+0x7c/0xec
It is caused by the following race between kthread_mod_delayed_work()
and kthread_cancel_delayed_work_sync():
CPU0 CPU1
Context: Thread A Context: Thread B
kthread_mod_delayed_work()
spin_lock()
__kthread_cancel_work()
spin_unlock()
del_timer_sync()
kthread_cancel_delayed_work_sync()
spin_lock()
__kthread_cancel_work()
spin_unlock()
del_timer_sync()
spin_lock()
work->canceling++
spin_unlock
spin_lock()
queue_delayed_work()
// dwork is put into the worker->delayed_work_list
spin_unlock()
kthread_flush_work()
// flush_work is put at the tail of the dwork
wait_for_completion()
Context: IRQ
kthread_delayed_work_timer_fn()
spin_lock()
list_del_init(&work->node);
spin_unlock()
BANG: flush_work is not longer linked and will never get proceed.
The problem is that kthread_mod_delayed_work() checks work->canceling
flag before canceling the timer.
A simple solution is to (re)check work->canceling after
__kthread_cancel_work(). But then it is not clear what should be
returned when __kthread_cancel_work() removed the work from the queue
(list) and it can't queue it again with the new @delay.
The return value might be used for reference counting. The caller has
to know whether a new work has been queued or an existing one was
replaced.
The proper solution is that kthread_mod_delayed_work() will remove the
work from the queue (list) _only_ when work->canceling is not set. The
flag must be checked after the timer is stopped and the remaining
operations can be done under worker->lock.
Note that kthread_mod_delayed_work() could remove the timer and then
bail out. It is fine. The other canceling caller needs to cancel the
timer as well. The important thing is that the queue (list)
manipulation is done atomically under worker->lock.
Link: https://lkml.kernel.org/r/20210610133051.15337-3-pmladek@suse.com
Fixes: 9a6b06c8d9 ("kthread: allow to modify delayed kthread work")
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reported-by: Martin Liu <liumartin@google.com>
Cc: <jenhaochen@google.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kthread_worker: Fix race between kthread_mod_delayed_work()
and kthread_cancel_delayed_work_sync()".
This patchset fixes the race between kthread_mod_delayed_work() and
kthread_cancel_delayed_work_sync() including proper return value
handling.
This patch (of 2):
Simple code refactoring as a preparation step for fixing a race between
kthread_mod_delayed_work() and kthread_cancel_delayed_work_sync().
It does not modify the existing behavior.
Link: https://lkml.kernel.org/r/20210610133051.15337-2-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: <jenhaochen@google.com>
Cc: Martin Liu <liumartin@google.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When in the round-robin mode, if the tracer detects a change in the
hwlatd thread affinity by an external tool, e.g., taskset, the
round-robin logic is disabled. The disable_migrate variable currently
tracks this.
With the addition of the "mode" config and the mode "none," the
disable_migrate logic is equivalent to switch to the "none" mode.
Hence, instead of using a hidden variable to track this behavior,
switch the mode to none, informing the user about this change.
Link: https://lkml.kernel.org/r/a679af672458d6b1f62252605905c5214030f247.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Provides the "mode" config to the hardware latency detector. hwlatd has
two different operation modes. The default mode is the "round-robin" one,
in which a single hwlatd thread runs, migrating among the allowed CPUs in a
"round-robin" fashion. This is the current behavior.
The "none" sets the allowed cpumask for a single hwlatd thread at the
startup, but skips the round-robin, letting the scheduler handle the
migration.
In preparation to the per-cpu mode.
Link: https://lkml.kernel.org/r/f3b1271262aa030c680e26615c1b9b2d71e55e92.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Clark's email is williams@redhat.com.
No functional change.
Link: https://lkml.kernel.org/r/6fa4b49e17ab8a1ff19c335ab7cde38d8afb0e29.1624372313.git.bristot@redhat.com
Cc: Phil Auld <pauld@redhat.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kate Carcia <kcarcia@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Alexandre Chartre <alexandre.chartre@oracle.com>
Cc: Clark Willaims <williams@redhat.com>
Cc: John Kacur <jkacur@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
XDP_REDIRECT works by a three-step process: the bpf_redirect() and
bpf_redirect_map() helpers will lookup the target of the redirect and store
it (along with some other metadata) in a per-CPU struct bpf_redirect_info.
Next, when the program returns the XDP_REDIRECT return code, the driver
will call xdp_do_redirect() which will use the information thus stored to
actually enqueue the frame into a bulk queue structure (that differs
slightly by map type, but shares the same principle). Finally, before
exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will
flush all the different bulk queues, thus completing the redirect.
