Unregister KVM's posted interrupt wakeup handler during unsetup so that a
spurious interrupt that arrives after kvm_intel.ko is unloaded doesn't
call into freed memory.
Fixes: bf9f6ac8d7 ("KVM: Update Posted-Interrupts Descriptor when vCPU is blocked")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211009001107.3936588-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.
Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.
Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.
Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SDM section 18.2.3 mentioned that:
"IA32_PERF_GLOBAL_OVF_CTL MSR allows software to clear overflow indicator(s) of
any general-purpose or fixed-function counters via a single WRMSR."
It is R/W mentioned by SDM, we read this msr on bare-metal during perf testing,
the value is always 0 for ICX/SKX boxes on hands. Let's fill get_msr
MSR_CORE_PERF_GLOBAL_OVF_CTRL w/ 0 as hardware behavior and drop
global_ovf_ctrl variable.
Tested-by: Like Xu <likexu@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1634631160-67276-2-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Per Intel SDM, RTIT_CTL_BRANCH_EN bit has no dependency on any CPUID
leaf 0x14.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-5-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To better self explain the meaning of this field and match the
PT_CAP_num_address_ranges constatn.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-4-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The number of valid PT ADDR MSRs for the guest is precomputed in
vmx->pt_desc.addr_range. Use it instead of calculating again.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-3-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A minor optimization to WRMSR MSR_IA32_RTIT_CTL when necessary.
Opportunistically refine the comment to call out that KVM requires
VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210827070249.924633-2-xiaoyao.li@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with
more precise fix") there is no longer the certainty that check_nested_events()
tries to inject an external interrupt vmexit to L1 on every call to vcpu_enter_guest.
Therefore, even in that case we need to set KVM_REQ_EVENT. This ensures
that inject_pending_event() is called, and from there kvm_check_nested_events().
Fixes: c300ab9f08 ("KVM: x86: Replace late check_nested_events() hack with more precise fix")
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the file is empty, fixup all references with the proper includes
and delete the former kitchen sink.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011540.001197214@linutronix.de
Hardware may or may not set exit_reason.bus_lock_detected on BUS_LOCK
VM-Exits. Dealing with KVM_RUN_X86_BUS_LOCK in handle_bus_lock_vmexit
could be redundant when exit_reason.basic is EXIT_REASON_BUS_LOCK.
We can remove redundant handling of bus lock vmexit. Unconditionally Set
exit_reason.bus_lock_detected in handle_bus_lock_vmexit(), and deal with
KVM_RUN_X86_BUS_LOCK only in vmx_handle_exit().
Signed-off-by: Hao Xiang <hao.xiang@linux.alibaba.com>
Message-Id: <1634299161-30101-1-git-send-email-hao.xiang@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This was tested by booting a nested guest with TSC=1Ghz,
observing the clocks, and doing about 100 cycles of migration.
Note that qemu patch is needed to support migration because
of a new MSR that needs to be placed in the migration state.
The patch will be sent to the qemu mailing list soon.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vCPU RESET emulation, including initializating of select VMCS state,
to vmx_vcpu_reset(). Drop the open coded "vCPU load" sequence, as
->vcpu_reset() is invoked while the vCPU is properly loaded (which is
kind of the point of ->vcpu_reset()...). Hopefully KVM will someday
expose a dedicated RESET ioctl(), and in the meantime separating "create"
from "RESET" is a nice cleanup.
Deferring VMCS initialization is effectively a nop as it's impossible to
safely access the VMCS between the current call site and its new home, as
both the vCPU and the pCPU are put immediately after init_vmcs(), i.e.
the VMCS isn't guaranteed to be loaded.
Note, task preemption is not a problem as vmx_sched_in() _can't_ touch
the VMCS as ->sched_in() is invoked before the vCPU, and thus VMCS, is
reloaded. I.e. the preemption path also can't consume VMCS state.
Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't zero out user return and nested MSRs during vCPU creation, and
instead rely on vcpu_vmx being zero-allocated. Explicitly zeroing MSRs
is not wrong, and is in fact necessary if KVM ever emulates vCPU RESET
outside of vCPU creation, but zeroing only a subset of MSRs is confusing.
Poking directly into KVM's backing is also undesirable in that it doesn't
scale and is error prone. Ideally KVM would have a common RESET path for
all MSRs, e.g. by expanding kvm_set_msr(), which would obviate the need
for this out-of-bad code (to support standalone RESET).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do not blindly mark all registers as available+dirty at RESET/INIT, and
instead rely on writes to registers to go through the proper mutators or
to explicitly mark registers as dirty. INIT in particular does not blindly
overwrite all registers, e.g. select bits in CR0 are preserved across INIT,
thus marking registers available+dirty without first reading the register
from hardware is incorrect.