Pointers to the map entries will be kept around for this whole sequence of
steps, protected by RCU. However, there is no top-level rcu_read_lock() in
the core code; instead drivers add their own rcu_read_lock() around the XDP
portions of the code, but somewhat inconsistently as Martin discovered[0].
However, things still work because everything happens inside a single NAPI
poll sequence, which means it's between a pair of calls to
local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could
document this intention by using rcu_dereference_check() with
rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and
lockdep to verify that everything is done correctly.
This patch does just that: we add an __rcu annotation to the map entry
pointers and remove the various comments explaining the NAPI poll assurance
strewn through devmap.c in favour of a longer explanation in filter.c. The
goal is to have one coherent documentation of the entire flow, and rely on
the RCU annotations as a "standard" way of communicating the flow in the
map code (which can additionally be understood by sparse and lockdep).
The RCU annotation replacements result in a fairly straight-forward
replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE()
becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the
proper constructs to cast the pointer back and forth between __rcu and
__kernel address space (for the benefit of sparse). The one complication is
that xskmap has a few constructions where double-pointers are passed back
and forth; these simply all gain __rcu annotations, and only the final
reference/dereference to the inner-most pointer gets changed.
With this, everything can be run through sparse without eliciting
complaints, and lockdep can verify correctness even without the use of
rcu_read_lock() in the drivers. Subsequent patches will clean these up from
the drivers.
[0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/
[1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
XDP programs are called from a NAPI poll context, which means the RCU
reference liveness is ensured by local_bh_disable(). Add
rcu_read_lock_bh_held() as a condition to the RCU checks for map lookups so
lockdep understands that the dereferences are safe from inside *either* an
rcu_read_lock() section *or* a local_bh_disable() section. While both
bh_disabled and rcu_read_lock() provide RCU protection, they are
semantically distinct, so we need both conditions to prevent lockdep
complaints.
This change is done in preparation for removing the redundant
rcu_read_lock()s from drivers.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210624160609.292325-5-toke@redhat.com
introduced logic fail which triggered a kernel warning by
LTP's cfs_bandwidth01.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDULloRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iTMA/9EogeU4F8ncEgqkkrYbCmpnSYKVbnJzf8
cEuX4lOgz0Fd5Ps3mWEN7L99jaDgPsaMMiIKi1UQhDZNy3ND6eHywlXHVfxiMKw9
YEozI/apwyEykp8J6laigSH0N/g5sp+YT5kcU3QsaLDoN7et7pgwSFjqsuC/kHRI
nnnNFbsO8A1Haq8qMt1W3kThTdaB+HXfBDZdZO7lsIC69GGHbkKPRfiHSZmBfG98
GhvwpziAlJgOu6mHyGoQtDCVH00y1CNctUi9KVx4lC9ZRCWgIwHk++vgrHgNRxXu
FUqkH+qsgH4MMO7MopPOgtkVK7RfdXspHNydogrLHhtsFyOXoP5f5vVdgIKBakSq
aOfIIhyzEvdxentAcfnUAa7aJ6F6Og3N8VUBA/Zi7Vm4IUNM7mmKO8/ixRlpRBf2
Ymj/Cp7LQPIyGV2s/EN8G24+5T6hEmuLkz9WzXKcHju+4UC9hVQzdJhT1iFk5MUw
Iy7uIWG1NzYs5bI5zPrK9YeJYzFDF/RBxM9S5znlH8hcl1L910m7LNGnY8aiJrS4
/w8PqTX9rGrLrDrFt/dBYX3CNl1oRZAJouTyBNFMJ1LchkTdKc8QN4FN877cTvQE
GuQLOyPqK+dY/pElx2jr9wnIdzaWBMv4ZG6azZqkrc7LaEVtKoin3NSkSfqd0cu2
QkTSup4mhuU=
=KzBo
-----END PGP SIGNATURE-----
Merge tag 'sched-urgent-2021-06-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Ingo Molnar:
"A last minute cgroup bandwidth scheduling fix for a recently
introduced logic fail which triggered a kernel warning by LTP's
cfs_bandwidth01 test"
* tag 'sched-urgent-2021-06-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Ensure that the CFS parent is added after unthrottling
The current implementation of time64_to_tm() contains unnecessary loops,
branches and look-up tables. The new one uses an arithmetic-based algorithm
appeared in [1] and is approximately 3x faster (YMMV).