In practice this is a benign bug as KVM doesn't let the guest control CR0
bits that are preserved across INIT, and all other true registers are
explicitly written during the RESET/INIT flows. The PDPTRs and EX_INFO
"registers" are not explicitly written, but accessing those values during
RESET/INIT is nonsensical and would be a KVM bug regardless of register
caching.
Fixes: 66f7b72e11 ("KVM: x86: Make register state after reset conform to specification")
[sean: !!! NOT FOR STABLE !!!]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently, 'vmx->nested.vmxon_ptr' is not reset upon VMXOFF
emulation. This is not a problem per se as we never access
it when !vmx->nested.vmxon. But this should be done to avoid
any issue in the future.
Also, initialize the vmxon_ptr when vcpu is created.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-3-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up nested.c and vmx.c by using INVALID_GPA instead of "-1ull",
to denote an invalid address in nested VMX. Affected addresses are
the ones of VMXON region, current VMCS, VMCS link pointer, virtual-
APIC page, ENCLS-exiting bitmap, and IO bitmap etc.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210929175154.11396-2-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When updating the host's mask for its MSR_IA32_TSX_CTRL user return entry,
clear the mask in the found uret MSR instead of vmx->guest_uret_msrs[i].
Modifying guest_uret_msrs directly is completely broken as 'i' does not
point at the MSR_IA32_TSX_CTRL entry. In fact, it's guaranteed to be an
out-of-bounds accesses as is always set to kvm_nr_uret_msrs in a prior
loop. By sheer dumb luck, the fallout is limited to "only" failing to
preserve the host's TSX_CTRL_CPUID_CLEAR. The out-of-bounds access is
benign as it's guaranteed to clear a bit in a guest MSR value, which are
always zero at vCPU creation on both x86-64 and i386.
Cc: stable@vger.kernel.org
Fixes: 8ea8b8d6f8 ("KVM: VMX: Use common x86's uret MSR list as the one true list")
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210926015545.281083-1-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If L1 had invalid state on VM entry (can happen on SMM transactions
when we enter from real mode, straight to nested guest),
then after we load 'host' state from VMCS12, the state has to become
valid again, but since we load the segment registers with
__vmx_set_segment we weren't always updating emulation_required.
Update emulation_required explicitly at end of load_vmcs12_host_state.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is possible that when non root mode is entered via special entry
(!from_vmentry), that is from SMM or from loading the nested state,
the L2 state could be invalid in regard to non unrestricted guest mode,
but later it can become valid.
(for example when RSM emulation restores segment registers from SMRAM)
Thus delay the check to VM entry, where we will check this and fail.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-7-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since no actual VM entry happened, the VM exit information is stale.
To avoid this, synthesize an invalid VM guest state VM exit.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Windows Server 2022 with Hyper-V role enabled failed to boot on KVM when
enlightened VMCS is advertised. Debugging revealed there are two exposed
secondary controls it is not happy with: SECONDARY_EXEC_ENABLE_VMFUNC and
SECONDARY_EXEC_SHADOW_VMCS. These controls are known to be unsupported,
as there are no corresponding fields in eVMCSv1 (see the comment above
EVMCS1_UNSUPPORTED_2NDEXEC definition).
Previously, commit 31de3d2500 ("x86/kvm/hyper-v: move VMX controls
sanitization out of nested_enable_evmcs()") introduced the required
filtering mechanism for VMX MSRs but for some reason put only known
to be problematic (and not full EVMCS1_UNSUPPORTED_* lists) controls
there.
Note, Windows Server 2022 seems to have gained some sanity check for VMX
MSRs: it doesn't even try to launch a guest when there's something it
doesn't like, nested_evmcs_check_controls() mechanism can't catch the
problem.
Let's be bold this time and instead of playing whack-a-mole just filter out
all unsupported controls from VMX MSRs.
Fixes: 31de3d2500 ("x86/kvm/hyper-v: move VMX controls sanitization out of nested_enable_evmcs()")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210907163530.110066-1-vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Nested bus lock VM exits are not supported yet. If L2 triggers bus lock
VM exit, it will be directed to L1 VMM, which would cause unexpected
behavior. Therefore, handle L2's bus lock VM exits in L0 directly.
Fixes: fe6b6bc802 ("KVM: VMX: Enable bus lock VM exit")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20210914095041.29764-1-chenyi.qiang@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
"VMXON pointer" is saved in vmx->nested.vmxon_ptr since
commit 3573e22cfe ("KVM: nVMX: additional checks on
vmxon region"). Also, handle_vmptrld() & handle_vmclear()
now have logic to check the VMCS pointer against the VMXON
pointer.