The drawback is that the new code isn't intuitive and contains many 'magic
numbers' (not unusual for this type of algorithm). However, [1] justifies
all those numbers and, given this function's history, the code is unlikely
to need much maintenance, if any at all.
Add a KUnit test for it which checks every day in a 160,000 years interval
centered at 1970-01-01 against the expected result.
[1] Neri, Schneider, "Euclidean Affine Functions and Applications to
Calendar Algorithms". https://arxiv.org/abs/2102.06959
Signed-off-by: Cassio Neri <cassio.neri@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210622213616.313046-1-cassio.neri@gmail.com
Currently the CPU capacity asymmetry detection, performed through
asym_cpu_capacity_level, tries to identify the lowest topology level
at which the highest CPU capacity is being observed, not necessarily
finding the level at which all possible capacity values are visible
to all CPUs, which might be bit problematic for some possible/valid
asymmetric topologies i.e.:
DIE [ ]
MC [ ][ ]
CPU [0] [1] [2] [3] [4] [5] [6] [7]
Capacity |.....| |.....| |.....| |.....|
L M B B
Where:
arch_scale_cpu_capacity(L) = 512
arch_scale_cpu_capacity(M) = 871
arch_scale_cpu_capacity(B) = 1024
In this particular case, the asymmetric topology level will point
at MC, as all possible CPU masks for that level do cover the CPU
with the highest capacity. It will work just fine for the first
cluster, not so much for the second one though (consider the
find_energy_efficient_cpu which might end up attempting the energy
aware wake-up for a domain that does not see any asymmetry at all)
Rework the way the capacity asymmetry levels are being detected,
allowing to point to the lowest topology level (for a given CPU), where
full set of available CPU capacities is visible to all CPUs within given
domain. As a result, the per-cpu sd_asym_cpucapacity might differ across
the domains. This will have an impact on EAS wake-up placement in a way
that it might see different range of CPUs to be considered, depending on
the given current and target CPUs.
Additionally, those levels, where any range of asymmetry (not
necessarily full) is being detected will get identified as well.
The selected asymmetric topology level will be denoted by
SD_ASYM_CPUCAPACITY_FULL sched domain flag whereas the 'sub-levels'
would receive the already used SD_ASYM_CPUCAPACITY flag. This allows
maintaining the current behaviour for asymmetric topologies, with
misfit migration operating correctly on lower levels, if applicable,
as any asymmetry is enough to trigger the misfit migration.
The logic there relies on the SD_ASYM_CPUCAPACITY flag and does not
relate to the full asymmetry level denoted by the sd_asym_cpucapacity
pointer.
Detecting the CPU capacity asymmetry is being based on a set of
available CPU capacities for all possible CPUs. This data is being
generated upon init and updated once CPU topology changes are being
detected (through arch_update_cpu_topology). As such, any changes
to identified CPU capacities (like initializing cpufreq) need to be
explicitly advertised by corresponding archs to trigger rebuilding
the data.
Additional -dflags- parameter, used when building sched domains, has
been removed as well, as the asymmetry flags are now being set directly
in sd_init.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20210603140627.8409-3-beata.michalska@arm.com
Race detected between psi_trigger_destroy/create as shown below, which
cause panic by accessing invalid psi_system->poll_wait->wait_queue_entry
and psi_system->poll_timer->entry->next. Under this modification, the
race window is removed by initialising poll_wait and poll_timer in
group_init which are executed only once at beginning.
psi_trigger_destroy() psi_trigger_create()
mutex_lock(trigger_lock);
rcu_assign_pointer(poll_task, NULL);
mutex_unlock(trigger_lock);
mutex_lock(trigger_lock);
if (!rcu_access_pointer(group->poll_task)) {
timer_setup(poll_timer, poll_timer_fn, 0);
rcu_assign_pointer(poll_task, task);
}
mutex_unlock(trigger_lock);
synchronize_rcu();
del_timer_sync(poll_timer); <-- poll_timer has been reinitialized by
psi_trigger_create()
So, trigger_lock/RCU correctly protects destruction of
group->poll_task but misses this race affecting poll_timer and
poll_wait.
Fixes: 461daba06b ("psi: eliminate kthread_worker from psi trigger scheduling mechanism")
Co-developed-by: ziwei.dai <ziwei.dai@unisoc.com>
Signed-off-by: ziwei.dai <ziwei.dai@unisoc.com>
Co-developed-by: ke.wang <ke.wang@unisoc.com>
Signed-off-by: ke.wang <ke.wang@unisoc.com>
Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/1623371374-15664-1-git-send-email-huangzhaoyang@gmail.com
The CFS bandwidth controller limits CPU requests of a task group to
quota during each period. However, parallel workloads might be bursty
so that they get throttled even when their average utilization is under
quota. And they are latency sensitive at the same time so that
throttling them is undesired.