So just remove the obsolete comments of handle_vmon().
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Message-Id: <20210908171731.18885-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove vcpu_vmx.nr_active_uret_msrs and its associated comment, which are
both defunct now that KVM keeps the list constant and instead explicitly
tracks which entries need to be loaded into hardware.
No functional change intended.
Fixes: ee9d22e08d ("KVM: VMX: Use flag to indicate "active" uret MSRs instead of sorting list")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210908002401.1947049-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as they
do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is disabled
- bugfixes and cleanups, especially with respect to 1) vCPU reset and
2) choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmE2CIAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMyqwf+Ky2WoThuQ9Ra0r/m8pUTAx5+gsAf
MmG24rNLE+26X0xuBT9Q5+etYYRLrRTWJvo5cgHooz7muAYW6scR+ho5xzvLTAxi
DAuoijkXsSdGoFCp0OMUHiwG3cgY5N7feTEwLPAb2i6xr/l6SZyCP4zcwiiQbJ2s
UUD0i3rEoNQ02/hOEveud/ENxzUli9cmmgHKXR3kNgsJClSf1fcuLnhg+7EGMhK9
+c2V+hde5y0gmEairQWm22MLMRolNZ5NL4kjykiNh2M5q9YvbHe5+f/JmENlNZMT
bsUQT6Ry1ukuJ0V59rZvUw71KknPFzZ3d6HgW4pwytMq6EJKiISHzRbVnQ==
=FCAB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual
PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as
they do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized
LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is
disabled
- bugfixes and cleanups, especially with respect to vCPU reset and
choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless
necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
KVM: Drop unused kvm_dirty_gfn_invalid()
KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
KVM: MMU: mark role_regs and role accessors as maybe unused
KVM: MIPS: Remove a "set but not used" variable
x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
KVM: stats: Add VM stat for remote tlb flush requests
KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
kvm: x86: Increase MAX_VCPUS to 1024
kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
KVM: s390: index kvm->arch.idle_mask by vcpu_idx
KVM: s390: Enable specification exception interpretation
KVM: arm64: Trim guest debug exception handling
KVM: SVM: Add 5-level page table support for SVM
...
If we are emulating an invalid guest state, we don't have a correct
exit reason, and thus we shouldn't do anything in this function.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210826095750.1650467-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Fixes: 95b5a48c4f ("KVM: VMX: Handle NMIs, #MCs and async #PFs in common irqs-disabled fn", 2019-06-18)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD future CPUs will require a 5-level NPT if host CR4.LA57 is set.
To prevent kvm_mmu_get_tdp_level() from incorrectly changing NPT level
on behalf of CPUs, add a new parameter in kvm_configure_mmu() to force
a fixed TDP level.
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210818165549.3771014-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clear nested.pi_pending on nested VM-Enter even if L2 will run without
posted interrupts enabled. If nested.pi_pending is left set from a
previous L2, vmx_complete_nested_posted_interrupt() will pick up the
stale flag and exit to userspace with an "internal emulation error" due
the new L2 not having a valid nested.pi_desc.
Arguably, vmx_complete_nested_posted_interrupt() should first check for
posted interrupts being enabled, but it's also completely reasonable that
KVM wouldn't screw up a fundamental flag. Not to mention that the mere
existence of nested.pi_pending is a long-standing bug as KVM shouldn't
move the posted interrupt out of the IRR until it's actually processed,
e.g. KVM effectively drops an interrupt when it performs a nested VM-Exit
with a "pending" posted interrupt. Fixing the mess is a future problem.
Prior to vmx_complete_nested_posted_interrupt() interpreting a null PI
descriptor as an error, this was a benign bug as the null PI descriptor
effectively served as a check on PI not being enabled. Even then, the
new flow did not become problematic until KVM started checking the result
of kvm_check_nested_events().
Fixes: 705699a139 ("KVM: nVMX: Enable nested posted interrupt processing")
Fixes: 966eefb896 ("KVM: nVMX: Disable vmcs02 posted interrupts if vmcs12 PID isn't mappable")
Fixes: 47d3530f86c0 ("KVM: x86: Exit to userspace when kvm_check_nested_events fails")
Cc: stable@vger.kernel.org
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810144526.2662272-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The ROL16(val, n) macro is repeatedly defined in several vmcs-related
files, and it has never been used outside the KVM context.
Let's move it to vmcs.h without any intended functional changes.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210809093410.59304-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the declaration of kvm_spurious_fault() to KVM's "private" x86.h,
it should never be called by anything other than low level KVM code.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: rebased to a series without __ex()/__kvm_handle_fault_on_reboot()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the __kvm_handle_fault_on_reboot() and __ex() macros now that all
VMX and SVM instructions use asm goto to handle the fault (or in the
case of VMREAD, completely custom logic). Drop kvm_spurious_fault()'s
asmlinkage annotation as __kvm_handle_fault_on_reboot() was the only
flow that invoked it from assembly code.
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210809173955.1710866-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that nested VMX pulls KVM's desired VMCS controls from vmcs01 instead
of re-calculating on the fly, bury the helpers that do the calcluations
in vmx.c.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the secondary execution controls cache now that it's effectively
dead code; it is only read immediately after it is written.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When preparing controls for vmcs02, grab KVM's desired controls from
vmcs01's shadow state instead of recalculating the controls from scratch,
or in the secondary execution controls, instead of using the dedicated
cache. Calculating secondary exec controls is eye-poppingly expensive
due to the guest CPUID checks, hence the dedicated cache, but the other
calculations aren't exactly free either.
Explicitly clear several bits (x2APIC, DESC exiting, and load EFER on
exit) as appropriate as they may be set in vmcs01, whereas the previous
implementation relied on dynamic bits being cleared in the calculator.
Intentionally propagate VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL from
vmcs01 to vmcs02. Whether or not PERF_GLOBAL_CTRL is loaded depends on
whether or not perf itself is active, so unless perf stops between the
exit from L1 and entry to L2, vmcs01 will hold the desired value. This
is purely an optimization as atomic_switch_perf_msrs() will set/clear
the control as needed at VM-Enter, i.e. it avoids two extra VMWRITEs in
the case where perf is active (versus starting with the bits clear in
vmcs02, which was the previous behavior).
Cc: Zeng Guang <guang.zeng@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit efdab99281 ("KVM: x86: fix escape of guest dr6 to the host")
fixed a bug by resetting DR6 unconditionally when the vcpu being scheduled out.
But writing to debug registers is slow, and it can be visible in perf results
sometimes, even if neither the host nor the guest activate breakpoints.
Since KVM_DEBUGREG_WONT_EXIT on Intel processors is the only case
where DR6 gets the guest value, and it never happens at all on SVM,
the register can be cleared in vmx.c right after reading it.
Reported-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit c77fb5fe6f ("KVM: x86: Allow the guest to run with dirty debug
registers") allows the guest accessing to DRs without exiting when
KVM_DEBUGREG_WONT_EXIT and we need to ensure that they are synchronized
on entry to the guest---including DR6 that was not synced before the commit.
But the commit sets the hardware DR6 not only when KVM_DEBUGREG_WONT_EXIT,
but also when KVM_DEBUGREG_BP_ENABLED. The second case is unnecessary
and just leads to a more case which leaks stale DR6 to the host which has
to be resolved by unconditionally reseting DR6 in kvm_arch_vcpu_put().
Even if KVM_DEBUGREG_WONT_EXIT, however, setting the host DR6 only matters
on VMX because SVM always uses the DR6 value from the VMCB. So move this
line to vmx.c and make it conditional on KVM_DEBUGREG_WONT_EXIT.
Reported-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use vmx_need_pf_intercept() when determining if L0 wants to handle a #PF
in L2 or if the VM-Exit should be forwarded to L1. The current logic fails
to account for the case where #PF is intercepted to handle
guest.MAXPHYADDR < host.MAXPHYADDR and ends up reflecting all #PFs into
L1. At best, L1 will complain and inject the #PF back into L2. At
worst, L1 will eat the unexpected fault and cause L2 to hang on infinite
page faults.
Note, while the bug was technically introduced by the commit that added
support for the MAXPHYADDR madness, the shame is all on commit
a0c134347b ("KVM: VMX: introduce vmx_need_pf_intercept").
Fixes: 1dbf5d68af ("KVM: VMX: Add guest physical address check in EPT violation and misconfig")
Cc: stable@vger.kernel.org
Cc: Peter Shier <pshier@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812045615.3167686-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When a nested EPT violation/misconfig is injected into the guest,
the shadow EPT PTEs associated with that address need to be synced.
This is done by kvm_inject_emulated_page_fault() before it calls
nested_ept_inject_page_fault(). However, that will only sync the
shadow EPT PTE associated with the current L1 EPTP. Since the ASID
is based on EP4TA rather than the full EPTP, so syncing the current
EPTP is not enough. The SPTEs associated with any other L1 EPTPs
in the prev_roots cache with the same EP4TA also need to be synced.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20210806222229.1645356-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the secondary_exec_controls_get() accessor in vmx_has_waitpkg() to
effectively get the controls for the current VMCS, as opposed to using
vmx->secondary_exec_controls, which is the cached value of KVM's desired
controls for vmcs01 and truly not reflective of any particular VMCS.