We borrow time now against our future underrun, at the cost of increased
interference against the other system users. All nicely bounded.
Traditional (UP-EDF) bandwidth control is something like:
(U = \Sum u_i) <= 1
This guaranteeds both that every deadline is met and that the system is
stable. After all, if U were > 1, then for every second of walltime,
we'd have to run more than a second of program time, and obviously miss
our deadline, but the next deadline will be further out still, there is
never time to catch up, unbounded fail.
This work observes that a workload doesn't always executes the full
quota; this enables one to describe u_i as a statistical distribution.
For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100)
(the traditional WCET). This effectively allows u to be smaller,
increasing the efficiency (we can pack more tasks in the system), but at
the cost of missing deadlines when all the odds line up. However, it
does maintain stability, since every overrun must be paired with an
underrun as long as our x is above the average.
That is, suppose we have 2 tasks, both specify a p(95) value, then we
have a p(95)*p(95) = 90.25% chance both tasks are within their quota and
everything is good. At the same time we have a p(5)p(5) = 0.25% chance
both tasks will exceed their quota at the same time (guaranteed deadline
fail). Somewhere in between there's a threshold where one exceeds and
the other doesn't underrun enough to compensate; this depends on the
specific CDFs.
At the same time, we can say that the worst case deadline miss, will be
\Sum e_i; that is, there is a bounded tardiness (under the assumption
that x+e is indeed WCET).
The benefit of burst is seen when testing with schbench. Default value of
kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used.
mkdir /sys/fs/cgroup/cpu/test
echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us
./schbench -m 1 -t 3 -r 20 -c 80000 -R 10
The average CPU usage is at 80%. I run this for 10 times, and got long tail
latency for 6 times and got throttled for 8 times.
Tail latencies are shown below, and it wasn't the worst case.
Latency percentiles (usec)
50.0000th: 19872
75.0000th: 21344
90.0000th: 22176
95.0000th: 22496
*99.0000th: 22752
99.5000th: 22752
99.9000th: 22752
min=0, max=22727
rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44%
The interferenece when using burst is valued by the possibilities for
missing the deadline and the average WCET. Test results showed that when
there many cgroups or CPU is under utilized, the interference is
limited. More details are shown in:
https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
With some of the stricter type checking in KUnit's EXPECT macros
removed, several casts in sysctl-test are no longer required.
Remove the unnecessary casts, making the conditions clearer.
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
Daniel Borkmann says:
====================
pull-request: bpf 2021-06-23
The following pull-request contains BPF updates for your *net* tree.
We've added 14 non-merge commits during the last 6 day(s) which contain
a total of 13 files changed, 137 insertions(+), 64 deletions(-).
Note that when you merge net into net-next, there is a small merge conflict
between 9f2470fbc4 ("skmsg: Improve udp_bpf_recvmsg() accuracy") from bpf
with c49661aa6f ("skmsg: Remove unused parameters of sk_msg_wait_data()")
from net-next. Resolution is to: i) net/ipv4/udp_bpf.c: take udp_msg_wait_data()
and remove err parameter from the function, ii) net/ipv4/tcp_bpf.c: take
tcp_msg_wait_data() and remove err parameter from the function, iii) for
net/core/skmsg.c and include/linux/skmsg.h: remove the sk_msg_wait_data()
implementation and its prototype in header.
The main changes are:
1) Fix BPF poke descriptor adjustments after insn rewrite, from John Fastabend.
2) Fix regression when using BPF_OBJ_GET with non-O_RDWR flags, from Maciej Żenczykowski.
3) Various bug and error handling fixes for UDP-related sock_map, from Cong Wang.
4) Fix patching of vmlinux BTF IDs with correct endianness, from Tony Ambardar.
5) Two fixes for TX descriptor validation in AF_XDP, from Magnus Karlsson.
6) Fix overflow in size calculation for bpf_map_area_alloc(), from Bui Quang Minh.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
On HETEROGENEOUS hardware (ARM big.Little, Intel Alderlake etc.) each
CPU might have a different hardware PMU. Since each such PMU is
represented by a different struct pmu, but we only have a single HW
task context.
That means that the task context needs to switch PMU type when it
switches CPUs.
Not doing this means that ctx->pmu calls (pmu_{dis,en}able(),
{start,commit,cancel}_txn() etc.) are called against the wrong PMU and
things will go wobbly.
Fixes: f83d2f91d2 ("perf/x86/intel: Add Alder Lake Hybrid support")
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/YMsy7BuGT8nBTspT@hirez.programming.kicks-ass.net
Pull swiotlb fix from Konrad Rzeszutek Wilk:
"A fix for the regression for the DMA operations where the offset was
ignored and corruptions would appear.
Going forward there will be a cleanups to make the offset and
alignment logic more clearer and better test-cases to help with this"
* 'stable/for-linus-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb:
swiotlb: manipulate orig_addr when tlb_addr has offset
The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and
then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the
individual JITs. The poke_tab[] to use is stored in the insn->imm by
the code adding it to that array slot. The JIT then uses imm to find the
right entry for an individual instruction. In the x86 bpf_jit_comp.c
this is done by calling emit_bpf_tail_call_direct with the poke_tab[]
of the imm value.
However, we observed the below null-ptr-deref when mixing tail call
programs with subprog programs. For this to happen we just need to
mix bpf-2-bpf calls and tailcalls with some extra calls or instructions
that would be patched later by one of the fixup routines. So whats
happening?
Before the fixup_call_args() -- where the jit op is done -- various
code patching is done by do_misc_fixups(). This may increase the
insn count, for example when we patch map_lookup_up using map_gen_lookup
hook. This does two things. First, it means the instruction index,
insn_idx field, of a tail call instruction will move by a 'delta'.
In verifier code,
struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};
Then subprog start values subprog_info[i].start will be updated
with the delta and any poke descriptor index will also be updated
with the delta in adjust_poke_desc(). If we look at the adjust
subprog starts though we see its only adjusted when the delta
occurs before the new instructions,
/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;
Earlier subprograms are not changed because their start values
are not moved. But, adjust_poke_desc() does the offset + delta
indiscriminately. The result is poke descriptors are potentially
corrupted.
Then in jit_subprogs() we only populate the poke_tab[]
when the above insn_idx is less than the next subprogram start. From
above we corrupted our insn_idx so we might incorrectly assume a
poke descriptor is not used in a subprogram omitting it from the
subprogram. And finally when the jit runs it does the deref of poke_tab
when emitting the instruction and crashes with below. Because earlier
step omitted the poke descriptor.
The fix is straight forward with above context. Simply move same logic
from adjust_subprog_starts() into adjust_poke_descs() and only adjust
insn_idx when needed.
[ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload '
[ 82.623001] loop10: detected capacity change from 0 to 8
[ 88.487424] ==================================================================
[ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290
[ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295
[ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386
[ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019
[ 88.487490] Call Trace:
[ 88.487498] dump_stack+0x93/0xc2
[ 88.487515] kasan_report.cold+0x5f/0xd8
[ 88.487530] ? do_jit+0x184a/0x3290
[ 88.487542] do_jit+0x184a/0x3290
...
[ 88.487709] bpf_int_jit_compile+0x248/0x810
...
[ 88.487765] bpf_check+0x3718/0x5140
...
[ 88.487920] bpf_prog_load+0xa22/0xf10
Fixes: a748c6975d ("bpf: propagate poke descriptors to subprograms")
Reported-by: Jussi Maki <joamaki@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>
Irrespective as to whether CONFIG_MODULE_SIG is configured, specifying
"module.sig_enforce=1" on the boot command line sets "sig_enforce".
Only allow "sig_enforce" to be set when CONFIG_MODULE_SIG is configured.
This patch makes the presence of /sys/module/module/parameters/sig_enforce
dependent on CONFIG_MODULE_SIG=y.
Fixes: fda784e50a ("module: export module signature enforcement status")
Reported-by: Nayna Jain <nayna@linux.ibm.com>
Tested-by: Mimi Zohar <zohar@linux.ibm.com>
Tested-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't want compiler instrumentation to touch noinstr functions,
which are annotated with the no_profile_instrument_function function
attribute. Add a Kconfig test for this and make GCOV depend on it, and
in the future, PGO.
If an architecture is using noinstr, it should denote that via this
Kconfig value. That makes Kconfigs that depend on noinstr able to express
dependencies in an architecturally agnostic way.
Cc: Masahiro Yamada <masahiroy@kernel.org>
Link: https://lore.kernel.org/lkml/YMTn9yjuemKFLbws@hirez.programming.kicks-ass.net/
Link: https://lore.kernel.org/lkml/YMcssV%2Fn5IBGv4f0@hirez.programming.kicks-ass.net/
Suggested-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210621231822.2848305-4-ndesaulniers@google.com