While the waitpkg control is not dynamic, i.e. vmcs01 will always hold
the same waitpkg configuration as vmx->secondary_exec_controls, the same
does not hold true for vmcs02 if the L1 VMM hides the feature from L2.
If L1 hides the feature _and_ does not intercept MSR_IA32_UMWAIT_CONTROL,
L2 could incorrectly read/write L1's virtual MSR instead of taking a #GP.
Fixes: 6e3ba4abce ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Based on our observations, after any vm-exit associated with vPMU, there
are at least two or more perf interfaces to be called for guest counter
emulation, such as perf_event_{pause, read_value, period}(), and each one
will {lock, unlock} the same perf_event_ctx. The frequency of calls becomes
more severe when guest use counters in a multiplexed manner.
Holding a lock once and completing the KVM request operations in the perf
context would introduce a set of impractical new interfaces. So we can
further optimize the vPMU implementation by avoiding repeated calls to
these interfaces in the KVM context for at least one pattern:
After we call perf_event_pause() once, the event will be disabled and its
internal count will be reset to 0. So there is no need to pause it again
or read its value. Once the event is paused, event period will not be
updated until the next time it's resumed or reprogrammed. And there is
also no need to call perf_event_period twice for a non-running counter,
considering the perf_event for a running counter is never paused.
Based on this implementation, for the following common usage of
sampling 4 events using perf on a 4u8g guest:
echo 0 > /proc/sys/kernel/watchdog
echo 25 > /proc/sys/kernel/perf_cpu_time_max_percent
echo 10000 > /proc/sys/kernel/perf_event_max_sample_rate
echo 0 > /proc/sys/kernel/perf_cpu_time_max_percent
for i in `seq 1 1 10`
do
taskset -c 0 perf record \
-e cpu-cycles -e instructions -e branch-instructions -e cache-misses \
/root/br_instr a
done
the average latency of the guest NMI handler is reduced from
37646.7 ns to 32929.3 ns (~1.14x speed up) on the Intel ICX server.
Also, in addition to collecting more samples, no loss of sampling
accuracy was observed compared to before the optimization.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210728120705.6855-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Move VMWRITE sequences in vmx_vcpu_reset() guarded by !init_event into
init_vmcs() to make it more obvious that they're, uh, initializing the
VMCS.
No meaningful functional change intended (though the order of VMWRITEs
and whatnot is different).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-44-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop a call to vmx_clear_hlt() during vCPU INIT, the guest's activity
state is unconditionally set to "active" a few lines earlier in
vmx_vcpu_reset().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-43-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate all of the dynamic MSR bitmap adjustments into
vmx_update_msr_bitmap_x2apic(), and rename the mode tracker to reflect
that it is x2APIC specific. If KVM gains more cases of dynamic MSR
pass-through, odds are very good that those new cases will be better off
with their own logic, e.g. see Intel PT MSRs and MSR_IA32_SPEC_CTRL.
Attempting to handle all updates in a common helper did more harm than
good, as KVM ended up collecting a large number of useless "updates".
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-42-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't bother initializing msr_bitmap_mode to 0, all of struct vcpu_vmx is
zero initialized.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-41-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop an explicit call to update the x2APIC MSRs when the userspace MSR
filter is modified. The x2APIC MSRs are deliberately exempt from
userspace filtering.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-40-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop unnecessary MSR bitmap updates during nested transitions, as L1's
APIC_BASE MSR is not modified by the standard VM-Enter/VM-Exit flows,
and L2's MSR bitmap is managed separately. In the unlikely event that L1
is pathological and loads APIC_BASE via the VM-Exit load list, KVM will
handle updating the bitmap in its normal WRMSR flows.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-39-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove an unnecessary MSR bitmap refresh during vCPU RESET/INIT. In both
cases, the MSR bitmap already has the desired values and state.
At RESET, the vCPU is guaranteed to be running with x2APIC disabled, the
x2APIC MSRs are guaranteed to be intercepted due to the MSR bitmap being
initialized to all ones by alloc_loaded_vmcs(), and vmx->msr_bitmap_mode
is guaranteed to be zero, i.e. reflecting x2APIC disabled.
At INIT, the APIC_BASE MSR is not modified, thus there can't be any
change in x2APIC state.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210713163324.627647-38-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>